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Abstract: This paper presents a solution of economic 
dispatch problem (EDP) with transmission losses using  a 
Hopfield Neural Network (HNN) algorithm. A direct 
computation method has been developed and used for 
solving the ED problem, which employs a linear input-
output model for the neurons. Formulations for solving 
the ED problem are explored. Through the application of 
these formulations, direct computation instead of 
iterations for solving the problem becomes possible. 
Unlike the usual Hopfield methods, which select the 
weighting factors of the energy function by trials, the 
proposed method determines the corresponding factors by 
calculations. The effectiveness of the developed method is 
identified through its application to the 15-unit system. 
Computational results manifest that the method has a lot 
of excellent performances. 
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1. Introduction 
       The economic dispatch problem (EDP) 
objective is to minimize production cost while 
satisfying demand and working area constraints for a 
given combination of active units. Aside from using 
the solutions of the EDP (combination of units with 
the least production cost) for its own merits in 
system operation, they are used to guide the solution 
method that solves the combinatorial part of the unit 
commitment problem. When the combinatorial part 
of the unit commitment problem is solved, solutions 
from the EDP are used to estimate the quality of 
different unit combinations. 
In this chapter the construction and implementation 
of an exact method using the Hopfield Neural 
Network that solves both the economic dispatch 
problem is presented. The performance of such 

method with respect to time and solution quality is a 
crucial part in the solution process of solving the 
unit commitment problem. The use of the Hopfield 
neural network methods to solve the  
 
EDP is therefore justifiable if the method produces 
optimal solutions and outperforms near-optimal 
solver with respect to computation time. 
 
2. Problem Formulation 

       Economic dispatch (ED) is defined as the 
process of allocating generation levels to the thermal 
generating units in service within the power system, 
so that the system load is supplied entirely and most 
economically [1] and [2]. The objective of the ED 
problem is to calculate, for a single period of time, 
the output power of every generating unit so that all 
demands are satisfied at minimum cost, while 
satisfying different technical constraints of the 
network and the generators. The problem can be 
modeled by a system which consists of N generating 
units connected to a single bus-bar serving an 
electrical load D. The input to each unit shown as Fi, 
represents the generation cost of the unit. The output 
of each unit Pi is the electrical power generated by 
that particular unit. The total cost of the system is 
the sum of the costs of each of the individual units. 
The essential constraint on the operation is that the 
sum of the output powers must equal the load 
demand. 
The standard ED problem can be described 
mathematically as an objective with two constraints 
as:
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Where 
iP  : Real power output of i-th generator (MW); 

TF  : Total Operating cost ($ /h); 
)( ii PF : Operating cost of unit i ($ /h); 

D  : Total demand (MW); 
L  : Transmission losses (MW); 

maxmin , ii PP : Operating power limits of unit i (MW); 
N : total number of units in service. 
       The fuel cost function or input-output 
characteristic of the generator may be obtained from 
design calculations or from heat rate tests. Many 
different formats are used to represent this 
characteristic. The data obtained from heat rate tests 
or from the plant design engineers may be fitted by a 
polynomial curve. It is usual that, quadratic 
characteristic is fit to these data. A series of straight-
line segments may also be used to represent the 
input-output characteristic [1]. The fuel cost function 
of a generator that usually used in power system 
operation and control problem is represented with a 
second-order polynomial. 

Fi(Pi)  = ai + bi Pi + ci Pi 
2                                      (3) 

Where, ai, bi and ci are the cost coefficients (non-
negative constants) of the i th generating unit. 

        For some generators such as large steam turbine 
generators, however, the input-output characteristic 
is not always as smooth as (2.3). Large steam turbine 
generators will have a number of steam admission 
valves that are opened in sequence to obtain ever-
increasing output of the unit [3], [4]. The fuel cost 
function in this case can be expressed as: 

Fi (Pi) = ai + bi Pi + ci Pi 
2 

minsin ( ( ))+ −i i i ie f P P                                     (4) 

Where ei and fi are non-negative constants. 
Alternatively, fuel cost functions may be represented 
by piecewise-linear cost functions, such as the 
Willans line [5] described by:   

Fi(Pi) = inci
kPi+nli

k      k=1,2,…,3                          (5) 

Where: 
inci

k: incremental cost of segment k of unit i 
($/MWh), k = 1, 2, and 3; 

nli
k: no-load cost of segment k of unit i ($/h), k = 1, 

2, and 3; 
Eq(5) can be written in more detail as: 
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Where: 
Pi.

