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Abstract: This paper deals with the application of anspectrum, in this case, it's more interesting tasider
adaptive Implicitly Restarted Arnoldi Algorithm eason the Krylov subspaces methods for finding the
Krylov subspaces coupled with a dynamic switchingigenvalues of interest. From these methods, the
approach to the small signal stability eigen analys armoldi algorithm is the most efficient one; it pides
problem for power systems. The goal of the modifigg,qq approximations for the few sought eigenvalues
algorithm is to converge quickly and directly te tsought using orthogonal techniques [4]
critical eigenvalues concerned with poor dampingaa Lg f 9 il q[ LI£O h i
directly from the algorithm calculation. ow frequency oscrliations S concern the rotor
angle stability, the range of the oscillationsesvieen
Key words: Damping ratio, Dynamic switching, 0-1-3Hz. The generators are more and more equipped
Eigenvalues, Implicitly Restarted Arnoldi AlgorithBmall with modern exciters to enhance the transientlgtgbi

Signal Stability the use of high- gain exciters, the HDVC converters
static Var compensators may create LFOs with poor
1. Introduction. damping.

Power system stability issue is considered as anLFOs include the oscillations resulting from the
important topic and had received a great deal ofteraction between the mechanical and electrical
attention aver years. We can classify power systemodes of a generator-turbine system, as local modes
stability into three categories as follows [1]x(gtor the most commonly encountered ones, control modes
(power) angle stability, (ii) voltage stability arfiii) and torsional modes [5].
frequency stability. Inter- area modes describe the swinging of coherent

The transient stability problem is one of the aagul groups of generators against another group, thrgeran
stability issues; it concerns the phenomenon whiaf frequencies is between 0.1-0.7 Hz. This type of
occurs the first few seconds following a short or ascillations is more complex than the local one and
transient disturbance. As many efforts and intevese  limits the quantity of power transmission on tieet
focused on this type of stability problem, wellbetween the regions containing the groups of cottere
established analytical techniques and computatiorgénerators. [6].
programs are established to overcome and analgze th Power system stabilizers (PSSs) have been widely
transient stability. used as additional controllers to the excitersamol

In the other side, ensuring sufficient dampindef t out the LFOs, the PSS produces a component ofgorqu
system oscillations concerns the small signal Efybi in phase with rotor speed deviation to enhance the
problem. The system response to small changesdamping of the system and thus extends its capabili
considered as an important requirement for theansfer limits [7].
satisfactory operation of power systems. In thieczt In this paper, we propose an algorithm adapted to
stability studies, the system can be linearizedradtdts SSSA stability which aims to find the few sought
steady state operating conditions which is itgigenvalues (those with the poorest damping ratios)
equilibrium point in the same time. [2]. The method is mainly based on an Adaptive Impjicitl

One of the most common methods for the SmaRestarted Arnoldi algorithm [8] coupled to a
Signal Stability Analysis SSSA is the eigenvaluedynamique switching approach as proposed on [9] to
calculation method. The method is well-known ansl haccelerate the convergence to the wanted approximat
proved its efficiency [3] eigenvalues.

Among linear techniques for solving SSSA The application of the adaptive dynamic algorithm
problems, the QR-routine is so far the most used orio two test cases system has given satisfactonjtses
The corresponding algorithm calculates all thand has shown the efficiency of the method in
eigenvalues and eigenvectors of the system, and twnputing the wanted eigenvalues, especially when
operation needs time and memory storage for tlvemparing the results with those calculated byQRe
spectrum values. For the SSSA we are mainhputine. Our method has taken less time for reachin
interested on few eigenvalues, those with a potire convergence with less storage memory space.
damping, and there is no need to consume time
calculation and memory storage for the whole of the



2. Small signal stability analysis. eigenvalues with poorly damped oscillatory modes.

For the SSSA issue, the power system can Rfe damping ratia@ defined in (8) provides a major

described by a set of linear equations that aeatined ;_ Ji-~iion to the SSSA. The higher damping ratie

; Srt ; |
around its equilibrium point represented by a stea . .
state operati?wg conditioels 2]. P yasy (getter damping effects to enhance the stabilitihef

low frequency oscillations.

2.1 State Space Model. _

) (8)
The equations modeling the state space model are // 2 2
borrowed from [10]. gortw

Complex dynamic equations of linear systems are 1he adaptive dynamic implicitly restarted

generally represented by: Arnoldi algorithm.
d%t = AX + BU (1) The QR routine is a technique which calculates

the whole of the spectrum, but for the SSSA isaige,
mainly focus on analyzing the oscillatory modes, so
fonly few eigenpairs from the spectrum are of irgere
For this, the Krylov Subspace methods [11].are
exploited.

