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Abstract: In this paper, controls of electro-mechanical 
inter-area oscillations between interconnected power 
regions are studied. If small amplitude oscillations with 
low-frequency in power systems do not damp as needed, 
these oscillations can cause instability of power systems 
by limiting the system’s power transmission capacity. 
Many control methods have been applied to 
interconnected systems so far. In this study, a PID 
controller with derivative filter for damping the inter-area 
oscillations is designed by Coefficient Diagram Method 
(CDM) parameters. Time response performances of 
several previous control methods, such as the derivative 
filter PID controller, an optimization PID controller 
model that was developed using MATLAB/Simulink, and 
the controller designed using CDM are compared. 
Simulation results show that the CDM-based controller is 
more successful than the other controllers in damping the 
inter-area oscillations in power systems. 
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1. Introduction 

The interconnected energy transport system is the 
mechanism that provides the stability of energy, or 
the balance, between the centers of production and 
consumption throughout the country. The 
interconnected system adapts energy production to 
changes in consumption. For many years, because of 
long transmission lines or high-value power 
transmission in weak-connected power systems, one 
of the problems encountered is the existence of low-
frequency oscillations between generator groups [1, 
2]. These inter-area oscillations are a significant 
issue in power system stability and control areas. 
Modern power systems possess three main 
properties: (1) the measure of interconnected system 
is getting larger; (2) there is a closer operating point 
to the power system stability limit because of 
environmental and economic conditions; (3) being 
composed of new elements and keeping pace with 
technological developments unfortunately cause new 
uncertainties in the stability of power systems. These 
properties increase the risk of formation of low-
frequency oscillations [3]. 

Electro-mechanical oscillations that emerge in 
group generators or group plants are called inter-area 
mode [1]. It is necessary to balance these 
electromechanical oscillations to ensure the security 
of the system. In interconnected systems, there are 
many factors that affect the inter-area oscillations. 
When inter-area power flow is increased, frequency 

and damping ratio of the inter-area mode and tie-line 
impedance are decreased. The effect of excitation 
systems on the frequency and damping ratio of inter-
area mode changes according to the excitation type 
used. It has been reported in the literature [4] that the 
best damping in inter-area mode is seen with 
manually controlled exciters, and the worst damping 
ratio is seen in fast exciters with transient gain 
reduction. In addition, characteristics of the load 
affect the frequency and damping ratio of inter-area 
mode. Nonlinear loads have a diminishing effect on 
damping ratio. 

Inter-area modes usually have frequencies in the 
range of 0.1 to 1.0 Hz. However, the properties of 
these oscillation modes are not known exactly [4]. 
An exact examination and control of these modes 
are quite complex. A detailed description of the 
whole interconnected system is needed to investigate 
inter-area modes. Recently, investigation of unstable 
oscillations of inter-area modes in large power 
systems and controlling them have become 
challenging tasks.  

To date, several methods have been proposed in 
the literature, such as conventional PID controller, 
fractional order PID controller (FOPID) [5], 
adaptive controller based on unified power flow 
controller (UPFC) [6], and the effect of interline 
power flow controller (IPFC) [7]. In [8], a particle 
swarm optimization technique-based UPFC 
controller for damping inter-area oscillations was 
investigated. The authors of [9] developed a method 
for the design of an output feedback controller to 
damp electromechanical oscillations. In both of 
these studies, the utility of the proposed controller 
was tested, and the results obtained by means of 
nonlinear time domain simulations were shown. 
Shakarami et al. proposed a controller using static 
synchronous series compensator (SSSC) for 
damping inter-area oscillations [10]. In that study, a 
quadratic mathematic programming method was 
presented in the design of the stabilizer.  