min and Pi
max :are the lower and upper generation 

limits of unit i, respectively [MW];  
ei

1 and ei
2: are the first and second breaking points of 

the piece-wise linear cost function of unit i, 
respectively [MW]. 
The total production cost expressed with piece-wise 
cost function is as follows: 
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k = 1  if   Pi
min ≤ Pi < e i

1 

k = 2  if   e i
1 ≤ Pi < e i2                                         (10) 

k = 3  if   e i2 ≤ Pi ≤ Pi
max 

 
3. Hopfield Neural Network Applied to Economic 
Dispatch  

       The EDP has been widely studied and reported 
by several authors in books and journals on power 
system analysis. Many techniques have been 
developed to solve this problem, e.g. the lambda-
iterative method, gradient technique, Interior Point, 
Lagrange technique, linear programming, Quadratic 
Programming, Dynamic Programming, Simulated 
Annealing, Genetic algorithm (GA), Evolutionary 
Programming (EP), Neural Network and methods 
combining two ore more of the above methods [6] 
and [7]. Most of these methods often suffer from the 
large amount of computational requirement or give 
just a good estimate (near optimal) of the solution to 
the EDP. 

3.1. Hopfield Neural Network 
       The Hopfield model of Neural Networks was 
investigated by John Hopfield in the early 1980s. 
The Hopfield network has no special input or output 
neurons. All neurons are both input and output, and 
each neuron is connected to all other neurons in both 
directions (with equal weights in the two directions). 
Input is applied simultaneously to all neurons. The 
output of each neuron is then supplied to all other 



 

neurons. The process continues until a stable state is 
reached, which represents the network output.  
       Hopfield Neural Network (HNN) is the widely 
used model for solving combinatorial optimization 
problems [8]. These networks have three major 
forms of parallel organization found in neural 
systems, namely, parallel input, parallel output 
channels, and a large amount of interconnectivity 
between the neural processing elements.  

Two types of Hopfield Neural Network models are 
widely used namely the Binary (Discrete) Model and 
the Analog (Continuous) Model. 
In the binary model, each neuron or processing 
element has two states, Vi

0 or Vi
1, which may be 

taken as 0 or 1. The inputs to the neuron come from 
two sources, one from the external inputs Ii and the 
other from the other neurons Vj. 
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Where:  
Ui : The total input to neuron i, 
Tij : The interconnection conductance from the 
output of neuron j to the input of neuron i, 
Ii : The external input to neuron i, 
Vj : The output of neuron j. 

Each neuron i samples its input randomly according 
to a threshold θi rule given as 

iii

iii

UifV
UifV

θ
θ

>=
<=

,1
,0

                                       (12) 

The continuous or deterministic model of the 
Hopfield Neural Network is based on continuous 
variables. The output variable of neuron i has the 
range Vi

0 < Vi < Vi
1 and the input-output function is a 

continuous and monotonically increasing function of 
the input Ui to neuron i. The model is a mutual 
coupling neural network and of non-hierarchical 
structure. The dynamic characteristic of each neuron 
can be described by the following differential 
equation [9] and [10]. 
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Where:   
Tii : The self-connection conductance of neuron i. 

The output of neuron is given by 

Vi = fi (Ui)                                                             (14) 

Where fi (Ui) is the input-output function of the 
neuron i. 
The energy function of the continuous Hopfield 
model can be defined as:  
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The time derivative of the energy function can be 
proved to be negative [11]. Therefore, in the 
computation process the model state always moves 
in such a way that the energy function gradually 
reduces and converges to a minimum. 
This model is suitable for economic dispatch, while 
the discrete model is suitable for unit commitment. 

3.2. Mapping Economic Dispatch to Hopfield 
Neural Network 

       The Hopfield model of neural networks [12] has 
been employed to solve the ED problem for units 
having continuous or piece wise quadratic fuel cost 
function [9] and [13], and even for units having 
prohibited zones constraint [14] and [15]. The 
conventional Hopfield model belongs to the kind of 
continuous and deterministic model, and the input-
output relationship for its neurons is described by a 
modified sigmoidal function. Due to the use of 
sigmoidal function in the conventional Hopfield 
model, in solving the ED problems, a method 
involving numerical iterations is inevitably applied; 
this numerical iteration method often suffers from 
large amount of computational requirements.  
Adopting a modified sigmoidal function causes two 
other problems. The first, it incurs unreasonable or 
incorrect generation dispatch, which is attributable 
to the serious saturation phenomena existing in the 
input-output relationship represented by the 
sigmoidal function. The second; it is troublesome to 
select shape constant of the sigmoidal function.  
A fast Hopfield Neural Network method to solve the 
ED problem is presented. The method employs a 
linear input-output model for the neurons. 
Formulations for solving the ED problem are 
explored. Through the application of these 
formulations, direct computation instead of 
iterations for solving the problem becomes possible. 
Not like the usual Hopfield methods, which select 
the weighting factors of the energy function by 
trials, this method determines the corresponding 
factors by calculation. 



