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Abstract: These papers present a macroscopic model for 
computing the deformation of ferromagnetic material due to 
magnetic forces and magnetostriction by using finite 
element method, in particular two dimensional case and 
weak coupling. A virtual work method based on the 
derivative of the magnetic energy is used to calculate the 
forces distribution on the stator core of an electrical 
machine. A deformation of teeth of stator is also calculated. 
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1. Introduction 
 Magnetostriction is a coupled magneto-mechanical 
phenomenon [1]. For rotating electrical machines, 
magnetostriction is one of a potential cause of noise 
and vibrations. The mechanical deformation is also 
cause changes in the air-gap contribution to generation 
of harmonic and additional noise. 
 The magnetic and magneto-elastic properties of 
magnetic materials differ from one material to other. 
Some properties, such as magnetization of iron are 
related to the applied mechanical stress. 
Magnetostriction is an even function [2], we can 
defined an analytic model depend on the magnetic flux 
density and quasi-independent of applied mechanical 
stress, the magnetostriction material characteristic ε  is 
a function of square of magnetic flux densityB . 
 The method developed in this paper is applied to 
calculate magnetic and magnetostriction forces in stator 
core of an induction machines, and its contribution to 
deformation of the stator core. 
 
1. Analytically Study 
 For deformable materials, a phenomenon how 
coupled magnetic and mechanic behavior induced 
energy due to magnetic and mechanical contributions,  
a total potential energy density is given by: 

( ) εσε ⋅+⋅= BHBw ,                                                (1) 

  With H the magnetic field, B the magnetic flux 
density, σ the stress tensor and ε the strain tensor. 
 From magneto-elastic coupling coefficient [3], it is 
possible to write the magneto-mechanical behavior law 
under this expression: 
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( )0,BH  is the magnetic field at null stress. 

 By analogy of thermo-elastic behavior [4,5], it is 
possible to suppose a magnetostrictive and mechanical 
deformation due to direct effect of magnetostriction 
and a mechanical strain state of material, neglecting 

thermal deformation; a total deformation is given by: 

( ) ( )σεεε µ eB +=                                                     (3) 

 Where µε  is the magnetostrictive deformation 

tensor and eε an elastic deformation tensor. 
 This hypothesis allows expressing a mechanical 
behavior law (Hooke's law): 

( ) ( )( )BCB µεεεσ −⋅=,                                             (4) 

 C  is the matrix of elastic constants. 
 A magneto-mechanical behavior law expression can 
be determined from (2) and (4) as: 
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2. Choice of deformation model 
 From experimental test of deformation [6,7], Fig.1. 
shows that magnetostriction deformation is an even 

function. 

  
Fig. 1. Magnetostriction characteristics of Terfenol-D 

  



 

 

Now we can defined an analytic model depend on 
the magnetic flux density and quasi-independent of 
applied mechanical stress, it is defined by: 

( ) 2
0 IIII BB ⋅= βε µ                                                        (6) 

 Where µε II  is the deformation of magnetostriction in 
a direction parallel to that of the material rod, 0β is a 

coefficient of the material and IIB the magnetic flux 

density in a direction parallel to that of the material 
rod. 
 In magnetic induction referential ( )21 ,, ⊥⊥ BBBII , 

where components 1⊥B and 2⊥B are orthogonal to the 

direction of IIB  and under these hypotheses: 

1. The magnetic material is isotropic. 
2. A principal magnetostriction deformation carried 

out at constant volume 0332211 =++ µµµ εεε . 

3. Magnetostriction deformations following orthogonal 
axes to the direction of B are same and its values are 
half compared with that parallel to the direction of 
B (in order to confirm the hypothesis 2). 

 A quadratic macroscopic model of a principal 
deformation of magnetostriction can be written at 
tonsorial form [6]: 
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 From (6) and (7), the expression of magnetostriction 
deformation becomes: 

( )[ ]

( )21,,

2
0

2

1
00

0
2

1
0

001

⊥⊥























−

−⋅=

BBBII

BB βε µ                  (8) 

 Until here, tonsorial model is expressed in cause's 
referential how give it product and not that of the 
material, moreover, our magnetostriction deformations 
were expressed in a referential different of that the 
material. Thus, it is important to write last expression 
in local material referential. According to Euler's 
rotation theorem (Euler angles), we can write a 
deformation tensor components in total material base 
as: 
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 Where 21,BB  and 3B are the component of magnetic 

induction in material referential, they are depended to 
direction cosines. 
 In 2D case, the component of magnetic flux density 

3B  is null. Thus, the expression of magnetostriction 

tensor in this case becomes: 
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3. The magneto-mechanical system 
 The magnetic and displacement fields are given by 
the following differential equations [3]: 
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WereH is the magnetic field, J the current density, 

σ the stress tensor and ΩF the volume force density. 
We associate to these equations the flux conservation 
law and the mechanical geometric law [3]: 
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 With B the magnetic flux density, ε the strain tensor 
and U the displacement [8]. 
 Both magneto-static and elasticity finite element 
methods are based upon the minimization on an energy 
function [9]. The total energy E of the 
electromechanical system consist of the elastic energy 
stored in a body with deformation, the magnetic energy 
stored in magnetic system with vector potential A and 
the work of magnetic and mechanical sources [9]: 

( ) ( ) TBWBE −= εε ,,                                               (13) 

 Where W  the magneto-elastic energy it is given by: 

( ) ( ) ( ) Ω















+= ∫ ∫ ∫

Ω

ddBdBBHBW

B

0

,,,

ε

ε µ

εεσεε              (14) 

 T is the work of magnetic and mechanical sources  
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 Thus, we can obtain the following functional energy 
to be minimized. 
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 Minimization of the functional energy ( )ε,BE  

versus A andU leads to the following system of 
algebraic matrix equation in terms of the magnetic 