In this paper, a CDM-based PID controller for 
damping inter-area oscillations is designed, and the 
time response performances of previous control 
methods are compared with those of the presented 
control method. The simulation results show that the 
CDM-based controller is more successful in 
damping inter-area oscillations in power systems 
than the other controllers are. This paper is 
organized as follows. In Section 2, basic theory of 
linear systems is explained. In Section 3, the PID 
controller with derivative filter is explained in a few 



  

words. In Section 4, the steps used to design the 
controller with the proposed CDM method are 
explained. In Section 5, the CDM-based PID 
controller is designed. In Section 6, the CDM-based 
PID controller is applied to the power systems and 
compared with the PID controller with derivative 
filter and the optimization PID controller with 
derivative filter. In Section 7, the obtained results 
are evaluated. 

 
2. Basic Theory of Linear Systems, Eigenvalues, 
and Eigenvectors 

A power system typically comprises a large 
number of components. In addition, the behavior of 
most of these components is described through 
differential algebraic equations. Hence, in general, 
the dynamic behavior of a power system can be 
described by a set of n first-order nonlinear ordinary 
differential equations, denominated as state 
equations, together with a set of algebraic equations, 
developed on the basis of the system model. Using 
vector-matrix notation, the mathematical model of a 
dynamic system denoted in terms of a system of 
non-linear differential equations is as follows [4]: 

 �� = ���, ��                                (1)                                                                        

	 = 
��, ��                                (2)                                                                        

In the classification of power system stability, 
small signal stability is focused on small 
disturbances. Thus, to analyze the small signal 
stability of the system mathematically, the 
disturbances can be considered to be small in 
magnitude in order to be linear equations that 
describe the dynamics of the system. 

For small perturbations of the system from its 
initial operating point, (1) and (2) can be expressed 
in linear form, as follows [4]: 

 ������ = 
����� + ������                 (3)        
                                               �	��� = ������ + ������                 (4)                                              
 
The eigenvalues of the state matrix A determine 

the time domain response of the system to small 
perturbations, and therefore, provide valuable 
information regarding the stability characteristics of 
the system. The stability of the system is determined 
by the eigenvalues, as follows: 

a) A real eigenvalue corresponds to a non-
oscillatory mode. A negative real eigenvalue 
represents a decaying mode. A positive real 
eigenvalue represents aperiodic instability. 

b) Complex eigenvalues occur in conjugate 
pairs, and each pair corresponds to an 
oscillatory mode. If all eigenvalues have a 
negative real part, then all oscillatory modes 
decay with time, and the system is said to be 
stable [4].  

For a complex pair of eigenvalues � = � ±  ��, 
the real component of the eigenvalues, σ, gives the 
damping, and the imaginary component, ω, gives the 
frequency of oscillation. A negative σ value 
represents a damped oscillation, whereas a positive σ 
value represents oscillation of increasing amplitude. 
The frequency of oscillation in Hz is given by � = �/2�. The damping ratio (ζ) is given by [4]: 

 � = −�√�� + ��                                 �5� 

 
The eigenvalue analysis of inter-area oscillations 

denotes that, in the range of inter-area oscillations, 
the number of eigenvalues becomes different. The 
new type of transfer function is given by 

 


�!� = 1# $ 1 − �%�! − �&%��! − ��%�
'

%(&               �6� 

 
Herein, λ1i and λ2i are a conjugate pair of 

eigenvalues; ξi are the damping ratios corresponding 
to the conjugate eigenvalues; and k is the number of 
inter-area oscillations. The new damping ratios and 
oscillation frequency can be obtained by calculating 
the second-order transfer function, which has only 
one damping ratio [5]. 

 
3. PID Controller with Derivative Filters 

Let a dynamic system G(s) be controlled by a 
PID controller C(s), as shown in Fig. 1. 

 

 

Figure 1. Block diagram of PID. 