 

The adoption of a linear model describing the input-
output relationship of the neuron has resulted in the 
avoidance of the aforementioned problems.      
To solve the ED problem using the Hopfield 
method, energy function including both power 
mismatch, Pm and total fuel cost F is defined as 
follows: 
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A and B introduce the relative importance of their 
respective associated terms. 
Comparing eq(15) with eq(16), we get: 

Tii = − A − B . ci                                                                        (17) 
Tij = − A                (18) 
Ii = A (D + L) – B (bi /2)                                       (19) 

At this stage the transmission losses L can be 
neglected and reconsidered later in section 4. 
Substituting eq(17), eq(18) and eq(19) into (13), the 
dynamic equation becomes, 
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Application of the conventional Hopfield method to 
the ED problem, the power output value can be 
represented by the output Vi of neuron i using a 
modified sigmoidal function, described as follows 
[13] and [14]: 
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Where:  
u0: the shape constant of the sigmoidal function. 
To avoid the problems resulting from curve 
saturation, a linear model shown in figure 1 is used 
to describe the input-output relationship for the 
neuron instead of the sigmoidal function. Linear 
transfer function of the ith neuron is defined as 
follows: 
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Fig 1. The proposed linear input-output function 

 
 
 
Substituting eq(22) in eq(20) the dynamic equation 
becomes: 
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Solving   (23) the neuron’s input function, Ui( ,t ) is 
obtained as: 
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With                 iii KBcK 13 −=                            (25) 
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From eq(22), the neuron’s output function, Pi( ,t ),  is 
obtained as: 
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Where KAB = 
A
B
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The second term in eq(27) decays exponentially, 
finally becomes vanishingly small and eventually 
setting ,t  =∞ , eq(27) gives,     

2( )
2

AB m i
i

i

K P bP
c
−

∞ =                                         (28) 

Here )(∞iP represents the optimal generation level 
of unit i, which is the required solution. 
Back substituting of eq(28) in eq (27), a more simple 
formula for the generation function is given as:  
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Where )0(iP  is obtained from eq(27) by letting t’= 
0, to give: 

2 1(0) (0)i i i iP K K U= +                                        (30) 

It should be noted here that t’ is not representing real 
time, it is a dimensionless variable.  
Using the power mismatch definition and eq(28) we 
obtain: 
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Equations (28) through eq(31) constitute the 
Hopfield model for the economic dispatch problem. 
A non iterative direct computation process is, 
therefore, possible.  

4. Inclusion of transmission losses in a hybrid 
algorithm 

         The transmission losses L can be either given 
from a load flow study or approximated by 
traditional representation using B coefficients: 
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Where  
P: vector of generator loading ( )1 2, , , NP P PK , 
Bc: loss-coefficient matrix, 
B0: loss-coefficient vector, 
B00: loss constant. 

A Bisection solution method for solving the 
economic dispatch including transmission losses 
combined to the Hopfield Neural Network is 
presented in the following steps: 
Step1: initialization of the interval search [D3  D1]. 
ε : a pre-specified tolerance.  
Initialize the iteration counter k =1.  
D3 

k = D ; 
D1 

k = D3 
k + 0.1 * D3 

k ; 
D2 

k = D3 
k + (D1 

k-D3 
k) / 2 ;  

Step2: Determine the optimal generators’ power 
outputs , 1,...,iP i N=  using the Hopfield Neural 
Network algorithm, by neglecting losses and setting 
the power demand as D k = D2 

k ; 
Step3: Calculate the transmission losses Lk for the 
current iteration k using eq(32); 
Step 4: if D1

k -D3
k < ε , stop otherwise go to step 5; 

Step5: if D2
k-Lk < D, update D3 and D2 for the next 

iteration as follows: 
D3

k+1 = D2
k 

D2
k+1=D2

k + ( D1
k - D2

k ) /2;  
Replace k by k+1 and go to step 2; 
Step 6: if D2

k-Lk > D, update D1 and D2 for the next 
iteration as follows: 
D1

k+1=D2
k 

D2
k+1=D2

k - ( D2
k – D3

k ) /2;  
Replace k by k+1 and go to step 2. 