 

 

vector potential A and the displacement U [3,6]: 

[ ] [ ] [ ] [ ]µJJAS s +=⋅                                          (17) 

[ ] [ ] [ ] [ ] [ ]mFFFUK ++=⋅ µ                                   (18) 

 Where A andU are the unknowns, [ ]sJ is the 

excitation current density and [ ]µJ  the magnetizing 

current induced by mechanical stress (inverse effect). 
[ ]S  is the magnetic stiffness matrix, which is given by:  
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iN  is the shape function related to the node i , ν the 
reluctivity of material in the element under 

consideration, Ω  the area of the element, Ω̂  the area 
of the reference element and J the Jacobean matrix for 
the transformation from the reference frame to the 
global one [10]. 
 [ ]K is the mechanical stiffness matrix[8,11], it is 

given by: 
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 Where [ ]C is the matrix of elastic constants, it is 

given for two cases [7,12]: 
 
a) For plan stress 
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b) For plan strain 
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 E  is the Young's, modulus and λ the Poisson's 
ratio. 
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 [ ]P is the permutation matrix. 
 [ ]F is the matrix of external forces [13],  it is given 

by: 
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 The magnetostriction forces equation is given by: 
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 The calculation of magnetic forces [ ]mF is based on 

local application of virtual work principle [10]. These 
models of forces have been calculated on each node as 
the derivative of the magnetic energy, with respect to 
the displacement at a constant magnetic flux [10,13]. 
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 From (19), the magnetic stiffness matrix can be 
written as: 
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 ix , iy  with i =1, 2, 3 are the coordinates of nodes i  

of the element and the index i, j and k are circular 
indices (1,2,3,1…),∆ is the element area. 
 The derivatives of the stiffness matrix with respect 
to the 1x  and 1y  coordinates of the nodes of the element 

are [14]: 
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 The integral in (27) is going achieve using the 
coordinate transformation tAA ⋅= 0 detailed in [9,14], 

so dtAdA ⋅= 0 . 

 Now, if we solve equations (17) and (18), we obtain 
the magnetic vector potential A  and the 
displacementU . It is easily that equations (17) and 
(18) are coupled through the magnetic force (the 
magnetic force dependence on the magnetic vector 
potential) and the variation of the magnetostrictive 
strain with magnetic field. The nonlinear equation (17) 
and (18) will be solved by iterative method, like fixed 
point [15,16] and Newton-Raphson methods [15,17]. 
 
4. Example 
 We apply this model to 2D example which is 
presented in the Fig.2, it consists of a four-pole 
induction machine, the stator core is a silicon (3.5%) 
steel material called (M19); the induction machine was 
simulated in static case. The inner and outer diameters 
of stator are 111 mm and 157.5 mm successively, the 
three-phase induction machine has 36 slots. 
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Fig. 2. Geometry of induction machine 

 
 The magnetic potentials are nulls at the outer 
diameter of stator. For elastic problem, only the left and 
right points of the outer boundary are considered fixed. 
 Fig.3 shows the BH curve for the material that used, 
this curve is simulated by cubic spline interpolation, at 
first approach; we assume that magnetic field is small 
enough so that the BH curve of a material can be 
considered as linear (we work at linear zone of BH 
curve). 
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Fig. 3. B-H curve for M19 material 

 
 The mechanical property of the magnetostriction 
material is considered isotropic; the magnetostriction 

curve ( )Bµε  produced by the model is shown in Fig. 4, 

the Young's modulus and Poisson's ratio are 
respectively 190 MPa and 0.3 (1 ppm = 10

-6
 m). 
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Fig. 4. Magnetostriction versus magnetic flux density 

 
 This curve fellows the expected behavior of M19 
material. This curve represents an even function. 
 Fig.5. presents a mesh of an induction machine with 
16360 elements; the mesh is simulated by finite 
element method using standard and own routines in a 
commercial software package (Matlab version 6.5). 
 
 

 
Fig. 5. Mesh of induction machine in finite elements 

 
 The magnetic potential distribution is shown in Fig. 
6, we noticed that the later is enclosed and have 
maximum values around of the first inner current 
source and canalized from stator core to rotor across 
the air-gap where created a maximum values of  
magnetic flux density. 



 

 

 
Fig. 6. Magnetic potential distribution 

 
 The result computed of magnetic forces is presented 
in Fig. 7; the maximal value of magnetic induction is 
0.31T. 
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Fig. 7. Magnetic forces on stator 

 
 The high values of magnetic forces are situated at 
the teeth of stator near to the air-gap. 
The result computed of magnetostriction forces is 
presented in Fig.8. 
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Fig. 8. Magnetostriction forces on stator 

 The high values of magnetostriction forces are 
situated at the outer diameter of stator and slots 
successively.  
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Fig. 9. Nodes under studies on one stator tooth 

 
 As an example, the magnetostriction displacement 
of nodes P1, P2, P3, P4, P5, and P6 situated at corner 
of stator tooth, shown in Fig.9, caused by 
magnetostriction forces are shown in Fig.10. 

 
Fig. 10. Displacement versus current density 

 
 We noticed from Fig.10 that points P5 and P6 are 
displaced rapidly then the other points on the stator 
tooth. 
 
5. Conclusion 
A numerical model of magnetostriction for induction 
machine was presented, based on the energy variation 
formulation. The particular static case with formulation 
in term of magnetic vector potential and displacement 
is studied. The displacements of teeth are small 
compared to the machines dimension but they are 
significant especially at the region of the air-gap. Stator 
deformations are caused note only by magnetic forces, 
but also by magnetostriction effect on the stator iron. 
The results indicate that magnetostrictive forces are 
significant and must be accounted for studies of 
vibrations and noises. 
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