The PID controller has the form 
 ��!� = #* + #%! + #+!                           �7� 

where kp, ki, and kd are the proportional, integral, and 
derivative constants of the controller, respectively 
[11]. The PID controller, C(s), can be expressed in a 
time constant form, as follows: 
 ��!� = #* -1 + 1.% + .+!/                     �8� 

where τi=kp/ki is the integration time constant and 
τd=kd/kp is the derivative time constant. 
In practical control applications, the structure of the 
PID controller, shown in Fig. 1, is commonly 
modified through the addition of a derivative filter in 
order to satisfy the high gain effect induced by high-
frequency measurement noise. The modified PID 
controller can be described as 

C(s) G(s) 
e(t) u(t) r(t) y(t) 

+ _ 



  

��!� = #* + #%! + #+!�1 + 1!�                     �9� 

or 

��!� = #* 31 + 1.%! + .+!1 + 4.+5 6 !7          �10� 

where α=τd/N is a design parameter [12]. 
 
4. Coefficient Diagram Method 

The controller design with CDM is based on 
determination of the coefficients of the characteristic 
polynomial of the closed-loop system with respect to 
the suitable behavior criteria, such as equivalent 
time constant, stability index, and stability limit 
index [13]. The most important features of the 
method are: use of polynomial representation for the 
system and controller; use of control system 
structure with two-degree of freedom; usually, a 
non-overshoot unit step response of a closed-loop 
system; controller design with a predetermined 
required settling time; good robustness of the control 
system, according to the changes that may occur in 
system parameters; and having the controller with a 
sufficient gain and phase margin [13].  

CDM’s power comes from designing the most 
robustness and the simplest controller within 
practical limits for each system to be controlled. 
This method has been approved in a variety of 
systems [13]. 

The designed controller with proposed CDM has 
the lowest order and the most convenient band width 
and the time response of the closed-loop system has 
no overshoot. These properties guarantee robustness, 
sufficient damping of disturbance, and low cost [14]. 
A block diagram of CDM is shown in Fig. 2. 
 

 

Figure 2. Block diagram of CDM 

The terms in the diagram are: r is a reference 
input; y is an output; d is a disturbance signal; N(s) 
and D(s) are, respectively, numerator and 
denominator polynomials of transfer function of the 
system that it is desired to control. A(s) is the 
denominator polynomial of the controller transfer 
function, F(s) is the reference numerator 
polynomial, and B(s) is the feedback numerator 
polynomial. 

It is disadvantageous that there is a polynomial at the 
feedback system in practical application. To prevent 
this drawback, it can be transformed into a new 
block diagram of the control system, as shown in 
Fig. 3. 

The output of the closed-loop system is 
 

	 = 5�!���!�9�!� . ; + 
�!�5�!�9�!� . <                �11� 

P(s) is a characteristic polynomial, and it can be 
shown as follows: 

9�!� = ��!�
�!� + 5�!���!� = $ =%!%>
%(?     �12� 

 

Figure 3. Block diagram of CDM used in practice. 

The equivalent time constant τ, the stability index 
γi, and the stability limit index γi

*
, which are design 

parameters of CDM, are calculated with the 
characteristic polynomial coefficients, as follows: 

 

@% = =%�=%A&=%A�     B = 1~�D − 1�, @? = @> = ∞      �13� 

@%∗ = 1@%G& + 1@%A&                                �14� 

. = =&=�                                        �15� 

In addition, coefficients of ai are calculated as 
 

=% = =?.%
@%G&@%G�� … @&%G&                            �16� 

The characteristic polynomial is given in terms of 
the design parameters by 

 

9�!� = =? JK$ 3L 1@%GMM
%G&
M(& 7>

%(�
�.!�%N + .! + 1O     �17� 

This equation will be used as a target transfer 
function. F(s) is a constant, and it is calculated as 
follows: 

��!� = PQ9�!�5�!�RST(?                       �18� 
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Thus, the steady-state error which may occur in 
the steady-state response of a closed-loop system is 
corrected by F(s). 

The equivalent time constant is determined as 
τ=ts/2.5.  When determining the stability index and 
the stability limit index, according to desired attitude 
feature, γi>1.5γi

*
 condition is considered. 