5. Results and Discussion 

To demonstrate the performance of the Hopfield 
based ED solver, A 15-unit test system [16] is used, 
where the convergence criteria considered here is the 
unit generation constraints must be not violated. The 
system consists of 15-units where data is given in 
table1. For comparison the case of a load demand of 
2650 MW is considered as in [16].  
The total operating cost of the system is represented 
by the following polynomial, 
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T i i i i i i i
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Where the polynomial coefficients are listed in table 
1 along with generator minimum and maximum 
operating limits. 
 

 
 
 
 



 

Table1. Input data of 15-unit system and the computational results 
 

Unit 
min

iP  

(MW) 

max
iP  

(MW) 
a 

$/hr 
b 

$/MWhr 
c 

$/MW2hr 
iP  

(MW) 
iP  

(MW) 
1 150 455 671.03   10.07      0.000299  455 455 
2 150 455 574.54   10.22     0.000183   455 455 
3 20 130 374.59 8.8      0.001126 130 130 
4 20 130 374.59 8.8      0.001126 130 130 
5 150 470 461.37  10.4     0.000205 317.8331       348.7724 
6 135 460 630.14   10.1      0.000301 460. 460. 
7 135 465 548.2     9.87       0.000364 465 465 
8 60 300 227.09  11.5     0.000338 60 60 
9 25 162 173.72 11.21      0.000607 25 25 

10 20 160 175.95   10.72     0.001203 20 20 
11 20 80 186.86  11.21    0.003586 20 20 
12 20 80 230.27   9.9       0.005513 57.1659        58.3164 
13 25 85 225.28   13.12     0.000371 25 25 
14 15 55 309.03   12.12     0.001929 15 15 
15 15 55 323.79  12.41 0.004447   15 15 

   Transmission losses L (MW) 0 32.1138 
   Total production power generation (MW) 2650 2682.0898
   Total production cost FT ($) 32542.30 32880.42 

 
The loss coefficients matrix 210cB − , vector B0  and constant B00  are shown in the following: 
 
0.0014  0.0012  0.0007  -0.0001  -0.0003  -0.0001  -0.0001  -0.0001  -0.0003  -0.0005  -0.0003  -0.0002  0.0004  0.0003  -0.0001  
0.0012  0.0015  0.0013  0.0000  -0.0005  -0.0002  0.0000 0.0001  -0.0002  -0.0004  -0.0001  -0.0000  0.0004  0.0010  -0.0002  
0.0007  0.0013  0.0076  -0.0001  -0.0013  -0.0009  -0.0001  0.0000  -0.0008  -0.0012  -0.0017  -0.0000  -0.0026  0.0111  -0.0028  
-0.0001  0.0000  -0.0001  0.0034  -0.0007  -0.0004  0.0011  0.0050  0.0029  0.0032  -0.0011  -0.0000  0.0001  0.0001  -0.0026  
-0.0003  -0.0005  -0.0013  -0.0007  0.0090  0.0014  -0.0003  -0.0012  -0.0010  -0.0013  0.0007  -0.0002  -0.0002  -0.0024  -0.0003  
-0.0001  -0.0002  -0.0009  0.0004  0.0014  0.0016  -0.0000  -0.0006  -0.0005  -0.0008  0.0011  -0.0001  -0.0002  -0.0017  0.0003  
-0.0001  0.0000  -0.0001  0.0011  -0.0003  -0.0000  0.0015  0.0017  0.0015  0.0009  -0.0005  0.0007  -0.0000  -0.0002  -0.0008  
-0.0001  0.0001  0.0000  0.0050  -0.0012  -0.0006  0.0017  0.0168  0.0082  0.0079  -0.0023  -0.0036  0.0001  0.0005  -0.0078  
-0.0003  -0.0002  -0.0008  0.0029  -0.0010  -0.0005  0.0015  0.0082  0.0129  0.0116  -0.0021  -0.0025  0.0007  -0.0012  -0.0072  
-0.0005  -0.0004  -0.0012  0.0032  -0.0013  -0.0008  0.0009  0.0079  0.0116  0.0200  -0.0027  -0.0034  0.0009  -0.0011  -0.0088  
-0.0003  -0.0004  -0.0017  -0.0011  0.0007  0.0011  -0.0005  -0.0023  -0.0021  -0.0027  0.0140  0.0001  0.0004  -0.0038  0.0168  
-0.0002  -0.0000  -0.0000  -0.0000  -0.0002  -0.0001  0.0007  -0.0036  -0.0025  -0.0034  0.0001  0.0054  -0.0001  -0.0004  0.0028  
0.0004  0.0004  -0.0026  0.0001  -0.0002  -0.0002  -0.0000  0.0001  0.0007  0.0009  0.0004  0.0001  0.0103  -0.0101  0.0028  
0.0003  0.0010  0.0111  0.0001  -0.0024  -0.0017  -0.0002  0.0005  -0.0012  -0.0011  -0.0038  -0.0004  -0.0101  0.0578  -0.0094  
-0.0001  -0.0002  -0.0028  -0.0026  -0.0003  0.0003  -0.0008  -0.0078  -0.0072  -0.0088  0.0168  0.0028  0.0028  -0.0094  0.1283  
B0 i = [ -0.000l  -0.0002  0.0028  -0.0001  0.0001  -0.0003  -0.0002  -0.0002  0.0006  0.0039  -0.0017  -0.0000  -0.0032  0.0067  -0.0064]  
B00 = 0.0055.  

