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Abstract: To solve the problems of torque ripple and 
inconstant switch frequency of inverter in the conventional 
direct torque control (DTC), a novel DTC method using 
space vector modulation (SVM) is proposed based on input–
output feedback linearization technique, where hysteresis 
controller is substituted by input–output feedback 
linearization and switch table is substituted by SVM. In 
order to preserve the system robustness with respect to rotor 
resistances variations and uncertainties. IM drive 
simulation model with novel SVM-DTC is created and 
studied using MATLAB. Simulation results demonstrate the 
feasibility and validity of the proposed DTC system by 
effectively accelerating system response, reducing torque 
and flux ripple and a very satisfactory performance has 
been achieved. 
 
Key words: input–output feedback linearization, induction 
motor, SVM, direct torque control, key parameter variation. 
 
1. Introduction 
     The direct torque control (DTC) scheme has been 
increased due to several factors such as quick torque 
response and robustness against the motor parameter 
variations [1,2]. The conventional DTC algorithm 
using the hysteresis based voltage switching method 
has relative merits of simple structure and easy 
implementation. The performance of such a scheme 
depends on the error band set between the desired and 
measured torque and stator flux values. In addition, in 
this control scheme, the inverter switching frequency 
is changed according to the hysteresis bandwidth of 
flux and torque controllers and the variation of speed 
and motor parameters. Superior motor performance is 
achieved by narrower hysteresis bands especially in 
the high speed region. As a result, this approach will 
not be suitable for high power drives such as those 
used in tractions, as they require good torque control 
performance at considerably lower frequency.  

To overcome the drawbacks problems, some 
researchers have suggested, the DTC scheme using the 
space vector modulation (SVM) techniques [3-5].   
The control scheme in [6] is sensitive to parameters 

uncertainty, especially to the stator resistance 
variations and the stability will be affected by 
parameter variation. To solve this problem, feedback 
linearization techniques have been applied to the 
control of nonlinear plants such as robot manipulators, 
induction motors, PM synchronous motors and 
synchronous reluctance motor [7-15]. The main 
objective is to force the speed and torque of an 
induction motor to follow their reference trajectories. 
The basic idea is to first transform a nonlinear system 
into a linear one by a nonlinear feedback, and then use 
the well-known linear design techniques to complete 
the controller design. These techniques, however, 
require the full knowledge of the system parameters 
and load conditions with the sufficient accuracy. 
Recently, an adaptive input–output linearization 
technique, adaptive backstepping, and adaptive sliding 
mode have been applied to the induction motor drives 
[16-23]. Although good performance can be obtained. 
     The contribution of this paper is to describe a 
robust DTC-SVM method for a torque and flux control 
of induction motor drive based on input–output 
feedback linearization technique. The results show that 
a satisfactory control performance is obtained. 

2. The IM model 

With the simplifying assumptions relation to the 
IM, the model of the IM expressed in the stationary 
‘‘ αβ ’’ axes reference frame can be expressed by: 
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where si , sΦ  , sV  , R  and L denote stator currents, 



 
 

 

stator flux , stator voltage, resistance and inductance, 
respectively,  rω  denotes the rotor  speed and M is the 

mutual inductance.
2

s r

Mσ = 1-
L L

 is the redefined leakage 

inductance. 
The generated torque of the induction motor can be 
expressed in terms of stator currents and stator flux 
linkage as 

e sα sβ sβ sα
3pT = (Φ i -Φ i )
2

                                (2) 

where p is the number of pole pairs.  
The mechanical dynamic equation is given by 

m L
sα sβ sβ sα

d ω T3p= (Φ i -Φ i ) -
dt 2J J

                 (3) 

where J and LT denote the moment of inertia of the 
motor , the load torque and mω is the rotor mechanical 
speed ( rω mpω= ). 
For the proposed nonlinear input-output feedback 
linearization controller, the state coordinate 
transformation is applied. Therefore, the state 
coordinates transformed model from (1) can be 
rewritten in a compact form as 

1 sα 2 sβ= ( ) + g ( ).V + g ( ).Vx f x x x                   
y = ( )h x  

where x is defined as: 
 

s r r r
sα r sβ sα sβ

s r r s s

s r r r
sβ r sα sβ sα

s r r s s

s sα

s sβ

R R R ω
-( + )i -ω i + Φ + Φ
σL σL σL L σL
R R R ω-( + )i +ω i + Φ - Φ( ) = σL σL σL L σL

-R i
-R i

 
 
 
 
 
 