During the design, the coefficients of controller 
are calculated as follows: 

 [�]TWT X Y%#%ZTWT = [=%]TW&                       �19� 

Herein, li and ki are the unknown control 
parameters, matrix C is the coefficients of control 
parameters, and vector ai is the set of coefficients of 
the desired target polynomial. Consequently, the 
parameters of the controller are obtained by solving 
an equation system with s unknown variables [13].  

Because CDM is a method with a polynomial 
representation, the transfer function of the system is 
considered as two independent polynomials. These 
polynomials are the m order numerator polynomial, 
N(s), and the n order denominator polynomial, D(s). 
According to this, the polynomials of controller A(s) 
and B(s), whose orders are p and q, respectively, are 
obtained as follows [13]: 

 


�!� = $ Y%!%*
%(?      ��!� = $ #%!%[

%(?               �20� 

The orders of polynomials show differences 
according to existence as well as type of disturbance. 
These orders of polynomials are determined 
according to Table 1 [13]. 

Table 1. The choosing order of A(s) and B(s) controller 
with different disturbance types. 

  
   Without 

Disturbance               

  Step 

  Type     

    Ramp  

    Type 

   Impulse/ 

Sinus Type            

order{A}         n-1  n   n+1      n-1 

order{B}         n-1  n   n+1      n-1 

Condition           -  l0=0   l0=l1=0         - 

order{P}        2n-1  2n   2n+1     2n-1 

 
 

5. PID Controller Tuning by CDM 
PID control is the most commonly used control 

method at the present time. It is estimated that more 
than 90% of control loops in the industry use PID 
control.  

The designed controller using CDM, which is for 
a second-order system with step type disturbance, 
from Table 1, is as follows: 

 ��!�
�!� = #�!� + #&! + #?Y�!� + Y&!                     �21� 

The polynomial of the designed controller using 
CDM for a second-degree system with step type 
disturbance is similar to the polynomial of the 
designed PID controller with derivative filter. 
Therefore, it is proposed in this study that the 
parameters of the PID controller with derivative 
filter are rewritten in terms of CDM parameters.  (9) 
was restructured and then equaled with (21); it can 
be described as 

 \1#* + #+]!� + \1#% + #*]! + #%1!� + ! = #�!� + #&! + #?Y�!� + Y&!       �22� 

From this equation, the parameters of the PID 
controller with derivative filter are calculated in 
terms of CDM parameters. They are found as 
follows: 

 #* = #& − #?Y�                               �23� 

#% = #?                                     �24� 

#+ = #� − #&Y� + #?Y��                         �25� 

1 = Y�                                     �26� 

 
6. The Applications of CDM Based PID 
Controller 
6.1. Application I 

In power systems, a typical inter-area oscillation 
mode occurs in the New England 39 bus system. 
There is only one inter-area oscillation mode in this 
system. This typical mode, shown in Fig. 4, was 
considered as an example.  

 

 
 

Figure 4. Inter-area mode oscillation in New England 39 
bus system. 

As shown in Fig. 4, closed-loop response of the 
plant without a controller had a maximum overshoot 
of 80%, and the frequency of inter-area oscillation 
was 0.5376 Hz. The transfer function given by (6) is 



  

obtained by using suitable parameters and becomes 
[5] 
�!� = 0.9532!� + 0.3311! + 12.52                  �27� 

The controller polynomials of the system given 
by (27) are obtained as C1(s) and C2(s) using the PID 
controller with derivative filter, designed by Zhong 
et al. [15], and the optimization PID controller with 
derivative filter designed by using Simulink 
MATLAB, respectively: 

 

�&�!� = −3.196 31 − 11.027! + 1.082!
41.0821.0826 ! − 17      �28� 

���!� = 173.654 31 + 13.092! + 0.257!
1 + 4 0.25786.3926 !7  �29� 

The step responses obtained from the application 
of Zhong et al., the optimization PID controller, and 
the designed CDM-based PID controller to the 
system are shown in Fig. 5. 

