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. 
Abstract: - In this paper, we have presented a new model 
for daily operating policy of hydroelectric power 
systems, which consists to maximize the potential energy 
of the whole system. The method used for the solution is 
based on the discrete maximum principle for 
determining the optimal daily operating policy of 
hydroelectric power systems consisting of multi-
reservoirs, where the objective is to maximize the 
potential energy while satisfying all operating 
constraints over a short-term planning horizon. The 
major focus of this paper will be also the treatment of 
the two-sided inequality constraints using the augmented 
Lagrangian method. The proposed algorithm takes into 
account spilling and time delays between reservoirs. The 
proposed algorithm is tested on a large hydroelectric 
power system consisting of ten reservoirs. The developed 
algorithm gives a satisfactory solution for the problem 
and turns out to be very efficient. 
 
Key-words: Daily operating policy, potential energy, 
discrete maximum principle, augmented Lagrangian 
method. 

 
1. Introduction 
The daily optimal operating policy of hydropower 
systems is a deterministic problem [1][2], which 
consists in determining the amount of water to be 
discharged from each  reservoir of the system over 
the day so that to meet the hourly load demand 
assigned previously. The prime objective here is to 
perform the operating policy with the lowest use of 
water; which is achieved by avoiding spilling and 
by maximizing the hydroelectric  generation, 
besides satisfying all operating constraints. The 

maximization of electrical power production is 
achieved by maximizing the heads. Consequently, 
this allows maximizing the reservoirs content.  

When modeling the problem, and for more 
accuracy, the following factors which make the 
problem more complex are taken into 
consideration; significant water travel time between 
reservoirs, the multiplicity of the input-output curve 
of hydroelectric reservoirs that have variable heads, 
the maximum generation of the hydroelectric  plant 
varies with the hydraulic head i.e. the quantity of 
water required for a given power output decreases 
as the hydraulic head increases, the water stored in 
the upstream reservoir is more valuable than that 
stored in the downstream reservoir, whether the 
reservoirs have very different storage capacity and 
whether the system has quite complex topology 
with many cascaded reservoirs.  

To solve the daily operating policy problem, we 
use the discrete maximum principle [3-4]. While 
solving the equations relating to the discrete 
maximum principle, we use the gradient method 
[3]. However, to treat equality constraints we use 
Lagrange’s multiplier method. To treat the 
inequalities constraints we use the augmented 
Lagrangian method [5]. The present paper is 
concerned particularly with the treatment of the 
constraints on the state variables, which are of two-
sided inequalities. The augmented Lagrangian 
method is proposed to deal with this type of 
inequalities.   

The hydroelectric power system considered in 
this paper consists of ten reservoirs hydraulically 



coupled, i.e., the release of an upstream reservoir 
contributes to the inflow of downstream reservoirs. 
All reservoirs are located in the same river. The 
time taken by water to travel from one reservoir to 

the downstream reservoir [8-10] is taken into 
account. The natural inflow and the load demand 
are known beforehand. The scheduling is stretched 
over one day divided into hours. 

The decision variables in the optimization 
problem are the amount of water to be released 
from each reservoir to their direct downstream 
reservoirs in a given period. The state variables are 
the contents of the reservoirs. 
 
2. Problem formulation 
The main objective of the daily operating policy of 
hydroelectric power system is to maximize the 
reservoir’s contents which imply maximiz ing the 
value of potential energy stored at the end of the 
planning horizon, while satisfying demand for 
electrical energy and all other specified constraints. 
Thus, the suggested mathematical model for the 
deterministic short-term operating policy of the 
hydroelectric power systems is as follows:  

 
2.1 The objective function 
The main objective is to maximize the total 
potential energy of water stored in all the 
reservoirs. The formulation must take into account 
the fact that the water stored in one reservoir will 
be used in all its downstream reservoirs, hence, the 
water stored in the upstream reservoir is more 
valuable than that stored in the downstream 
reservoir, hence: 
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Where 

( , )f fk k

p i iE x h : Potential energy of water stored in 

reservoir i  at the end of the planning horizon fk . 
This energy depends on the amount of water stored 

in the reservoir i , on its effective water head fk
ih , 

and on the effective water head of the downstream 
reservoirs. 

fk
ix : Content of the reservoir i  at the end of period 

fk , in Mm3. 
n : Number of reservoirs of the system. 

fk : The last hour of the planning horizon, in hours. 
m : The reservoir immediately preceding the 
reservoir i . 

,k k
mi miu v : Respectively the discharge and the 

spilled outflows from the upstream reservoir m  
incoming later to the downstream reservoir i during 
period k , in Mm3. 

miS : Time required for the water discharged from 
reservoir m  to reach its direct downstream 
reservoir i , in hours. 