 
 
  

f x   (5) 

T
sα sβ sα sβ= i , i ,Φ ,Φ  x ,

T

1
s

1g ( ) = 0 1 0
σL
 
 
 

x  

T

2
s

1g ( ) = 0 0 1
σL

 
 
 

x                                         (6) 

At this stage, the generated torque eT  and the squared 

modules of the stator flux linkage
2 2 2

s sα sβΦ = Φ +Φ  

are assumed to be the system outputs. Therefore, by 
considering  

       1 e sα sβ sβ sα
3ph ( ) = T (Φ i -Φ i )
2

=x                        

       
2 2 2

2 s sα sβh ( ) = Φ = Φ +Φx                        

Define the controller objectives y1 and y2 as 

     1 1y = h ( )x  
     2 2y = h ( )x  

3. Input-output feedback linearization 

To linearize the nonlinear model in (4), the 
controlled variable is differentiated with respect to 
time until the input appears. This can be easily done by 
introducing the Lie derivative. 

3.1 Lie Derivatives 

Consider system (4). Differentiating the output y 
with respect to time yields: 
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The function ( )fL h x  is called the Lie Derivative 
of ( )h x  with respect to ( )f x , and corresponds to the 
derivative of h  along the trajectories of the 
system = ( )x f x . Similarly, ( )gL h x  is called the Lie 
Derivative of h with respect to g , and corresponds to 
the derivative of function ( )h x along the trajectories of 
the system = g( )x x . 

3.2 Relative degree of a nonlinear system 

For nonlinear systems, the relative degree r of 
system (4) corresponds to the number of times the 
output = h( )y x  has to be differentiated with respect to 
time before the input u appears explicitly in the 
resulting equations. 
System (4) is said to have a relative degree 
r,1 r n≤ ≤ in Rn if nx R∀ ∈ : 
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Using the above notation, we can obtain that 
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The relative degree of y1(x) is r1 = 1. 

3.2.2 Relative degree of the flux  
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with 
( )f 2 s sα sα sβ sβL h = -2R Φ i -Φ i  

g1 2 sαL h = 2Φ  

g2 2 sL h = 2Φ β  
The relative degree of y2(x) is r2 = 1 

3.2.3  Relative degree of the system 

  The total degree of the system is equal to order N(r 
=r1 + r2 = N = 2). The system is exactly linearizable. 

4. Decoupling matrix 

     The matrix defining the relation between the 
physical input (u) and the output derivative (y(x)) is 
given by the expression (13).  
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using the induction motor model of (1) 
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Linking (15) and (16)  
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It is clear that the matrix E(x) is always reversible, the 
product of stator flux and rotor flux can not be equal to 
zero the following input-output feedback linearization 
is introduced for the system shown in (4) 
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substituting (18) in (13) ,the system dynamic are  
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To ensure a perfect regulation and track the desired 
signals of the flux and torque towards their reference, 

1V , 2V are chosen as follows: 

2 2 2
1 s 1 s sref ref

2 e ref 2 e ref e
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
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                       (20) 

where subscript ‘ref’ denotes the reference value. 
( 1k , 2k ) are constant design parameters to be 
determined in order to make the decoupled system (20) 
stable. The behavior of the linearized model is 
imposed by the poles placement methods. Theses 
coefficients are selected such as the 
equation 1s k+ , 2s k+  are the polynomials of Hurwitz. 

 5. Voltage space vector modulation  

     The voltage vectors, produced by a 3-phase PWM 
inverter, divide the space vector plane into six sectors 
as shown in Fig. 1 
 
 
 

 
 



 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The diagram of voltage space vectors 

In every sector, each voltage vector is synthesized 
by basic space voltage vector of the two side of sector 
and one zero vector. For example, in the first sector, 

s refV  is a synthesized voltage space vector and 
expressed by: 

0 0 1 1 2 2s ref sV T = V T + V T + V T                            (21)   
  

s 0 1 2T = T + T + T                                                (22) 

where, 0T , 1T and 2T  is the work time of basic space 
voltage vectors 0V , 1V and 2V  respectively. 

  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Projection of the reference voltage vector 

The determination of the amount of times 1T  and 2T  
is given by simple projections:  
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The rest of the period spent in applying the null-
vector. For every sector, commutation duration is 
calculated. The amount of times of vector application 
can all be related to the following variables:  
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   The application durations of the sector boundary 
vectors are tabulated as follows: 
Table 1. Durations of the sector boundary vectors 
 
 
 
 

The third step is to compute the three necessary 
duty cycles as;  

s 1 2
aon

T - T - T
T =

2
                                       (28)           

     aon 1bonT = T + T                                          (29) 
con 2bonT = T + T                                         (30) 

The last step is to assign the right duty cycle ( xonT ) 
to the right motor phase according to the sector. 
Table 2. Cycles of the PWM outputs.  
 
