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Abstract: The brushless doubly-fed induction machine
continues to attract increasing interest for applications in
wind power generation systems and variable speed motor
drives where, robustness and low servicing costs are much
desirable. This paper presents an H-infinity control of a
grid connected variable speed wind energy conversion
system based brushless doubly-fed induction machine. For
this purpose, a linearized small signals mathematical model
has been developed, and the mixed sensitivity control theory
has been used. To enhance the performances of the mixed
sensitivity design, decoupling and integral actions have
been considered. Additionally, the effect of electrical
parameters uncertainties and operating speed change on
the stability of the brushless doubly-fed induction machine
has been given. The proposed control scheme has been
investigated through simulation implementation under
different modes of operation, sub-synchronous, synchronous
and super-synchronous mode. The obtained results show
that the controller provides satisfying performances when
the operating point varies.

Key words: brushless doubly fed induction machine, small
signal model, stability analysis, parameter variation, mixed
sensitivity, robustness.

1. Introduction.

The Brushless Doubly Fed Induction Machine
(BDFIM) has emerged as a promising alternative in
wind energy conversion system to overcome the
drawbacks of the Doubly Fed Induction Generator
(DFIG) which requires periodic servicing, thus
inducing extra maintenance costs [1].

The first literature reports on the BDFIM structure
can be traced back to the early years of the twentieth
century when Hunt [2] proposed a topology based on
two DFIGs rotating on the same shaft with their rotor
windings connected to form what was known as the
‘cascaded DFIGs’. This structure was further improved
by allowing a special single rotor to couple two
independent three-phase windings known as Power
Winding (PW) and Control Winding (CW) located on
the stator. The stator windings (PW and CW) are
designed with different pole pair numbers to eliminate
direct magnetic coupling [3-4]. In generation mode, the
PW is connected directly to the grid and the CW is fed
by a back-to-back converter [5]. To obtain synchronous

operation of the BDFIM, an electromagnetic cross-
coupling effect between the PW and CW must be
achieved such that the induced rotor currents evolve
with equal frequencies [6].

Recently, many mathematical models have been
proposed to describe the steady-state and the dynamic
behaviour of the BDFIM for exploitation in
implementing control strategies and studying its
stability [1, 5-8].

In the reported literature, many control strategies
have been proposed to control the BDFIM such as the
optimal sensorless control [9], the sliding mode control
[10-12], the fuzzy control [13] and the adaptive control
[14]. In the previous published work, no robust control
is proposed due to the lack of a clear mathematical
model of the BDFIM.

A few robust control attempts of the BDFIM have

been carried out. In [15] a H_, mixed sensitivity

control has been proposed on a second order BDFIM
reduced model. Later on, using the same model, [16]

proposed the adoption of L, robust control method in

order to perform a controller which can guarantee that
the turbine meets required performances under
parameters uncertainties.

This paper presents a robust control applying H

mixed sensitivity for a BDFIM in wind generation. The
generator is considered directly connected to the grid.
The transfer matrix model of the grid-connected-
BDFIM is developed from the existing time varying
vector model by using the small signal approach. In

order to ameliorate the performances of the /,, mixed

sensitivity, a decoupling matrix term has been used,
and an integral action has been introduced. In addition
to the proposed control scheme, eigenvalues techniques
were employed to analyse the stability characteristics of
the BDFIM for different equilibrium points and under
parameters change.

The rest of the paper is organized as follows. In
Section 2 the small signal unified reference frame
model of the BDFIM in wind energy system is derived.



Section 3 presents a stability study based on the
proposed model and applied to a selected benchmark
machine. Section 4 presents the proposed control
scheme for a BDFIM. Finally, conclusions are drawn
in section 5.

2. Mathematical model of the BDFIM

The principle of using a grid-connected BDFIM in
generation mode in a wind energy conversion system is
illustrated in Fig.1. In this variable speed structure, the
CW is connected to the grid through a partially rated

power electronic converter.
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Fig. 1. The BDFIM in wind energy conversion system.