( , ) :k k k
p mi miE u v∑  Total potential energy of the 

outflow from reservoir m , which will reach later 
the downstream reservoir i  after the last hour of 
the planning horizon fk . 
 
2.2 Operational constraints  
The optimization is performed incorporating the 
following constraints [1-2] [8-15]: 

 
- Hydraulic continuity constraint: 
The flow balance equation of each reservoir i  of 
the system, for every period k  is represented by the 
following hydraulic continuity equation: 
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Where: 
k

iu : Discharge from reservoir i  during period k , in 
Mm3. 

k
iv : Spillage from reservoir i  during period k , in 

Mm3. 

k
iq :  Total inflow to the reservoir i  during 

period k , in Mm3.  
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e : The extreme upstream reservoirs. 

k
iy :  Natural inflow to the reservoir i  during 

period k , in Mm3.  
m ik s

m iu − , m ik s
m iv − : The discharge and the spilled 

outflows, respectively, from the upstream reservoir 
m incoming later to the downstream reservoir  
i during period k , in Mm3. 
 
- Limits on storage capacity of each reservoir i :  



 
k

i i ix x x≤ ≤  

,i ix x : Lower and upper bounds on reservoir 
storage capacity, respectively, for reservoir i , in 
Mm3.  
 
- Limits on discharged outflow of hydro plant i : 
 

k
ii iu u u≤ ≤  

 
, iiu u : Minimum and maximum bound on water 

discharge, respectively, of hydro power plant i , in 
Mm3. 
 
- Load constraints:   
The total power generated by all the hydroelectric 
plants must satisfy the system load demand at each 
period of the planning horizon. In mathematical 
terms, it has the following form:  
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Where: 
D k : System load demand at each period k , in 
Mw. 

k
iP : Electric power generated by hydro plant i at 

period k , in Mw. The generation is a function of 
the water discharge ui

k  and of the effective water 

head k
ih .  

 
2.3 Mathematical model formulation: 
The suitable mathematical model proposed for the 
short-term scheduling problem of a hydroelectric 
plant system is as follows: 
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Subject to the following constraints: 
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To ovoid the spillage, we force k

iv  to vanish.  
 

3. Solution methodology 
 
The problem (1)-(3) is solved by using the discrete 
maximum principle as follows [3-7]:   
Associate the constraint (2) to the criterion (1) with 
the dual variable λi

k . Furthermore, to satisfy the 
balance between electric power demand and 
generation, we associate the constraint (3) to the 

criterion (1) with the Lagrange multiplier kβ , and 

then we define the function kH  called the 
Hamiltonian function, which has the following 
form: 
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Where ui

k  and x i
k represent respectively the 

control and state variables. 
To take into account the possible violation of 

constraint (5) we proceed as follows:  
The two-sided inequality constraint (5) can be 
broken into two inequalities constraints and 
rewritten, following the substitution of equation (2) 
for k

ix : 
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1( ) 0k k k
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To treat these inequalit ies constraints we use the 
augmented Lagrangian method [6-7], which 
consists of adding the functions Ri

k  and k
iQ  to the 

Hamiltonian kH  that penalizes respectively the 
violations of the inequalities constraints (7) and (8), 
i.e., the violation of lower and upper limits of the 
original constraint (5). Then the Hamiltonian H k  
becomes as follows: 
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The penalty function Ri
k is defined as follows [6-7]: 
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Where: 
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r : Penalty weight.  
k

iρ : Lagrange multipliers being updated as 
follows:  

)
2

,(max 2
r

xxr
k

i
i

k
i

k
i

k
i

ρ
ρρ −−+=      (11) 

 
The function k

iΨ  is determined as follows: 
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2
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k
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r
ρ
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The penalty function Qi
k  is calculated in the same 

manner as Ri
k . 

The problem (1)-(5) becomes: 
 

max kH                               (13) 
 

The necessary conditions for the optimum are: 
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To find the optimal water discharge trajectory ui

k  
from equation (14), we must solve the difference’s 
equations (2) and the following ones called the 
adjoint equation [6] :  
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The boundary conditions for equations (2) and (15) 
are: 
- The first one is the initial state, which is specified, 
i.e., the initial content of all reservoirs is known, 
thus:  

ii bx =0
                               (16) 

 
- The second one is the terminal condition for the 
adjoint equation: 
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The necessary conditions for the optimality 

constitute a two-point boundary value problem, 
whose solution determines the optimal state and 
control variables. This problem is solved iteratively 
by using the gradient method [3]. 
 
 4. Application 

In order to testify the efficiency of the proposed 
algorithm, it was applied to the system composed of 
ten reservoirs located on the same river as shown in 
Fig. 1:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1: The reservoir network. 

