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Abstract: This paper deals with the application of an 
adaptive Implicitly Restarted Arnoldi Algorithm based on 
Krylov subspaces coupled with a dynamic switching 
approach to the small signal stability eigen analysis 
problem for power systems. The goal of the modified 
algorithm is to converge quickly and directly to the sought 
critical eigenvalues concerned with poor damping ratios 
directly from the algorithm calculation. 
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1. Introduction. 
 Power system stability issue is considered as an 
important topic and had received a great deal of 
attention aver years. We can classify power system 
stability into three categories as follows [1]:(i) rotor 
(power) angle stability, (ii) voltage stability and (iii) 
frequency stability. 

The transient stability problem is one of the angular 
stability issues; it concerns the phenomenon which 
occurs the first few seconds following a short or a 
transient disturbance. As many efforts and interest were 
focused on this type of stability problem, well-
established analytical techniques and computational 
programs are established to overcome and analyze the 
transient stability. 

In the other side, ensuring sufficient damping of the 
system oscillations concerns the small signal stability 
problem. The system response to small changes is 
considered as an important requirement for the 
satisfactory operation of power systems. In this case of 
stability studies, the system can be linearized around its 
steady state operating conditions which is its 
equilibrium point in the same time. [2]. 

One of the most common methods for the Small 
Signal Stability Analysis SSSA is the eigenvalues 
calculation method. The method is well-known and has 
proved its efficiency [3] 

Among linear techniques for solving SSSA 
problems, the QR-routine is so far the most used one. 
The corresponding algorithm calculates all the 
eigenvalues and eigenvectors of the system, and the 
operation needs time and memory storage for the 
spectrum values. For the SSSA we are mainly 
interested on few eigenvalues, those with a poor 
damping, and there is no need to consume time 
calculation and memory storage for the whole of the 

spectrum, in this case, it’s more interesting to consider 
the Krylov subspaces methods for finding the 
eigenvalues of interest. From these methods, the 
Arnoldi algorithm is the most efficient one; it provides 
good approximations for the few sought eigenvalues 
using orthogonal techniques [4]. 

Low frequency oscillations LFOs concern the rotor 
angle stability, the range of the oscillations is between 
0.1-3Hz. The generators are more and more equipped 
with modern exciters to enhance the transient stability, 
the use of high- gain exciters, the HDVC converters or 
static Var compensators may create LFOs with poor 
damping. 

LFOs include the oscillations resulting from the 
interaction between the mechanical and electrical 
modes of a generator-turbine system, as local modes: 
the most commonly encountered ones, control modes 
and torsional modes [5]. 

Inter- area modes describe the swinging of coherent 
groups of generators against another group, the range 
of frequencies is between 0.1-0.7 Hz. This type of 
oscillations is more complex than the local one and 
limits the quantity of power transmission on tie lines 
between the regions containing the groups of coherent 
generators. [6]. 

Power system stabilizers (PSSs) have been widely 
used as additional controllers to the exciters to damp 
out the LFOs, the PSS produces a component of torque 
in phase with rotor speed deviation to enhance the 
damping of the system and thus extends its capability 
transfer limits [7]. 

In this paper, we propose an algorithm adapted to 
SSSA stability which aims to find the few sought 
eigenvalues (those with the poorest damping ratios). 
The method is mainly based on an Adaptive Implicitly 
Restarted Arnoldi algorithm [8] coupled to a 
dynamique switching approach as proposed on [9] to 
accelerate the convergence to the wanted approximate 
eigenvalues. 

The application of the adaptive dynamic algorithm 
to two test cases system has given satisfactory results 
and has shown the efficiency of the method in 
computing the wanted eigenvalues, especially when 
comparing the results with those calculated by the QR 
routine. Our method has taken less time for reaching 
the convergence with less storage memory space. 
 
 



 
 

2. Small signal stability analysis. 
 For the SSSA issue, the power system can be 
described by a set of linear equations that are linearized 
around its equilibrium point represented by a steady 
state operating conditions [2]. 
 