Based on the set of electromagnetic equations of the
BDFIM expressed in the a-b-c coordinate system, the
machine model aligned with the PW flux and
expressed in the dq unified reference frame is given by
the following expressions [8]:

The voltage equations are:

. d .
vdqp = Rspldqp +E¢dqp + ]Cl)p(qup (1)
: d .
vdqc = Rscldqc +Z¢dqc + ]a¢dqc (2)
.. d .
vdqr = erdqr +E¢dqr + ]ﬂ(odqr (3)
The magnetic flux equations are:
godqp = Spidqp + thidqr (4)
wdqc = Lscidqc + Lhcidqr (5)
gpdqr = Lridqr + thidqp + Lhcidqc (6)
With:
a=w,-(p,+p.)o, )
f=w,-p,o, ®)

In the previous equations, v , i and ¢ represent
voltage, current and flux quantities respectively, R for

resistances, L

. and L, are for self and mutual

inductances respectively, @

, is the supply frequency

of the PW, @, is the rotor speed, p, and p, are the

pole-pair numbers of PW and CW respectively,
subscripts p , ¢ and r mean PW, CW and rotor

respectively, subscripts d and ¢ are for direct and
quadrature axis of the dg reference frame. & is the

relative angular velocity between the reference dg and
the stator CW reference related to a p, type

distribution, and £ is the relative angular velocity
between the reference dq and the stator PW reference
related to a p, type distribution [8, 17].

Substitution of the flux Egs. (4) to (6) into the
Voltage Egs. (1) to (3) yields:

Vap | RS,, -I—qLSp —a)ppr idp
qu wPLSP RSP + qLSP iqp

: ©)
i thp _a)pth ldr
oL,  qL,, | i,
vdc _ Rsc + quc _aLsc idC
vqc - aLsc Rsc + quc iqc
_ (10)
i thc _aLhc l'dr
aLhc thc lqr
Var | | R.+qL,  =BL. | iy
Vo BL, R +4qL, | i,
. ) (11)
n thp _ﬂth ldp + |: thc _ﬂLhci| Lae
ﬂth thp iqp ﬂLhc thc iqc

d()
e
Given the nonlinearities inherent to the previous
model represented by Egs. (9) to (11), a simplification
can be justified under the assumption of small
variations in the rotor’s mechanical angular speed.
Thus, for the case of a wind energy conversion system
operating around an angular speed value @, which

Where g represents the time derivative, g =

depends on the wind nominal
speed (@, =@, + Aw,,Aw, ~0) , Egs. (7) and (8)
become:

a=w,~(p,+p.)o,

(12)

B=(0,-p,0,) (13)

Where the new subscript 0 denotes the steady state
quantities.

In the sequel, it is assumed that the PW voltages are
maintained constant. This assumption is particularly
true for a machine connected to the grid and operating
as a generator. In such a case, variations around the
quiescent values of the PW voltages are neglected
(Av,, =0, Av,, ~0 ).

Now, combining Eqs. (9) (10) and (11) allows



expression of the PW current vector as a linear function
of the CW voltage vector as follows [5]:

e )

Where [G(s)] is a 2x2 transfer function matrix

(14)

defining the BDFIM as a two-input-two-output linear
system with the following structure [5]:

COIRN I

—Glz(s) G“(s)
Entries GH(S) and G, (S) of the transfer matrix

(15)

[G(s)} are functions of both the rotor’s nominal

operating mechanical angular speed ,,and the

electrical parameters of the machine. Gn(s) and

Gy, (s) are given by:

GH(S):%,GIZ(S): ’2 ((:))

Where a (s) , b (s) and b, (s) are polynomials in the

(16)

Laplace variable ‘s’:
bi(s)=bys-s* +by st +by-5> +by s>+ by s+ by (17)
(18)
a(s)=s6 tas-s +a, st +ay-s+ay st +a s +a,(19)
The bloc diagram of the BDFIM is illustrated by

by(s)=byys* +by35> +byy 5> +byy s +by

Fig. 2.
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Fig. 2. BDFIM bloc diagram.