 
The characteristics of the reservoirs and water time 
travel are shown in table  1. 
  
       Table 1: Characteristics of the installations. 
 

i  x i  
(M.m3) 

iu  
(M.m3/h) 

ih  

(m) 
miS  

(h) 

1 8777,2 1,1232 0,00 55 
2 986,4 0,5272 0,00 70 
3 998,0 0,5054 0,00 42 
4 504,9 2,5531 66,61 5 
5 8,5 2,4181 114,1 7 
6 4,2 2,5650 92,41 2 
7 4,8 2,5240 83,28 22 
8 26,9 2,7648 55,72 3 
9 4,54 3,0476 107,66 2 
10 3,4 3,4686 40,81 0 

 
Where: 

x i : Maximum storage capacity of reservoir i . 

iu  : Maximum water discharge of hydro-power 
plant i . 

( )k k
i ih x : Effective water head of hydropower plant 

i at period k . 



miS : Time required for the water discharge from 
reservoir m  to reach its direct downstream 
reservoir i .  

The natural inflows are assumed constant 
throughout the week in all reservoirs. Their values 
are depicted in table 2 as well as the initial contents 
of each reservoir. 
 

Table 2: Natural inflows and initial contents 
of reservoirs. 

     i  
0
ix   (M.m3) 

k
iy  (M.m3/h) 

1 4386,6 0,1476 
2 986,4 0,5272 
3 998,0 0,5054 
4 504,9 0,5531 
5 8,5 0,4181 
6 4,2 0,5650 
7 4,8 0,5240 
8 26,9 0,7648 
9 4,5 0,0476 

10 3,4 0,4686 
 
Where: 

k
iy : Natural inflow to the reservoir of hydropower 

plant i  during each hour of the planning 
horizon fk . 

0
ix : Initial content of reservoir i . 

The hourly load demand kD  during the day is 
shown in Fig. 2. 
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Fig. 2: Hourly demand profile during one day. 

The electrical power produced in MW at the 
hydroelectric plant i during a period k  is given by 
the following expression: 

( , ) ( )k k k k k
i i i i i iP h u h x u= ⋅                   (18) 

 

Where: 
( )k k

i ih x : Effective water head of hydropower plant 

i at period k . 
 
5. Implementation results  
In this section, the results, obtained from the 
implementation of the proposed algorithm are 
presented. The algorithm is implemented in 
FORTRAN.  

The solution is obtained after a very moderate 
number of iterations with all constraints being 
satisfied. 

The daily optimal scheduling, i.e., optimal water 
discharges from each hydropower plant obtained 
are depicted in Fig.3. 
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 Fig. 3: Optimal discharge trajectories . 
 

It was seen that the discharge of the 
hydroelectric  plants follows the demand because it 
is proportional to the production on one hand. On 
the other hand, this production must be equal to the 
demand. Furthermore, the discharge from the 
downstream reservoir is greater than in upstream 
one as shown in Fig. 3, for the reason that the water 
stored in the upstream reservoir is more valuable 
than that stored in the upstream one, i.e., the water 
of the upstream reservoir will be used again in all 
the downstream ones. Consequently, in economic 
terms, water in the upstream reservoirs should be 
preserved as shown in Fig. 4. Thus, the 
consequences of the optimal scheduling of the 
water discharge are the filling of the upstream 
reservoirs as against the downstream ones. 
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Fig. 4: Optimal evolution storage trajectories. 

 
The behaviour of the objective function during the 
optimization process is illustrated in Fig. 5. The 
convergence was achieved in about ten iterations 
with few oscillations. It is also noted that the search 
for the optimum becomes slower when the optimal 
solution is approached; this is due to the gradient 
method itself. 
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Fig. 5: Behavior of the search trajectory 

6. Conclusions   
In this paper, a new model is presented for the daily 
operating policy of hydroelectric power system, 
which consists to maximize the potential energy of 
the whole system. With the discrete maximum 
principle, the optimal solution is obtained by 
solving simultaneous equations representing the 
optimality conditions. The principle turned out to 
be very efficient. 

To deal with the two-sided inequality 
constraints, the augmented Lagrangian method was 
introduced. The results confirm the promising 
properties of the augmented Lagrangian.  

The proposed algorithm based on those methods 
requires moderate time and storage for its 
execution, thus allowing the solution of large-scale 
scheduling problems. 

Some improvements can be made to the 
proposed algorithm in order to increase the 
convergence speed of the algorithm and its 
execution time by using an optimal step size α   
rather than a fixed one. 

 The proposed algorithm can take into account 
the time of water travel between upstream and 
downstream reservoirs.   
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