2.1 State Space Model. 
 The equations modeling the state space model are 
borrowed from [10]. 
Complex dynamic equations of linear systems are 
generally represented by: 

( )1BUAX
dt

dX +=  

With: 
 X is the system vector states, A is the state square 
matrix, B is the matrix which defines the proportion of 
each input applied to each state equation and U is the 
system vector inputs.  
The system output is generally expressed as: 

( )2DUCXY +=  

With: 
 Y is the system vector outputs, C is the output matrix 
and D is the feed forward matrix. 
The solution of (1) is of the form: 
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ui is the ith right eigenvector of A, and zi the ith mode 
that satisfies the following equation: 
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λλλλi,ννννi respectively ith eigenvalue and left eigenvector of  
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2.2 Eigenvalues and Stability Analysis 

 The eigenvalues λi for the matrix A are 
calculating by solving equation (5): 

( )50)det( =− IA λ  

The ith right eigenvector ui satisfies: 
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And the ith left eigenvector vi satisfies: 
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The eigenvalues provide important feedback regarding 
the stability of the studied system, for example, the 
eigenvalues with real positive part corresponds to an 
unstable mode as each complex eigenvalue having the 
form (σ±jω) corresponds to an oscillatory mode. 
Hence, an eigenvalue with a positive σ defines an 
unstable oscillatory mode, whereas, a pair with a 
negative σ represents a stable oscillatory mode. 
The dominant modes are those associated to 

eigenvalues with poorly damped oscillatory modes. 
The damping ratio ζ defined in (8) provides a major 
indication to the SSSA. The higher damping ratio , the 
better damping effects to enhance the stability of the 
low frequency oscillations. 
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3. The adaptive dynamic implicitly restarted 

Arnoldi algorithm. 
 The QR routine is a technique which calculates 

the whole of the spectrum, but for the SSSA issue, we 
mainly focus on analyzing the oscillatory modes, so 
only few eigenpairs from the spectrum are of interest. 
For this, the Krylov Subspace methods [11].are 
exploited.  
Two widely used Krylov processes are: the Arnoldi 
process and the asymmetric Lanczos process [12]. 
As the state space matrix of power systems is generally 
a sparse matrix A. If we multiply A by x to get Ax, we 
can then multiply A by that vector to get Ax2, and so 
we can build a Krylov subspace x, Ax, Ax3, ... 
The Arnoldi process is by far the most widely used 
Krylov process. The Arnoldi process begins with 
u1=cx; where c=1/x  

 
3.1 The Modified Implicitly Restarted Arnoldi Method 
(MIRA) 
The implicit restart method, based on Sorensen’s 
implicity restarted Arnoldi process [8], is the implicitly 
shifted QR algorithm coupled to a k-step Arnoldi 
factorization. 
The original algorithm for our modified Implicitly 
Restarted Algorithm was extracted from [13], the idea 
is to adapt it to our SSSA problem which is finding the 
eigenvalues of the critical oscillatory modes. For this, 
we introduce the damping ratio as a selective 
parameter; Instead of searching the eigenvalues with 
positive or largest real part as the ARPACK does very 
well [13]. 
We modify the basic Algorithm by adding one 
iteration(2.b) which calculate the damping ratios. 
When sorting the ratios, we obtain the wanted and 
unwanted eigenvalues. In such way we will only keep 
those affecting the small signal stability of the system. 
 
Algorithm1: The Modified Implicitly Restarted Arnoldi 
Algorithm (MIRA) 
1/ m-step Arnoldi Factorization 
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2/ from ω=1, …, until convergence 
2.a/ Calculate the spectrum  of Hm, 
2.b/ calculate ζ as in(8) and split the eigenvalues in 
two sets regarding their damping ratio: the k 
wanted ones and the  p shifts ones 
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2.c/ Carry out p-QR-implicitly shifted 
2.d/ Update V,H and f 
2.e/ Apply k-step Arnoldi factorization 
2.f/ Extend the k-step Arnoldi factorization to 

length  
k+p=m 
 

The convergence is obtained when the maximum 
relative residual norm (res) falls below the defined 
tolerance [13] 
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3.2 Adaptive Dynamic Implicitly Restarted Arnoldi 
Method (ADIRA) 