The linearized mathematical model of the BDFIM
in Eq. (15) defines a multivariable linear structure in
the s-domain which allows application of all tools and
techniques made available by linear control theory for
stability analysis and controller design of the machine.

Under synchronous conditions the two stator
windings will co-operate to induce the same frequency
and distribution of currents in the rotor cage and, the
synchronous operation speed is equal to:
0, - c;p + o,

L

(20)

In order to ensure that the BDFIM operate in the
synchronous operation mode, the frequency of the CW
must be:

o.=(p,+p)o,-o, 21
Note that the BDFIM model depends on the variable
rotor’s angular speed @,, on one hand and, on the less

variable electrical parameters of the machine
(resistances, self-inductances, coupling inductances) on
the other hand.

3. Stability analysis of the BDFIM.

The stability of the BDFIM has been marginally
studied. Cook et al. [18] studied the stability of a
cascaded Doubly Fed Induction Machines (DFIM)
mounted in a single frame by using small signal
analysis; they concluded that the cascaded DFIM has
some areas of instability in open loop operation. More
recently, the same authors investigated the impact of
parameters change on the stability of the cascaded
DFIM and demonstrate that the real part of the
dominant poles of the cascaded DFIM is dependent on
the speed and load [19]. Li et al. [20] analyzed the
open-loop stability characteristics of the BDFIM in
equilibrium points based on the generalized theory of
Floquet; they show by simulation results a possible
instability when the frequency of the CW is high, but
their experimental results disagree with those obtained
by computer simulation, in fact, the BDFIM can
achieve a full-speed range open-loop stable operation
from no load to 50% loaded. [7, 21] studied the open-
loop stability of a small signal dg unified reference
frame model of the BDFIM, and show that the area of
stability is dependent on machine parameters. Later on,
[22] studied the stability of the BDFIM under closed
loop scalar current control, and show by experimental
BDFIM set-up a stable behaviour along all the
operation range.

In the following, the proposed model is used to
carry out a stability analysis of a selected benchmark
BDFIM [17]. This machine has one pole pair in the
PW, and three pole pair in the CW. The electrical
parameters of the prototype are given in the Table 1.
Table 1
BDFIM electrical parameters

Resistance Self Mutual
(2) inductance inductance
(H) (H)
Power 1.732 0.7184 0.2421
winding
Control 1.079 0.1217 0.0598
winding
Rotor 0.473 0.1326




3.1. BDFIM stability analysis with respect to the
operating speed change
The first step in the analysis process is the
determination of the coefficients of the common

denominator a(s) of the [G(s)} transfer matrix

elements. The result of the calculation of the sixth
order polynomial a(s)for the selected BDFIM in

terms of the rotor’s nominal mechanical speed @,, is
given by Eq. (22).

Given that some coefficients are functions of the
operating velocity @,

0 %

the positions in the complex
domain of the solutions of the equation a(s)zO

evolve accordingly and, define six branches as
illustrated by Fig. 3.

a(s)=s°+110.44937s" +1581359.7w,,"

+5*(299909.75 - 3141.59260,, + 17" )

+57(2.1845414 %107 - 212688.60,, + 11564270, )
,(2.9824929x 10" - 6.254463x10° w,,

o (+4958656.8w,,02 -12566.371w,° +16w,,*

1.0798009 x10"* —2.101283x10" o,
+s| +1.5144057x10° > —296246.76,,
+377.193090,,*

(22)

+9.8358765x10" —3.1040242x 10" @,
+3.2414085x10" w,,> —1.2443846x10° w,*

Figure 3 shows the evolution of the six complex
poles for a velocity varying from zero up to 1500 rpm
(1500 rpm represents the double of the synchronous

speed @, ,,. ). In fact, for all possible values of rotor’s

angular velocity, the real part of the poles is negative,
which indicates stable open loop BDFIM regardless of
the rotor’s operating velocity.
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Fig. 3. Poles evolution w.r.t the operating velocity.