The seventh column of table 1 shows the optimal 
generators’ power outputs when the transmission 
losses is neglected. Total production cost is $ 
32542.30. The problem was carried out on Pentium 
M 1.73 MHz using the presented Hopfield method 
with Umin = - 0.5,  Umax = 0.5 and Pm = 0.001. The 
computation time was about 0.14 s. 
The same test system was solved in [16], the total 
production cost is obtained as $ 32549.8. It can be 
seen that the presented Hopfield approach could 
provide a better solution within a much shorter time.    

The last column of table 1 shows the optimal 
generators’ power outputs when the transmission 
losses is taken into account. The pre-specified 
tolerance was taken as 0.001. Total production cost 
is $ 32880.42, and the transmission losses equal to 
32.1138 MW. The computation time was about 0.51 
s for 21 iteration.  The iterative search results using 
the HNN method  for iterations (1 to 11 and last 
iteration 21) are given in table 2. 



 

Table2. Iterative search results using HNN method for the 15-unit system. 

 
   

iP (k =1) 

(MW) 
iP (k =2) 

(MW) 
iP (k =3) 

(MW) 
iP (k =4) 

(MW) 
iP (k =5) 

(MW) 
   455 455 455 455 455 
   455 455 455 455 455 
   130 130 130 130 130 
   130 130 130 130 130 
   445.5827 381.7079 349.7705 333.8018 341.7861 
   460 460 460 460 460 
   465 465 465 465 465 
   60 60 60 60 60 
   25 25 25 25 25 
   20 20 20 20 20 
   20 20 20 20 20 
   61.9163 59.5411 58.3535   57.76 58.0566 
   25 25 25 25 25 
   15 15 15 15 15 
   15 15 15 15 15 

Transmission losses Lk (MW) 38.50 34.097 32.17 31.27 31.71 
Total production power generation D2 

k(MW) 2782.50 2716.25 2683.125 2666.562 2674.843 
D2

k-Lk  (MW) 2744.00 2682.15 2650.95 2635.28 2643.12 
Total production cost FT k($) 33941.04 3240.80 32891.33 32716.76 32804.036

       
iP (k =6) 

(MW) 
iP (k =7) 

(MW) 
iP (k =8) 

(MW) 
iP (k =9) 

(MW) 
iP (k =10) 

(MW) 
iP (k =11) 

(MW) 
iP (k =21) 

(MW) 
455 455 455 455 455 455 455 
455 455 455 455 455 455 455 
130 130 130 130 130 130 130 
130 130 130 130 130 130 130 

345.7783 347.7744 348.2734 348.52 348.64 348.71 348.7724 
460 460 460 460 460 460 460. 
465 465 465 465 465 465 465 
60 60 60 60 60 60 60 
25 25 25 25 25 25 25 
20 20 20 20 20 20 20 
20 20 20 20 20 20 20 

58.2051 58.2793 58.2979 58.3071 58.3118 58.3141 58.3164 
25 25 25 25 25 25 25 
15 15 15 15 15 15 15 
15 15 15 15 15 15 15 

31.94 32.056 32.085 32.01 32.106 32.11 32.1138 
2678.9844 2681.055 2681.5723 2681.83 2681.96 2682.025 2682.0898 
2647.041 2648.9979 2649.487 2649.73 2649.85 2649.915 2649.975 

32847.6826 32869.5082 32874.9649 32877.693 32879.057 32879.7396 32880.42 
 

6. Conclusion 
     A Hopfield neural network method combined to 
bisection has been developed for ED problems 
solution with transmission losses. This fast-
computation solver, overcomes the drawbacks of the 
conventional segmoidal function by adopting a 
linear input/output transfer function, resulting in a 

superior Hopfield neural network as one calculation 
process is required (i.e. No iterations). This led to a 
very short computing time and suitability for on-line 
usage. The proposed method is relatively simple, 
straightforward, efficient, easy to apply and requires 
no training. Its connective conductances and external 
input can be determined directly by employing system 
data. 
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