Two widely used Krylov processes are: the Arnoldi
process and the asymmetric Lanczos process [12].
As the state space matrix of power systems is giyer
a sparse matrix A. If we multiply A byto get A, we
can then multiply A by that vector to gekAand so
we can build a Krylov subspaggAx, A, ...

The Arnoldi process is by far the most widely used
Krylov process. The Arnoldi process begins with

u=cx; where c=1X]

With:

X is the system vector stateh,is the state square
matrix, B is the matrix which defines the proportion o
each input applied to each state equationlaimithe
system vector inputs.

The system output is generally expressed as:

Y =CX+DU (2)

With:

Y is the system vector outputS,is the output matrix
andD is the feed forward matrix.

The solution of (1) is of the form:

n
X =Xuz (3)
i=1""
u; is the 1" right eigenvector oA\, andz; the I" mode

that satisfies the following equation: 3.1 The Modified Implicitly Restarted Arnoldi Metho

g (MIRA)
i 17 +vBU (4) The implicit restart method, based on Sorensen’s
dt i implicity restarted Arnoldi process [8], is the iliafily

Ai,vi respectively'f eigenvalue and left eigenvector ofshifted QR algorithm coupled to a k-step Arnoldi
A factorization.

The original algorithm for our modified Implicitly
Restarted Algorithm was extracted from [13], thesid
is to adapt it to our SSSA problem which is findihg
eigenvalues of the critical oscillatory modes. s,

2.2 Eigenvalues and Stability Analysis
The eigenvalues\; for the matrix A are
calculating by solving equation (5):

det(A-Al1) =0 (5) we introduce the damping ratio as a selective
The i right eigenvectou; satisfies: parameter; Instead of searching the eigenvalugs wit
Aui = /liui (6) positive or largest real part as the ARPACK doey ve

h . piefiac well [13].
And_tr;ei IefE7e)|genvector/.sat|sf|es. We modify the basic Algorithm by adding one
viA- ivi

iteration(2.b) which calculate the damping ratios.
The eigenvalues provide important feedback reggrdifVhen sorting the ratios, we obtain the wanted and
the stability of the studied system, for example t unwanted ellgenvalues. In_such way we will only keep
eigenvalues with real positive part correspondarto those affecting the small signal stability of tlystem.
unstable mode as each complex eigenvalue having }QI
form (6tjw) corresponds to an oscillatory mode.
Hence, an el_genvalue with a posnwedefln(_as a_n m-step Arnoldi Eactorization
unstable oscillatory mode, whereas, a pair with a

. . _ T
negatives represents a stable oscillatory mode. AVm = VmH m fmem
The dominant modes are those associated to

aorithmlz The Modified Implicitly Restarted Arril
Algorithm (MIRA)



2/ fromw=1, ..., until convergence
2.a/ Calculate the spectrum e,

to step (3.c); else sat* =A® and continue.
f/ Apply implicit shifts to obtain an Arnoldi

2.b/ calculat€ as in(8) and split the eigenvalues ik torization of length.

two sets regarding their damping ratio: tke
wanted ones and the shifts ones

W, _{w w w w

MHE) —{/11 A0 {Ak+1,.../1m}

2.c/ Carry oup-QR-implicitly shifted

2.d/ Update/,H andf

2.e/ Applyk-step Arnoldi factorization

2.f/ Extend thek-step Arnoldi factorization to

length
k+p=m

The convergence is obtained when the maximu
relative residual norm (res) falls below the define
tolerance [13]

o]
=T 1A

3.2 Adaptive Dynamic Implicitly Restarted Arnold
Method (ADIRA)

In stepl, the algorithm calculates the initial s#tek

Arnoldi factorization AVO :VOH 0 + foeT . And

k k k kk
the corresponding eigenpa(, y°) of H/ on step

2, the residual vector satisfieS= fg{ yy .