 

 

Figure 5. Step responses of controllers. 

Looking at Fig. 5, the step response for the PID 
control with derivative filter [15] had no overshoot, 
but settling time was 10 s. As also seen in the same 
figure, the step response for the optimization PID 
control had a 10% overshoot and settling time of 4 s; 
however, the step response for the CDM-based PID 
control had no overshoot and a settling time of 0.6 s. 
These settling time values were computed using a 
tolerance band of 2% for the steady-state value. The 
results of these methods demonstrate that the CDM-
based control provided a dramatically improved 
performance step for input tracking and for 
disturbance rejection. The shortest settling time is 
one of the favorable behaviors of the system with the 
CDM-based PID controller. In addition, the time 
response of the closed-loop system of the CDM-
based PID control was without overshoot. 

The disturbance damping performances of the 
controllers are shown in Fig. 6. In this application, 
disturbance was applied entirely at zero seconds to 
the system’s input, and time responses given by the 
controllers were observed. 

 

 

Figure 6. Disturbance damping performance of 
controllers. 

In Fig. 6, it is clearly seen that the best 
disturbance rejection performance was shown by the 
CDM-based PID control when comparing these 
controllers. 

In the other application, step type input, which is 
reference input, and disturbance were applied to the 
system at the same time. The step responses of the 
controllers are shown in Fig. 7. As can be seen, there 
was no change in the step responses of the CDM-
based PID control and the optimization PID control 
when compared with step responses without 
disturbance of the controller. However, the PID 
control with derivative filter [15] had a settling time 
of 12 s. 

 

 

Figure 7. Step responses of controllers for system with 
disturbance. 

 
 



  

The robustness of the proposed controller and the 
previous control methods were also tested. The ideal  
robustness analysis method for the power system 
control design problem would be capable of 
analyzing the stability and performance robustness 
of a nonlinear system to parametric uncertainty and 
unmodeled  dynamics. However, such an approach 
does not exist at the present time, nor will it in the 
near future. 

The step responses of the CDM-based PID 
controller, the optimization PID controller, and the 
PID controller with derivative filter [15] for ± 10% 
changes in the operational point’s parameters of the 
system are shown in Figs. 8, 9, and 10, respectively. 
 

 

Figure 8. Step responses of CDM based PID controller 
for ± 10% changes in the operating point’s parameters of 

the system. 

 

 

Figure 9. Step responses of optimization PID controller 
with derivative filter for ± 10% changes in the operating 

point’s parameters of the system. 

The CDM-based PID controller was found to be 
robust enough to change in the operating point of  

 

Figure 10. Step responses of PID controller with 
derivative filter [24] for ± 10% changes in the operating 

point’s parameters of the system. 

system parameters, as it adapts itself to generate a 

suitable variation of the control signals, depending 

on the operating conditions of the system. 
The proposed control structure exhibited a 

substantial robustness to plant parameter changes 
and a low susceptibility to inaccuracy of the model 
adopted to tune the controller. 

 

6.2. Application II 
The second example concerns a model with a 2-

area 4-machine power system [16] which is depicted 
in Fig. 11. 

In this power system, there is a pair of typical 
inter-area oscillation modes, λ1,2=-0.501±j3.77 [16]. 
When using (5) and (6), the transfer function of 
oscillation modes was obtained, as follows: 

 
�!� = 0.8682!� + 1.002! + 14.4639                 �30� 

 

Figure 11. 2-area 4-machine power system. 

The inter-area mode oscillation of this system is 
shown in Fig. 12. It can be seen that closed-loop 
response of the plant without a controller has a 
maximum overshoot of 65%, and the frequency of 
inter-area oscillation is 0.5747 Hz. 

 



  

 

Figure 12. Inter-area mode oscillation in 2-area 4-
machine power system. 