3.2. BDFIM stability analysis with respect to
electrical parameters changes

Further simulations have been conducted to study
the impact of changes in electrical parameters on the
machine stability. Particular interest has been given on

the effect of variations in rotor’s resistance R and self-
inductance L., as these parameters can undergo
significant variations with rotor’s temperature increase
during machine operation [23-25]. The variation of a
parameter x can be expressed as:
x=x,tAx (23)

The relative uncertainty in percent can be written
by:

Aq%0=(i"4jum% (24)

xﬂ
Figure 4. and Fig. 5. represent the real part of the
poles in function of variations in AR (%)
and AL, (%) respectively when the BDFIM turn at rated
speed. Only +£40% of variation in parameters is taken
into account. As can be seen, the stability of the

BDFIM is not altered by any variations inR,.
However, if the stability is maintained for an increase
of up to 40% in L, , the BDFIM becomes open loop

unstable for a decrease beyond 16% in the rotor self-
inductance value.

Rr changes from -40\% upto
+40% from its nominal value
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Fig. 4. Poles evolution with respect to rotor resistance
variations.

An extensive simulation study has been done to
evaluate the stability of the BDFIM when the electrical
parameters seriously vary, as a result, the decrease in
L, by -20%, L, by -30% or R, by -40% from its

normal value can destabilize the BDFIM. This decrease
in electric parameters can be originated in most of the
cases by some short-circuited turns in the coil.



Lr changes from -40\% upto +40% from its nominal value
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Fig. 5. Poles evolution with respect to rotor self-
inductance variations.

4. BDFIM controller design
To control this machine, the following approaches
have been adopted:

4.1. Decoupling matrix calculation

In order to facilitate the control scheme, and to
avoid handling multi variable quantities, we propose
the next decoupling operation.

To realize a perfect decoupling between the direct-
axis components and the quadrature-axis components,
the decoupling matrix must have the following form

- ( )}
~Giy (s

“l6u(s) Gls) 25)

This is particularly harvestable in the case where the
system to be controlled is an induction machine. In this
case, the set BDFIM-Decoupling matrix is given by:

bl2 (s) + bz2 (s)
e 0
a*(s)

(26)

SN NOND
@ (s)
As we can see, the order of the obtained open loop
system is twelve, and the transfer function between

AV,. and Al,, is the same transfer function between

G(s)H (s)=

AV,. and Al _,. Henceforth, we use the single-input-

single-output notation rather than the old one MIMO
notation.

4.2. H_, Mixed sensitivity control theory

The standard configuration of the H_ control
problem is given by Fig. 6. [27-29]

P(s)

K(s) [«

Fig. 6. General formulation of the H_ control problem

Where P(S) represents the generalized plant,

K (s) the controller, w is the exogenous inputs, z
denotes the output signals to be minimized, y is the

measurement outputs and u is the control signals.
The interaction between inputs and outputs leads to
a number of characteristic transfer matrices. We note

particularly: the sensitivity function S =(7+GK )_1 ,
which represents the perturbation’s influence on the
R=K(I+GK) " which
represents the impact of the perturbation on the control
signals; the complementary sensitivity function
T =GK(I+GK )71 , which represents the influence of

the measurement noise on the measurement outputs.
The analysis results prove that to obtain nominal
performance and robust stability, the three matrices S,
R and T have to be minimized. This synthesis may
seem contradictory but it is not since these
minimizations are imposed in different frequency

ranges [30-33]. Henceforth, Weighting matrices 7, (s)
, W,(s) and W,(s) are introduced and the above

results are written in terms of three inequalities:

measurement  outputs;

s, <1, <1, <1 (27)
Or

wS

W,R| <1 (28)