For accelerating the convergence of the previous 
algorithm, a dynamic technique is used. The method 
was first proposed on [9], the idea is to exploit the 
relationship between the residual of the current step 
and the residual of the previous step to modify 
subspace dimension  

The aim of our work is to accelerate the 
convergence of our Modified Implicitly Restarted 
Arnoldi algorithm by incorporating Dynamic 
Switching routine as proposed on [14] 
 
Algorithm2: Adaptive Dynamic Implicitly Restarted 
Arnoldi method (ADIRA) 
1/ Run an Arnoldi factorization of length k. 
2/ Compute the approximate eigenpair 0 0

1 1( ), yλλλλ  and 

find the residual vector 01r  and set 0 0
1 1λ̂ = λλ = λλ = λλ = λ  

3/ Main Loop until convergence  
 a/ if ω=1, set Ξ1=1; else compute 1

ωωωωηηηη  and Ξ1 if 
1

1
ω−ω−ω−ω−λλλλ has not converged. 

 b/ Use the algorithm in Appendix A for 
switching the Krylov subspace dimension. 
 c/ Extend the length to m for Arnoldi 
decomposition. 
 d/ Same as steps (1) and (2) from algorithm 2 
to obtain ( ),i iyω ωω ωω ωω ωλλλλ . 

 e/ if 1
ωωωωλλλλ  has not converged, the if ζ( 1

ωωωωλλλλ )> ζ 

( 1
1
ω−ω−ω−ω−λλλλ ), we carry out m-k QR-Implicitly shifted as in 

(2.b) of the algorithm 2 and set m=m+fix(k/3) and go 

to step (3.c); else set 1
1 1

ˆ ω− ωω− ωω− ωω− ωλ = λλ = λλ = λλ = λ  and continue. 

 f/ Apply implicit shifts to obtain an Arnoldi 
Factorization of length k. 
 
In step1, the algorithm calculates the initial sets: the k 
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the corresponding eigenpairs ),( 00
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2, the residual vector satisfies 000
k

T
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In the main loop (step 3); the routine is carried from 
ω=1 up to the convergence. Ξ is the cosine of the acute 
angle between  

and  with . And    

The step (3.e) is important in the fact that if the 
damping ration ζ( 1

ωωωωλλλλ  )> ζ ( 1
1
ω−ω−ω−ω−λλλλ ), then we carry out m-k 

implicit QR steps and reconstruct the Arnoldi 
factorization with a larger dimension m (m<mmax) 
mmax is the greatest possible value of the 
Krylov subspace, the default value is min(max(3k-
fix(k/2),19,n)), where fix(p) rounds p to the nearest 
integer towards 0, rem(P,Q) denotes the remainder in 
the division of P by Q 
 
4. Results of test cases. 

In this part, we consider two benchmark systems, 
which 
the New England New York 39-bus, 16-machines 
system and the IEEE 145-bus, 50-machines system. 
The details both systems are given in Table1. 
 

TABLE 1:DESCRIPTION OF TEST SYSTEMS 
 
 System1 System2 
No. of Buses 68 145 
No. of Generators : 16 50 
   - detailed model 16 7 
   - classical model 0 43 
Total No. of states 207 235 

 
3.1. System1 

The proposed power system is the New England and 
New York interconnected system. For this system, 
generators are modelled using a IV-order model. The 
full dynamic data of the system can be found in [6] 
The calculation of the whole spectrum was first done 
by using the QR-Routine. Setting as 5% the critical 
damping ratio value, 8 critical oscillatory modes are 
identified Table2. 
 
