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Abstract: Of all available relays, distance relay attracted 

more attention for transmission line protection. Whenever 

fault occurs in power system the actuating quantities contains 

harmonics, decaying dc components and noise. Faults have to 

be cleared rapidly in order to prevent damage to the operating 

devices and personnel. So many filtering algorithms are 

available for the protection of transmission line but all are 

having their own merits and demerits. To obtain exact 

fundamental frequency components for relaying purpose, 

Smart Discrete Fourier Transform (SDFT) algorithm is 

proposed. On 17-bus power system, proposed algorithm is 

tested for speed, accuracy, frequency response, 

computational burden and capability to distinguish among 

different types of faults. The results are compared with 

available filtering algorithms. The power system testing is 

done with MATLAB and PSCAD/EMTDC environment. The 

test results shows that proposed SDFT algorithm is better that 

existing relaying algorithms.  
 

Key words: Filtering Algorithms, Faults, Distance relay, 

Decaying Dc offset, Harmonics, Power system Protection. 

 

I. INTRODUCTION  

 

         According to the historical records, many large scale 

system-wide blackouts involve relay misoperations. 

Evaluation and improvement of existing relay algorithms and 

settings as well as investigation of new techniques for 

relaying are very important for understanding and mitigating 

relay misoperations. The most common approach used by 

many researchers for studying relay algorithm performance is 

using a simple two-machine system and limited fault 

scenarios. An algorithm for comprehensive study of different 

relaying actions and fault analysis under variety of system-

wide disturbances is needed. 

 

         Numeric transmission line distance protection systems 

have been widely applied in recent years primarily because of 

their monitoring and communications capabilities rather than 

for improved performance of the protection functions. 

Typical tripping times for digital distance relays range from 

one to 3 cycles, with state of art filtering algorithm it can 

offer trip times of one-quarter to one cycle. Recent 

developments in adaptive algorithms and the use of higher 

sampling rates combine to provide secure high speed 

protection not available with previous implementations. The 

fast and accurate determination of fault location on electric 

power transmission line is utilized as an aid in the fault 

analysis and power restoration. At the same time, the fault 

destination adversely impacts service reliability, operation 

cost and the quality of power delivery. 

 

         Distance relaying techniques have attracted 

considerable attention for the protection of transmission line. 

The principle of these techniques measures the impedance at 

a fundamental frequency between the relay location and the 

fault point thus determining if a fault is internal or external to 

a protection zone. Voltage and current signal are used for this 

purpose and they generally contain the fundamental 

frequency component in addition to harmonics and the dc 

offset. With digital technology being ever increasingly 

adopted in power substation more particularly in the 

protection field, distance relays have experienced some 

improvement mainly related to efficient filtering method. 

During last two decades remarkable work has been 

demonstrated in the area of distance protection. Many 

filtering algorithms have been proposed numerical relaying 

actions. Every algorithm has its own merits and demerits 

 

         The aim of most of these filtering algorithms is to 

extract the fundamental frequency component from the 

complex post fault voltage and current signals containing a 

transient dc offset component and harmonic frequency 

components in addition to the power frequency component. 

The exponentially decaying dc offset present in the relaying 

signal gives rise to large errors in the pharos estimates unless 

the offset terms are removed prior to the execution of the 

algorithms. 

 

       This paper presents a novel Smart Discrete Fourier 

Transform (SDFT) algorithm with capability to estimate 

exact fundamental frequency components during faults, that 

operating signals contain fundamental frequency components 

in combination with decaying dc components and harmonics.  

Proposed SDFT algorithm performance is compared in terms 

of distance relay with existing filtering algorithms regarding 

their speed, accuracy, computational burden and frequency 

response.  

 

       A 17-bus power system is taken to test the effectiveness 

of proposed SDFT algorithm. Different types of faults like 

single line to ground, double line to ground and three lines to 

ground faults are simulated at different lengths of selected 

transmission line. The distance relay characteristics are 

generated using MATLAB and PSCAD/EMTDC output files 

containing the values of the apparent impedances seen by 

distance relay placed at bus-3, whose fundamental frequency 

components extraction is based on proposed SDFT algorithm 

for faults at selected locations on transmission line L5. 

 
II. PROPOSED SDFT FILTERING ALGORITHM 

    

       The voltage and current signals may contain serious 

harmonics and decaying dc components during fault interval. 