WiT|,

This result is known as the mixed sensitivity
problem.
The H_ problem consists in minimizing the effect of

perturbation on the system, i.e. minimizing the

.z
ratio||—
w

2
However, this ratio is equal, in the worst case to

||F1 (P.K )||w . F} is the lower Redheffer product.
The problem can be formulated as follows:

Given P(s) and y >0 , finding K(s) which:

- stabilizes the closed loop system

- ensures ||F1 (P,K)"OO <y



Calculations prove that sa‘cisfying”l’?1 (P.K )”w <y
1 hs
comes to satisfy —|[/,R|| <1 which is the condition
7wl
obtained in (28). The Mixed sensitivity structure is
given on Fig. 7.
The good choice of weighting functions allowed us

to perform good dynamic response with good
robustness in stability.

o[ [£

v

Fig. 7. Mixed sensitivity structure for H_ controller
design.

The weighting functions chosen for our system
which combines both the BDFIM model and the
decoupling matrix are given by the method described
in [34]:

0.5(99.98+s)

_ 29
L 0.04999+ s (29)
w,=10" (30)
1000.(24.995+ s
= ( ) (31)
49990+ s

Unfortunately, the //, mixed sensitivity regulator
does not nullify the static error. The curve of singular
values of K (s) can easily reveal this problem, see Fig.

8.
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Fig. 8. Bode diagram of the regulator.
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The static gain of the controller is very high, but not
infinite. So, the regulator obtained does not cancel
steady state error, but greatly decreases it. The
regulator so has a pole close to the origin, but not
exactly at the origin. To overcome this trouble, an
integral action must be taken into account.

To incorporate and isolate a pure integrator, we can
perform the partial fraction decomposition. We must

locate the nearest pole to zero p; (the dominant pole),

find his residue k; , and put the pole to zero.

K(s)= k +K,(s) (32)
S = Py,
The final controller is
K, (s)= kL K (s) (33)
s

The structure presented on Fig. 9. has been
considered.
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Fig. 9. Control diagram of the power winding currents.

The active power P, and the reactive power O, of

the PW are given by:

3 . .
b, = E(Vdpldp + qulqp)

(34)
3 . .
0,= E( apldp _Vdplqp)
Given that the selected unified reference frame is
aligned with the PW flux orientation. Therefore the
direct component of the grid voltage is zero [9, 35]:

{ Ve =0
Var =V

Assuming that the grid voltage is maintained
constant, the small signal relationship between the

powers (active and reactive) of the PW and currents
(direct and quadrature) of the PW can be written by:

(35)

3 .
AP, = E(quoAlqp)

; (36)
AQ, = E(quomdp)

Therefore, references of the PW currents can be
obtained by:



K 2 *
l‘IP = 3 %k v APP
AP, = AO"
b3k Vo 2

In order to validate the proposed power control
scheme of the BDFIM operating in generation mode
for wind energy applications, a simulation is carried
out using Matlab/Simulink. Results obtained for two
different operating speeds are discussed hereafter.

Actually, the controller parameters were calculated

for the synchronous speed. The BDFIM effective range
is around +10% of the synchronous speed. In order to
evaluate the proposed controller outside the effective
band, 650 (rpm) operating point have been chosen.
It is important to note that when the rotor speed exceed
its rated value, the pitch angle control intervene to
make sure that the generated power is maximized.
Accordingly, the super-synchronous mode will be not
reachable.
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Fig. 10. Bodemag of the sensitivity function for two
operating speeds.

Figure 10 represents the Bode magnitude (Singular
values in the case of MIMO systems) of the sensitivity
function for two different operating points. The solid

curve is for @, =650(rpm) and the dotted one is

forw,, = 750(rpm) . The magnitude of the sensitivities

is always less than or equal 6 (dB) whatever the
frequency of the input signals, thus implies good
margins of gain and phase. In the low frequencies, the

magnitude of the sensitivities converge to —OO(dB),

thus indicate static error null. In the high frequencies,
the sensitivities gain is held to zero, so we can
conclude a good disturbance rejection. The bandwidth
gives an idea about the settling time; therefore, the
responses are expected to be fast.