 
 
 



 
 

TABLE 2:OSCILLATORY MODES FOR SYSTEM1 
 
Mode  
Num 

Eigenvalues damping  Frequency  

1 -0.0633 ± j 7.0777 0.89% 1.127 
2 -0.1583 ± j 5.6834 2.78% 0.905 
3 -0.2496 ± j 7.6788 3.25% 1.223 
4 -0.2546 ± j 6.2323 4.08% 0.992 
5 -0.264± j 7.672 3.50% 1.221 
6 -0.3649 ± j 8.4667 4.31% 1.348 
7 -0.3063 ± j 6.8011 4.50% 1.083 
8 -0.4073 ± j 8.6986 4.68% 1.385 

 
Comparison was then made by calculating the few 
sought critical modes by our proposal MIRA and 
ADIRA algorithms.  
Both of algorithms converges to same approximate 

values as shown on figure 1 
 
Fig. 1. Sought eigenvalues for system 1calculated by MIRA 
and ADIRA 
 
It’s clear from figure 1 than both algorithms converge 
to the same approximate values; in the other hand, a 
comparison is also done between the results from QR 
and ADIRA algorithms as shown in table 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

TABLE 3 COMPARISON RESULTS FOR SYSTEM1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 System2 
We consider IEEE 145-bus, 50-machine test case 

system; the dynamic data are given by [15] [7]. This 
system is formed by 145 buses, 453 line/transformers, 
and 50 machines, among them 7 are modeled through a 
VI-order model and are equipped with IEEE ST1a 
exciters. The classical model is used for the remaining 
machines. 
As for the first system, a QR routine is carried out to 
obtain the whole of the spectrum. 
The oscillatory modes are represented on Table 4 
 

TABLE 4.OSCILLATORY MODES FOR SYSTEM2 
 

Mode Num Eigenvalues damping % 
1 -0.256 ± j 6.094 4.19% 
2 -0.272 ±  j 6.736 4.04% 
3 -0.253 ±  j 7.074 3.57% 
4 -0.344 ± j 7.185 4.78% 
5 -0.250 ±  j 7.295 3.43% 
6 -0.292 ±  j 7.471 3.94% 
7 -0.302 ±  j 7.633 3.96% 
8 -0.252 ±  j 8.279 3.05% 
9 -0.079 ±  j 8.362 0.94% 
10 -0.280 ±  j 7.308 3.83% 
11 -0.244 ±  j 8.384 2.91% 
12 -0.265 ±  j 8.340 3.15% 
13 -0.251 ±  j 8.566 2.93% 

 
The eigenvalues of interest are calculated from 
both MIRA and ADIRA algorithms, figure 2 
shows the same values found from both methods 
 

Mode  
Num 

Critical Eigenvalues with QR 
Sought 

Eigenvalues with 
ADIRA 

1 -0.0633 ± j 7.0777 -0.0633 ± j 7.0773 

2 -0.1583 ± j 5.6834 -0.1586 ± j 5.685 

3 -0.2496 ± j 7.6788 -0.2488 ± j 7.677 

4 -0.2546 ± j 6.2323 -0.2541± j 6.2333 

5 -0.264± j 7.672 -0.2645± j 7.6727 

6 -0.3649 ± j 8.4667 -0.3644 ± j 8.464 

7 -0.3063 ± j 6.8011 -0.3060 ± j 6.8013 

8 -0.4073 ± j 8.6986 -0.4072 ± j 8.697 
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Fig. 2.  Sought eigenvalues for system 2 calculated by 
MIRA and ADIRA 

From table 5, we can see clearly that the results are the 
same calculating from both techniques 
 

TABLE 5.COMPARISON RESULTS FOR SYSTEM2 
 

Mode No. QR- Routine ADIRA algorithm 
1 -0.256 ± j 6.094 -0.2558 ± j 6.0937 
2 -0.272 ±  j 6.736 -0.2723 ±  j 6.7363 
3 -0.253 ±  j 7.074 -0.2530 ±  j 7.0737 
4 -0.344 ± j 7.185 -0.3441 ± j 7.1846 
5 -0.250 ±  j 7.295 -0.2500 ±  j 7.2949 
6 -0.292 ±  j 7.471 -0.2947 ±  j 7.4708 
7 -0.302 ±  j 7.633 -0.3021 ±  j 7.6326 
8 -0.252 ±  j 8.279 -0.2525 ±  j 8.2790 
9 -0.079 ±  j 8.362 -0.0788 ±  j 8.3620 
10 -0.280 ±  j 7.308 -0.2798 ±  j 7.3078 
11 -0.244 ±  j 8.384 -0.2437 ±  j 8.3837 
12 -0.265 ±  j 8.340 -0.2651 ±  j 8.3998 
13 -0.251 ±  j 8.566 -0.2514 ±  j 8.5658 