The decaying DC seriously decreases the precision and 

convergence speed of fundamental frequency signal from 

DFT. In order to overcome the above problems, the proposed 

digital multifunction relay with SDFT algorithm can estimate 

the DC offset frequency and phasor from a faulted input      
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operating signals. Since there are several components in a      

fault current signal, the algorithm first takes DC offset into 

consideration and uses smoothing windows to eliminate other 

components in a fault signal.  

 

       Consider any fault signal f(t) with fundamental 

frequency components and decaying DC offset components 

can be expressed as  

           
teFtFtf   )sin()sin()( 21
         ----1 

Where  

F is the amplitude of the faulted signal 

1 is the phase angle of the faulted signal 

2  is the fault angle of the signal 

 1
 is the time constant of the signal 

 

Suppose )(tf is sampled with a rate of sampling (50*N) Hz 

to produce the sample set )}({ kf  
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The signal f(t) is conventionally represented by phasor 

complex number  f  
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Then f(t) can be expressed as 
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Fundamental frequency components of Discrete Fourier 

transform of {f(k)} is calculated from the following equation 
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Taking frequency deviation )50(2 f   into 

consideration  
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We can rearrange the Equn (6) as 
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Above Equn. (7) can be solved by the following identity  
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We can rearrange the Equn. (7) as  
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Let assign  
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Equn. (10) can be re written as  

rrrr CBAf ˆ                  ----14 

 

    So far the development of the algorithm of SDFT is the 

same as the traditional DFT method. So the SDFT can keep 

all advantages of DFT such as recursive and half-cycle 

computing manner. But in the DFT, it doesn't take DC offset 

into consideration and it assumes that the frequency deviation 

is small enough to be ignored. It always considers
rr Af ˆ , so 

traditional DFT based methods incur error in estimating 

frequency and phasor when frequency deviates from nominal 

frequency (50 Hz) or DC offset is present. If we want to 

obtain exact solution, we must take B, and C, into 

consideration. Then we define 
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From Equn (10) following relations are obtained  
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Equn.(14) is multiplied both sides with „b‟ and subtract from 

Equn (20) gives 
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We can rearrange Eq.(22), (23) and (24) as  
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Equn (25)/ equn (26) gives 
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Put Equn.(23) & Equn.(24) in Equn.(27) 
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Solve Equn.(28) to obtain 'b'. From the definition of 'b' in 

Equn (16) we can obtain the exact solution of the time 

constant. 
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Equn.(27) can be rearranged as  
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Solve Equn.(30) to obtain 'a'. From the definition of 'a' in 

Equn. (15) we can get the exact solution of the frequency. 
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From Equn.(29) and Equn.(3I), it is observed that SDFT can 

provide exact time constant and frequency 

using rf̂ , 1
ˆ
rf , 2

ˆ
rf ,

3
ˆ
rf and 4

ˆ
rf in the absence of noise. 

Moreover, we can estimate phasor and fault angle after 

getting exact time constant and frequency by the following 

equations: 
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Furthermore, we take noise into consideration and use 

smoothing windows to filter noise. Consider a sampled set 

{f(k) } to be a filtered set { z(k)} by a smoothing window 
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Moreover, the DFT of { z(k)} is given by 
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From the definition of Equn.(14), we can obtain: 
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The relations of Equn. (17), Equn. (18) and Equn.(19) are 

still kept in Equn.(39). Therefore, the same steps from 

Equn.(20) to Equn.(33) can be used in Equn.(39). Hence we 

can estimate time constant and frequency without modifying 

equations, but we have to do some change in Equn.(32) and 

Equn.(35) when we estimate phasor and fault angle. 
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The phasor obtained from Equn. (40) and fault angle 

obtained from Equn.(41) will allay the phase shift and 

amplitude decay caused by smoothing windows. 

 

III. FILTERING ALGORITHMS AVAILABLE 

 

i) Infinite Impulse Response Algorithm 

          In traditional method, transfer of analog filter to digital 

filter is practiced to get the desired requirements. 



Transformation method used is impulse variance that uses s-

plane conversion to z-plane of differential equations to 

difference equations and then to direct synthesis. 