The dynamic response of the system for a step of 2
(KW) in the active power, while the reactive power

reference is maintained to zero has been given for 750
(rpm) and 650 (rpm) in Fig. 11. and Fig. 12.
respectively, assuming that the parameters are precisely
identified.

As can be seen on Fig. 11. for the synchronous
speed, the quadrature current of the PW represents a
good track of its reference, with a good settling time,
and without the overshoot. Additionally, the coupling

effect between Ai,, and Ai_, i.e. active and reactive

power is eliminated. For operating speeds other than
the rated one (Fig. 12), the performances of the
controller are slightly degraded with slower responses,
but still remained better compared to those of the PI
controller [5].

20l AV Ay — Ach ........... Aiqc
;" e
10 /
/ :
3,
~ 0
> Mo
8 .1 ‘
< 85 1 IS—Ai lllllllllllllll A 2.5
5 0.1 o b
2 0
=
= 0. : ‘ ‘
g B 1 1.5 2 2.5
< 10 : ‘
04/ S, f— Ai
ap qap
D5 1 15 2 2.5
Time (sec)

Fig. 11. Dynamic response when the rotor turns at rated
speed without parameter uncertainties.
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Fig. 12. Dynamic response when the rotor turns at 650
(rpm) without parameter uncertainties.

To present the main advantage of the obtained
controller, we suppose that the electrical parameters of
the BDFIM have been badly identified. To do so, we
assume that the indentified rotor parameters are



different by 5% from the real rotor parameters, and the
identified stator parameters are different by 2% from
the real stator parameters. The assumed real parameters
of the BDFIM are given in Table 2.

Table 2
The assumed BDFIM real parameters
Resistance Self Mutual
() inductance  inductance
(H) (H)
Power 1.6974 0.7005 0.2373
winding
Control 1.1006 0.1241 0.0610
winding
Rotor 0.4493 0.126

The dynamic response for a step of 2 (KW) in the
active power, meanwhile the reactive power is
regulated to zero is given by Fig. 13. for the
synchronous operating speed, and by Fig. 14. for 650
(rpm) operating speed. As can be seen, the collected
curves show comparable performances in the response
time, the overshoot and the tracking error. In spite of
the inaccurate electrical parameters used for the
calculation of the controller, the dynamic responses are
good as good as the case of precise parameters.
Regrettably, the change between the real parameters
of the BDFIM and the identified ones leads to an
imperfect decoupling between the d-axis and the g-
axis, i.e. between the active power and the reactive
power, this was been illustrated by the presence of the
reactive power for a short moment at the step time.
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Fig. 13. Dynamic response when the rotor turns at rated
speed with parameter uncertainties.

Time (sec)
Fig. 14. Dynamic response when the rotor turns at 650
(rpm) with parameter uncertainties.

5. Conclusions
In this paper a mixed sensitivity /, control of

BDFIM as generator is performed. The wind energy
system machine is considered connected directly to a
balanced grid. This consideration allows us to develop
a transfer function matrix model for the BDFIM, with
the CW voltages as inputs, and the PW currents as
outputs. Analytical studies indicate that the BDFIM is
stable over all speed range. Besides that, small
variations in the electric parameters of the BDFIM
don’t affect the stability, and therefore the BDFIM-
stability is robust compared to temperature rising
during the operation. To determine the suitable
regulators of the produced power by the BDFIM, a
decoupling method is applied and the controllers are

calculated by the minimization of the H_ norm of the

mixed sensitivity. To eliminate the steady state error,
an integral action has been introduced by using the
partial fraction technique. The simulation results of the
proposed control scheme show that the controller can
achieve fast response time, very good tracking and
comfortable robustness margin in stability as well as in
parameters uncertainties. Unfortunately, the more the
parameters are imprecise the more the decoupling
matrix has a weak effect.
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