In the main loop (step 3); the routine is carriemhf
®=1 up to the convergenceis the cosine of the acute
angle between#

gndne~ with = n® — ™%, And s, = Py

The step (3.e) is important in the fact that if the
damping ratiorf(A® )>C (A¥™), then we carry ouh-k
implicit QR steps and reconstruct the Arnoldi
factorization with a larger dimension m (mgg)

Mmax is the greatest possible value of the
Krylov subspace, the default value is min(mawx(3
fix(k/2),19n)), where fixp) roundsp to the nearest
integer towards 0, rem(P,Q) denotes the remaimder i

T pw-1

For accelerating the convergence of the previotide division of P by Q
algorithm, a dynamic technique is used. The meth%l Results of test .

was first proposed on [9], the idea is to explbi t
relationship between the residual of the curreep st
and the residual of the previous step to mod
subspace dimension

The aim of our work is to accelerate the
convergence of our Modified Implicitly Restarted
Arnoldi algorithm by incorporating Dynamic
Switching routine as proposed on [14]

Algorithm2: Adaptive Dynamic Implicitly Restarted
Arnoldi method (ADIRA)
1/ Run an Arnoldi factorization of lengkh

2/ Compute the approximate eigenp&t. y?) and
find the residual vector? and sef\’ = A°
3/ Main Loop until convergence

a/ ifo=1, setg;=1; else computq? andz, if
A" has not converged.

b/ Use the algorithm in Appendix A for
switching the Krylov subspace dimension.

c/ Extend the length tan for Arnoldi
decomposition.

d/ Same as steps (1) and (2) from algorithm
to obtain(A?.y®).

e/ if A? has not converged, the g{AY)> ¢
(A¥™), we carry oum-k QR-Implicitly shifted as in
(2.b) of the algorithm 2 and set=m+fix(k/3) and go

In this part, we consider two benchmark systems,
which

'f%e New England New York 39-bus, 16-machines

system and the IEEE 145-bus, 50-machines system.
The details both systems are given in Tablel.

TABLE 1:DESCRIPTION OF TEST SYSTEMS

Systeml System?2
No. of Buses 68 145
No. of Generators| 16 50
- detailed model | 16 7
- classical model| O 43
Total No. of states| 207 235

3.1. Systeml
The proposed power system is the New England and
New York interconnected system. For this system,
generators are modelled using a IV-order model. The
full dynamic data of the system can be found in [6]
The calculation of the whole spectrum was firstelon
by using the QR-Routine. Setting as 5% the critical
mping ratio value, 8 critical oscillatory modee a
identified Table2.



Imag part

TABLE 2:0SCILLATORY MODES FORSYSTEM1

Mode Eigenvalues damping | Frequency
Num TABLE 3 COMPARISON RESULTS FORSYSTEM1
1 [-0.0633 % 7.0777 0.89% |  1.127 Sought
2 -0.1583 4 5.6834 2.78% 0.905 'l:l/llj)r(rj]e Critical Eigenvalueswith QR | Eigenvalueswith
3 -0.2496 4 7.6788 3.25% 1.223 ADIRA
4 -0.2546 4 6.2323 4.08% 0.992 1 -0.0633 4 7.0777 -0.0633 £7.0773
5 -0.264+j 7.672 3.50% 1.221 2 -0.1583 4 5.6834 -0.1586 $£5.685
6 |-0.3649 4 8.4667 4.31% 1.348 3 -0.2496 4 7.6788 -0.2488 $7.677
7 -0.3063 4 6.8011 4.50% 1.083 4 -0.2546 4 6.2323 -0.254146.2333
8 |-0.4073 4 8.6986 4.68% 1.385 5 -0.264+7.672 -0.2645+7.672
6 -0.3649 4 8.4667 -0.3644 £8.464
Comparison was then made by calculating the few / -0.3063 4 6.8011 -0.3060 $6.8013
sought critical modes by our proposal MIRA and 8 -0.4073 4 8.6986 -0.4072 $8.697
ADIRA algorithms.
Both of algorithms converges to same approximate
4.2 System2
critical eigenvaues for system 1 We consider IEEE 145-bus, 50-machine test case
10 ‘ ‘ ‘ ‘ " [ O wrarowine || system; the dynamic data are given by [15] [7].sThi
® ® X ADIRA routine H H
® g ® system is formed by 145 buses, 453 line/transfamer
5r ® ® ] and 50 machines, among them 7 are modeled through a

VI-order model and are equipped with IEEE STla

o | exciters. The classical model is used for the ramgi

5l ® | machines.