Analog prototype low pass filter is given as 
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Analog prototype can be converted into digital by bilinear 

transformation, it can be expressed as  
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 T is sampling time 

The bilinear transformed equation that is „s‟ replaced by right 

hand term of equation results in 
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The fundamental component present in the signal x(t) will be 

extracted by designing band pass filter at 50Hz frequency can 

be obtained from below expression 
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ii) Least Square Curve Fitting Algorithm: 

 

Here it is assumed that the inrush current contains decaying 

DC and no more than five harmonics, then in a certain time 

interval. The inrush signal can be represented as  
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Where x(t) is instantaneous differential signal sampled at a 

time t 

P0 is decaying Dc component. 

  is inverse time decay time constant of Dc component 

Pk is peak component of the k
th

 harmonic differential signal 

0  is fundamental frequency 

k is Phase angle of k
th

 harmonic 
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In matrix form the above equation can be written as  
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Least square components obtained from  
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It can be shown that  
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As the matrix A has known elements, matrix B can be found 

easily. Matrix b can then be used to compute the vector X 

from the sampled signal. The Fourier sine and cosine 

components of fundamental frequency can be obtained from  
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iii) Kalman Filtering Algorithm: 

The Kalman filtering algorithm has been proven to be the 

optimal linear estimator even in noisy environment once a 

signal is represented by a state variable equation of the form 
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The covariance matrices for Wk and Vk vectors are given as 

follows. 
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Where E denotes the expected values. 

Having a prior knowledge of the initial estimation error 

covariance matrix Po-, the Kalman gains can be computed 

recursively as follows. 
1)(  RHRHHRK T
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T

kk
 

kkk PHKIR )(   
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kk 1
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Where  

Kk is the Kalman gain matrix at time tk. 

kP is the estimation error covariance matrix at tk; 

 Pk, the error covariance matrix for the updated estimate at tk  

 I is the identity matrix. 

 

Having an initial state estimate X0- , the Kalman filter 

equation, which recursively estimate new values of the state 

vector, is as follows. 

)(
KKKKK XHZKXX


  

KK XFX


1
       ----56 

Where KX


 is the estimate of Xk. 

The discrete time state space representation of periodic signal 

having harmonic components on to nth order with samples Zk 

at time tk can be given. 

KK FXX 1
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 =wT, w is the fundamental supply frequency in rad/s and 

is the sampling interval, s and 

H = [1, 0, 1, 0 .................1, 0,1] 



iv) Block Pulse Functions Algorithm: 

       A set of block pulse functions on a unit time interval 

(0,1) with N number of samples per cycles defined as 

1)( tn       for       
N

nt
N

n


 )1(
                  ----58 

           =   0     otherwise      both for n=1,2,3,…..,N 

If there is a function f(t), which is integrable in (0,1) can be 

approximated using BPF as, 

)()(
1
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N
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

                                                      ----59 

where the coefficient an are block pulse function coefficients 

determined so that the integral square error is minimized. 
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For such a square fit an is given by 



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n
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    = average value of f (t) in the interval (n-1)N<t<n/N 

 

v) Wavelet Transforms Algorithm: 
         The wavelet transform translate the time domain 

function into a representation localized not only in frequency 

but also in time. Wavelet theory is the mathematics 

associated with building a model for a non-stationary signal, 

with a set of components that are small wave called wavelets. 

There are some conditions that must be met for a function to 

qualify as a wavelet. They must be oscillatory and have 

amplitudes that quickly decay to zero. The product of an 

oscillatory function with a decay function yields the wavelet. 

A number of different wavelets are used to approximate any 

given function with each wavelet generated from one original 

wavelet called a mother wavelet. The new elements, called 

daughter wavelet are nothing but scaled and translated 

mother wavelets. Scaling implies that the mother wavelet is 

either dilated or compressed and translation implies shifting 

of the mother wavelet in the time domain.  

 

Let a equation for a mother wavelets follows. 
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Where  

a is a constant;  

b is the time translation factor 

a is the scaling factor. 

The energy of the scaled daughter wavelet is normalized to 

keep the energy same, as the energy in the mother wavelet. 