The controller polynomials of the system given 
by (30) are obtained as C1(s) and C2(s) using the PID 
controller with derivative filter designed by Zhong et 
al. [15] and the optimization PID controller with 
derivative filter designed by using MATLAB/ 
Simulink, respectively: 

 

�&�!� = −4.0512 31 − 10.4114! + 2.5284!
42.52841.01146 ! − 17 �31� 

���!� = 281.939 31 + 12.689! + 0.195!
1 + 4 0.19597.9846 !7    �32� 

The step responses, obtained when using the 
designed CDM-based PID control, the PID control 
with derivative filter [15], and the optimization PID 
control for controlling this system, are given in 
Fig.13. 

 

 

Figure 13. Step responses of controllers. 

 

It can be seen in Fig. 13 that the step response for 
the PID control [15] and the optimization PID 
control had a 5% and 10% overshoot, and settling 
times of 8 s and 4 s, respectively. On the other hand, 
the step response for the CDM-based PID control 
had no overshoot and a settling time of 0.9 s. In 
addition, these settling time values were computed 
using a tolerance band of 2% for the steady-state 
value. In this case, the percentage overshoot of the 
system with optimization PID control and the PID 
control with derivative filter [15] were greater than 
that of the CDM-based PID control, and their 
settling times were longer than that of the CDM-
based PID control in the system. That is to say, the 
time response of the closed- loop system was better 
with the CDM-based PID control when compared 
with both of the other controllers. In addition, the 
CDM-based PID controller had the best rejection of 
disturbance signal. 

The disturbance damping performance of the 
controllers is shown in Fig. 14. In this application, 
disturbance was applied entirely at zero seconds to 
the system’s input, and the time responses given by 
the controllers were observed. 

In Fig. 14, it is clearly seen that the best 
disturbance rejection performance was shown by the 
CDM-based PID control when compared with the 
other controllers. 

In another application, step type input which is 
reference input and disturbance were applied to the 
system at a parallel time. The step responses of the 
controllers are shown in Fig. 15. 

As can be seen, there was no change in settling 
time of the CDM-based PID control, the PID control 
with derivative filter, and the optimization PID 
control when compared with the step responses 
without disturbance of the controller. However, the 
PID control with derivative filter [15] had an initial 
ripple was higher than the previous one, without the 
disturbance. 

 

 

Figure 14. Disturbance damping performance of 
controllers. 



  

 

Figure 15. Step responses of controllers for system with 
disturbance. 

 
7. Conclusions 

In this paper, the performance of the designed 
control method, which is named the CDM-based 
PID controller, was compared with the performances 
of the optimization PID controller with derivative 
filter designed by using MATLAB/Simulink and the 
PID controller with derivative filter for damping of 
inter-area oscillations formed between 
interconnected power regions. In the time domain 
simulations, it was found that the CDM-based PID 
controller has many advantages, such as rapidity, 
simplicity, and robustness.  

The PID controller is the most commonly used 
control method today. In reality, CDM is not widely 
applied in regard to PID controllers in the industry. 
However, the results were in accordance with our 
expectations— short settling time, without 
overshoot, and satisfactory rejection of disturbance 
in the response of the system. These results prove 
that the designed control method using CDM 
provides the best response, accuracy, and reliability. 
These, in turn, show that the CDM-based PID 
controller is feasible in controlling modes that 
emerge as inter-area oscillations in interconnected 
power systems. 

For the controller design, transfer function of the 
system, which is a linear form around the operating 
point, is used, and CDM is employed to optimally 
tune the parameters of the controller. The 
effectiveness of the proposed CDM-based damping 
controller in power-system stability was 
demonstrated in a New England 39 bus system and 
2-area 4-machine power systems. It was observed 
that the proposed CDM-based controller provides 
efficient damping to power system oscillations. 
Further, the proposed controller was found to be 
robust enough to change in operating points of 
system parameters, as it adapts itself to generate a 

suitable variation of the control signals, depending 
on the operating conditions of the system. 
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