® % ® ® As for the first system, a QR routine is carried tou
10 ® 8, ! w ‘ ‘ ‘ ‘ obtain the whole of the spectrum.
R Rfjﬁm 02 Ak AL Ak The oscillatory modes are represented on Table 4

values as shown on figure 1
TABLE 4.0sSCILLATORY MODES FORSYSTEMZ2

Fig. 1. Sought eigenvalues for system 1calculayddIiRA

and ADIRA M ode Num Eigenvalues damping %
1 -0.256 +j 6.094 4.19%
It's clear from figure 1 than both algorithms corge 2 -0.272 + j6.736 4.04%
to the same approximate values; in the other hand, 3 -0.253 + j 7.074 3.57%
comparison is also done between the results from QR 4 -0.344 +j 7.185 4.78%
and ADIRA algorithms as shown in table 3 5 -0.250 + j 7.295 3.43%
6 -0.292 + j7.471 3.94%
7 -0.302 + j 7.633 3.96%
8 -0.252 + 8.279 3.05%
9 -0.079 +  8.362 0.94%
10 -0.280 = j 7.308 3.83%
11 -0.244 + 8.384 2.91%
12 -0.265 = j 8.340 3.15%
13 -0.251 + j 8.566 2.93%

The eigenvalues of interest are calculated from
both MIRA and ADIRA algorithms, figure 2
shows the same values found from both methods
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the whole spectrum, but for the small signal sighbil

Fig. 2. Sought eigenvalues for system 2 calculdtgd analysis, only few critical eigenvalues are of ias.
MIRA and ADIRA

MIRA routine
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From table 5, we can see clearly that the restdtthe

Real Part

same calculating from both techniques

TABLE 5.COMPARISON RESULTS FORSYSTEMZ2

Mode No. QR- Routine ADIRA algorithm
1 -0.256 +j 6.094 -0.2558#6.0937
2 -0.272 + | 6.736 -0.2723 {6.7363
3 -0.253 + j7.074 -0.2530 7.0737
4 -0.344 £ 7.185 -0.3441+7.1846
5 -0.250 £ j 7.295 -0.2500 {7.2949
6 -0.292 + | 7.471 -0.2947 {£7.4708
7 -0.302 + j 7.633 -0.3021 {7.6326
8 -0.252 + | 8.279 -0.2525 {8.2790
9 -0.079 +  8.362 -0.0788 {£8.3620
10 -0.280 + j 7.308 -0.2798 £7.3078
11 -0.244 + j8.384 -0.2437 £8.3837
12 -0.265 £ j 8.340 -0.2651 {£8.3998
13 -0.251 + j 8.566 -0.2514 £8.5658

Therefore, it's more interesting to use Krylov
subspaces, this takes fewer memory place and faster
computational time than the QR routine.
The first step in our work was to modify the well-
known algorithm which is the Implicitly Restarted
Arnoldi Algorithm in such way to find directly the
dominant oscillatory modes od the system by
introducing the damping ratio as a criteria for
selecting the wanted and the shifts eigenvalutigin
algorithm.
The following step was to accelerate the algorithm
by coupling it with a switching dynamic procedure
as proposed on [9]. This will reduce the computetio
by reducing the orthogonalization steps.
The numerical results show clearly that the ADIRA
becomes faster when coupled with the dynamic
switching routine.

5. Conclusion.

We have developed an adaptive dynamique strategy
for accelerating the convergence of the implicitly
restarted Arnoldi method for the small signal digbi
analysis.

The test system demonstrate the efficiency of the
proposed method by finding the oscillatory modes of
the system with lower computational time for

convergence, as the method is designed to redace th

number of orthoganalization steps.

We believe that these features can be very helpful
large power system small signal stability analyiie,
techniqgue may save memory space and computation
time.
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Appendix A.
Dynamic Switching Procedure
INnput =4, m, K, Muin, Muax ®, d”, tol
Outputm, Mpay
if (JZ4/<1.0-tol),
if (k>7),
if (rem(w,6)0), thenm=m+1; end
if(M> Mnay) thenm= my,; end
else
if (rem(w,6)0), thenm=m-1; end
if(m<my,) thenm= myac1; end
end
else
if(w=1)
if(k>7), M= Myin; elsem= Myaxl;

with:

@R
T
the parameter m, the dimensionkaf(A, V™)
one step of reorthogonalization is carried outaathe
cycle ® so that ort is equivalent to
Fomalmim +1) —a= g + 1)1
in this paper &0 and forw=2,3,...a~ is chosen
dynamically starting from  “cE k, it represents the
number of ritz vectors that are kept at each restar
cyclew.
Mmin: the minimum size of the Krylov subspace
Mmax the maximum size of the Krylov subspace
tol: the tolerance parameter

(1]