 

      For computer implementation, the discrete wavelet 

transform is used. A discrete wavelet transform results in a 

finite number of wavelet coefficients depending upon the 

integer number of the discretization step in scale and 

translation denoted by m and n, respectively. So any wavelet 

coefficient can be described by two integer, m and n. If ao 

and bo are the segmentation step sizes for the scale and 

translation respectively, the scale and translation in terms of 

these parameters will be m
aa 0  and 

m
anbb 00  

After discretization in terms of the parameter ao, bo, m and n 

the mother wavelet can be written as, 
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After discretization, the wavelet domain coefficients are no 

longer represented by a simple a and b instead they are 

represented in terms of m and n. The discrete wavelet 

coefficient Wgf (m, n) are given by 

dtnbtagtfanmW
mm

gf )()(),( 00
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


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The transformation is over continuous time but the wavelets 

are represented in a discrete fashion like the continuous 

wavelet transformation these discrete wavelet coefficient 

represent the correlation between the original signal and 

wavelets for different combination of m and n. 

 

 
DISTANCE RELAY 

 

         In general thirteen input signals, namely, three line-to-

ground voltages, three line-to-line voltages, three line 

currents Three differences in line currents and residual 

current are required to obtain phasor quantities necessary for 

an impedance relay. In this work all the 13 signals are 

obtained from simultaneously taken samples of 6 signals, 

namely, three line-to-ground voltages and three line currents 

using following relations 

              
2121 LLLL VVV 
                             ----66

   

 2121 LLLL iii      ----67 

 
321 LLLR iiii     ----68 

   

The ground impedance seen at the relay point is calculated as 
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VL1, IL1 are the RMS values of the relay voltage and current 

IR    is the RMS value of the residual current 

K is the degree of compensation, being a ratio of zero to 

positive sequence impedance of the line that remains constant 

for all fault locations within the protected line. 

The phase impedances at the relay point are calculated as 
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       The Function logic supports two commonly used operating 

Circular and Quadrilateral characteristics of conventional 

impedance relays. The Function Logic implements a three 

stepped distance protection by accepting three such 

characteristics, one for each zone.  

 



TEST SYSTEM AND RESULTS 

Proposed filtering algorithm was tested with 17 bus system as 

shown in fig.1  

   

Fig.1 Test System Data 

 
Generator G1 is rated at 2GW and generator G2 is rated at 

1GW, both are at 15KV, 0.866 power factor lagging with 

transient reactances of 0.14p.u. Load-1 rated at 
030462 MVA and Load 2 is rated at 030577 MVA. 

 
Transformers Data 

 

Transformer MVA rating 
Voltage ratio 

KV/KV 
T1 
T2 

2500 
1800 

15/500 

T3 

T4 

500 

600 
500/15 

T5 600 500/230 

T6 

T7 

1000 

1000 
500/230 

T8 
T9 

1000 
1000 

230/500 

 

Each transformer has reactance of 0.1p.u. Each transmission 

line has shunt conductance of 1.0e
-10 

mhos per meter. Load 

connected at bus-14 is 200MW at 500KV, bus-15 is 150MW 

at 230KV, bus-16 is 150MW at 500KV and bus-17 is 

150MW at 500KV.  

 

Zones and Reach adjustment of Distance relay 
         

The adjustment of zone-1 was set to protect up to 80% of the 

impedance of the protected line. Zone-2 was set to protect up 

to 50% of the shortest impedance of the lines T6 and T13, 

emanating from the remote bus. Zone-3 was set to protect up 

to 100% of the remote line T6. Distance relay was placed at 

bus-3 for the proposed simulation. 

 

Case-1: Simulation of faults at 10% of Line L5 : 
 

     Different types of faults like single line-to-ground, double 

line-to-ground and three-phase-to-ground faults were 

simulated at 10% of transmission line L5 from bus 3. Fault 

impedances from relay location are calculated by distance 

relay at 10% of line L5. The corresponding characteristics are 

as shown below. 

 

 
      Single line-to-ground faults at 10% of Line L5 from Bus 3 

 

 

     
     Double line-to-ground faults at 10% of LineL5 from Bus 3 

 

                        

    
 Three-phase-to-ground fault at 10% of Line L5 from Bus 3 

 

Case-2: Simulation of faults at 50% of line L5 : 
 

Single line-to-ground, double line-to-ground and three-phase-

to-ground faults were simulated at 50% of transmission line 

L5 from bus 3. Fault impedances from relay location are 



calculated by distance relay at 50% of line L5. The 

corresponding characteristics are as shown below. 