4.3 CPU time comparison 

The comparison of the CPU times for the 
above eigenvalue calculations between MIRA 
and ADIRA are given in Table 5. The 
computations have been performed using 
MatLab with a tolerance 10-10 for convergence 
 

TABLE 6 .PU TIME COMPARISON 
 

system QR  MIRA ADIRA Residue 
1 1.80 x 10-01 1.15 x 10-2 7.27 x 10-3 10-10 
2 3.4 x 10-2 2.5 x 10-2 9.72 x 10-03 1.13 x 10-12 

4.4 Discussion and general comments 

From Tables 2 to 5, it is clear that both methods give 
practically identical results for both test systems. 
The complete analysis using the QR routine determines 

the whole spectrum, but for the small signal stability 
analysis, only few critical eigenvalues are of interest. 

Therefore, it’s more interesting to use Krylov 
subspaces, this takes fewer memory place and faster 
computational time than the QR routine. 
The first step in our work was to modify the well-
known algorithm which is the Implicitly Restarted 
Arnoldi Algorithm in such way to find directly the 
dominant oscillatory modes od the system by 
introducing the damping ratio as a criteria for 
selecting the wanted and the shifts eigenvalues in the 
algorithm. 
The following step was to accelerate the algorithm 
by coupling it with a switching dynamic procedure 

as proposed on [9]. This will reduce the computational 
by reducing the orthogonalization steps. 
The numerical results show clearly that the ADIRA 
becomes faster when coupled with the dynamic 
switching routine. 
 
5. Conclusion. 

We have developed an adaptive dynamique strategy 
for accelerating the convergence of the implicitly 
restarted Arnoldi method for the small signal stability 
analysis. 
The test system demonstrate the efficiency of the 
proposed method by finding the oscillatory modes of 
the system with lower computational time for 
convergence, as the method is designed to reduce the 
number of orthoganalization steps. 
We believe that these features can be very helpful for 
large power system small signal stability analysis, the 
technique may save memory space and computation 
time. 
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Appendix A. 
Dynamic Switching Procedure 
Input Ξ1, m, k, mmin, mmax, ω, dω, tol 
Output m, mmax, 
if (|Ξ1|<1.0-tol), 

if (k>7), 
if (rem(ω,6)≠0), then m=m+1; end 
if(m≥ mmax) then m= mmin; end 

else 
if (rem(ω,6)≠0), then m=m-1; end 
if(m<mmin) then m= mmax-1; end 

 end 
else 
 if(ω=1) 
  if(k>7), m= mmin; else m= mmax-1; 

end 
 end 
 if(m-1> mmin) and (m-1≥ dω+2) 
  if(k>7) 
   m=m-1 
  else 
    if(rem(ω,6)=0, 
m=m-1; else m=m-3;end 
  end 
 else 
  if(mmax-1≥ dω+2), m= mmax-1; 
  elseif(mmax-1= dω+1), mmax=mmax+1; 
m= mmax-1; 
  elseif(mmax-1= dω), mmax=mmax+2; m= 
mmax-1; 
  end 
 end 
end 
 
with: 

 
the parameter m, the dimension of Km(A, v(ω−1)) 
one step of reorthogonalization is carried out at each 
cycle ω so that ort is equivalent to 

 
in this paper d1=0 and for ω=2,3,…  is chosen 
dynamically starting from     d2 = k, it represents the 
number of ritz vectors that are kept at each restarted 
cycle ω. 
mmin: the minimum size of the Krylov subspace 
mmax the maximum size of the Krylov subspace 
tol: the tolerance parameter  
 
 
  

 