 
 
 
 
 
 
6. Sensitivity study and simulation results  

     In this section, the effectiveness of the proposed 
algorithm for torque and flux control of an induction 
motor is verified by computer simulations. The 
specifications for the used induction motor are listed in 
table (3). The block scheme of the investigated direct 
torque control with space vector modulation (DTC-
SVM) for a voltage source inverter fed IM is presented 
in (Fig. 3). 
     A series of tests were conducted to check the 
performance of the proposed DTC-SVM. In all 
sketched figures, the time axis is scaled in seconds. 
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6.1 Speed reversal from 100 rad/sec to -100 rad/sec 

The motor reference speed is changed from 100 
rad/s to -100 rad/sec at 0.5s and then again, speed is 
set to 100 rad/s at 1 s. without any change in 
parameters during the operating time. The 
performance of the proposed controller for such kind 
of speed reference is shown in Fig. 4.  Plots the 
reference speed and, actual motor speed with respect 
to time. It is observed that the actual motor speed 
follow the reference with good accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2 Variation of the load torques.  

     Fig. 5 depicts the simulation results after the 
introduction of load torque of 10 Nm between 0.5 s 
and 1s after a leadless starting. We can see the 
insensibility of the control algorithm to load torque 
variation and the stator flux responses are not affected 
by this perturbation. 
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Fig. 3. Block diagram of the proposed DTC-SVM based input–output feedback linearization.  
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Fig. 4. Simulation results for speed reversal under no 
parameters change: (a) reference and actual rotor speed (b) 
Electromagnetic torque, (c) phase current, (d) stator flux 
magnitude.
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6.3 Variation in the rotor resistance  

      These tests investigate the influence of the 
electrical parameters change on the drive performance. 
Fig. 6 depicts the drive performance for brusque 
changes in the rotor resistance. it can be seen that the 
impact of the electrical parameters change on the drive 
performance is more important. However, those results 
shown also that the drive robustness and rejection of 
the perturbations is significantly enhanced. 
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Time (s) 

c) 

Fig. 6. Drive response under rotor resistance change: 
(a) reference, (b) reference and actual rotor speed, (c), 
stator flux magnitude 
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Fig.5. Drive response under load torque change. 
(a) reference and actual rotor speed, (b) eelectromagnetic
torque, (c) phase current, (d) stator flux magnitude. 
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6.4 Drive response under flux-weakening 
    This test concerns the drive dynamic under flux-
weakening operating. As depicted in Fig. 7, the flux 
and speed are not affected by the reference flux 
reduction. Phase current ripple has also a notable 
reduction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. 5 Variation in the inertia coefficient.  

        Fig. 8 shows the drive dynamic under different 
values of inertia with constant speed reference. It is 
clear that the speed tracking is little affected by those 
changes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion 

     In this paper, we present a robust direct torque 
control method for voltage inverter – fed induction 
motor based on a space vector modulation (SVM) 
scheme combined with input–output feedback 
linearization technique. 
 The overall speed and flux control system was 
verified to be robust to the variations of motor 
mechanical and electrical parameters variations. 
Simulation studies were used to demonstrate the 
characteristics of the proposed method. It is shown that 
the proposed controller has better tracking 
performance and robustness against parameters 
variations as compared with the conventional direct 
torque control. 
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Fig. 8. Drive response under different inertia values.  
(a) Reference and actual rotor speed (b) stator flux 
magnitude. 

Fig.7. Drive response under flux-weakening. (a) Reference
and actual rotor speed (b) stator flux magnitude, (a) phase 
current  
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Appendix 

Table 3 
Induction motor parameters 
Rated power                          4 KW        
Pole pair                                 P= 2 
Nominal speed                     1440 rpm 
Stator inductance                   0.1554 H 
Rotor inductance                   0.1568 H 
Mutual inductance                 0.15 H      
Stator resistance                    1.2 Ω      
Rotor resistance                    1.8 Ω  
Machine inertia                     0.07 kg.m2         
Viscous coefficient                0.00031 kg.m2 /s 
Rated frequency                    50 Hz 
Reference flux                      s ref  Φ =1.1 Wb 
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