 

 
Single line-to-ground faults at 50% of Line L5 from bus-3 

 

 

 
 

Double line-to-ground faults at 50% of Line L5 from bus-3 

 

 

 
Three phase-to-ground fault at 50% of Line L5 from bus-3 

 

 

CONCLUSIONS 

 
A number of algorithms for numerical distance protection 

have been compared with proposed novel SDFT algorithm to 

calculate the apparent impedance of the line between the 

relay‟s location and the fault point by using digitized samples 

of voltage and current signals. Each algorithm has certain 

merits and demerits regarding computational simplicity, 

speed, accuracy and frequency response. The selection of any 

particular algorithm depends on the protection requirement. 

All the various schemes of algorithms proposed advocate a 

family of wide spectrum of techniques to determine the 

impedance of the transmission line under fault condition. 

Different fault types were simulated in two different 

locations of transmission line L5. The distance relay‟s 

correctness in fault identification, the time of the event they 

were monitoring and exhibition of required discrimination in 

their operation were compared between proposed Smart 

Discrete Fourier Transform algorithm (SDFT) and above said 

filtering algorithms. The distance relay calculated the 

apparent impedance of the transmission line, and the plotted 

apparent impedances in R-X plane supported the correct 

operation of the relay with the proposed algorithms are 

compared. 

 

In the Kalman filtering algorithm uses only present sampled 

signals and does not require any past data to be stored in the 

memory. The major difference between the Kalman filter and 

proposed SDFT algorithm is evaluation of filter gains. In 

SDFT there is no need of evaluating gains but case of 

Kalman filter requires it. The gains of Kalman filter vary 

with time as the gains are non-stationary. Being recursive in 

nature, even though Kalman filter is computationally more 

efficient but it has limited capability for modeling the 

decaying dc component. In addition, statistical properties of 

the signal to be processed are needed for calculating the 

Kalman gains. So it is concluded that proposed SDFT 

algorithm is efficient and more acceptable. 

 

One of the most prominent advantages of algorithms using 

Blocked Pulse Function Algorithm coefficients is that the 

sampling rate can be any positive integer, where as in other 

method like in Haar and Walsh transform, one is compelled 

to use sampling rates that are equal to integral powers of 2. In 

other algorithms generally 16 samples/cycle are used to give 

the satisfactory results. For distance protection however, the 

BPF algorithm uses 12 samples, which requires less 

multiplication, so less memory space and time but obtained 

samples contains errors as it is not handling decaying dc 

component properly. This drawback is completely eliminated 

in proposed SDFT algorithm. 

 

Least Square Curve Fitting Algorithm can also handles 

decaying dc offset components to filter from operating 

signals as it is in proposed SDFT algorithm but it is suffering 

from drawback that it can only work for the harmonics of 

order 5. Above which this algorithm outcomes suffers from 

large errors. But there is no restriction on order of harmonics 

in SDFT algorithm. 

 

Being recursive in nature, an Infinite Impulse Response 

Algorithm is an accurate and error free algorithm but it needs 

to transform differential equations from s-plane to z-plane 

frequently and feedback is desired. Probability of errors in 

transformation will result with less knowledge in z- 

transforms. But this feedback and interrelating output with 

input is not required in SDFT algorithm. 



 

Non-stationary signals, where the interest is only for what 

spectral components exist in the signal but not interested 

where these occur, can be easily handled with wavelet 

transforms. It provides the time frequency representation. 

Although the discretized Continuous Wavelet 

Transform(CWT) enables the computation of required CWT 

by the computer, but it is not a true discrete transform. As a 

matter of fact, the wavelet series is simply a sampled version 

of the CWT and the information it provides is highly 

redundant for the signal concerned. This redundancy, on the 

other hand, requires a significant large amount of 

computation time and resources. Time of fault clearance 

based on fault amplitude computation is more important than 

the instant where the fault has occurred. Computation time of 

Wavelet is more than proposed SDFT. More than that, in 

some limit, SDFT can handle non-stationary signals as 

wavelets.  

 

The discrete Fourier transform algorithm was used to extract 

real and imaginary components that involves number of 

multiplication operations, in addition to summation 

/subtraction operations, it is less time consuming algorithm. 

Based on the experimental results, proposed SDFT algorithm 

is found to be the best algorithms in terms of accuracy and 

computing time when compared some of existing filtering 

algorithm. 
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