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Abstract: Estimating the number of active nodes in 
underwater wireless sensor networks is a challenging 
issue because a lot of factors are involved in underwater 
environment that create difficulties in wave propagation. 
The major obstacles that interfere with wave propagation 
in underwater network are high propagation delay, high 
absorption and dispersion. Although, many estimation 
techniques exist for node estimation in wireless sensor 
network but they are not efficient in underwater 
environment. Researchers are trying to find out more 
efficient method for node estimation in underwater 
wireless sensor network. In this paper a statistical signal 
processing method is proposed for node estimation in 
underwater wireless sensor network. Here, the nodes are 
considered as acoustic signal sources and their number is 
calculated through the cross-correlation of the acoustic 
signals received at three sensors placed in the network. 
The mean of the cross-correlation function depends on the 
number of signal sources and in this proposed work the 
mean of the cross-correlation function is used as the 
estimation parameter. Theoretical and simulation results 
are provided which reflects the validity of this cross-
correlation based technique. The performance of this 
proposed method is evaluated by comparing the error in 
estimation with previous approaches. 
 
Key words: Node, Cross-correlation function (CCF), 
Mean of cross-correlation function, Underwater acoustic 
sensor networks (UASN), Binomial probability 
distribution , Coefficient of variation. 
 
 
 
1.  Introduction 
     Nodes are deployed in underwater wireless sensor 
networks for a variety of applications. These 
applications range from research to security 
purposes. The most common applications are 
environmental monitoring, discovering natural 
resources, information for scientific analysis. In any 
type of underwater sensor network, proper network 
operation depends on the number of active nodes. So, 
estimating the number of active nodes is an important 
issue in any sensor network. Moreover, maintenance 
and localization activities need exact estimation of 
nodes.  

    Many estimation techniques exist at present to 
count the number of nodes. For example, a radio 
frequency identification (RFID) protocol specifies 
the algorithms for the reader and the tags so that the 
reader can properly collect all the tag IDs. Knowing 
the numbers of tags in large-scale RFID systems is 
possible by using the existing protocol to identify 
individual tags and then computing the cardinality of 
the system. Tag identification protocols can be 
divided into probabilistic [1-4], deterministic [5], [6] 
and hybrid [7], [8]. The protocols based techniques 
are similar to the estimation of the number of nodes 
in wireless communication networks.  A node 
estimation technique for terrestrial sensor networks 
was investigated by Budianu et al. [9] − [11]. It 
involves an estimation based on the Good Turing 
(GT) estimator [12] of the missing mass.The 
conventional methods do not take into account the 
capture effect. One solution has been proposed in 
[13], [14] which proposed a node estimation 
technique taking the capture effect into account. Still 
it suffers from long propagation delays, high path 
loss in underwater acoustic network.  
    So, it can be said that node estimation in 
underwater sensor network is not same as other type 
of networks. In underwater environment 
conventional estimation techniques are not efficient. 
They are only applicable to communication friendly 
networks. Conventional methods face difficulties in 
underwater environment because underwater 
propagation characteristics [15] are suffered from 
high propagation delay, high absorption, and 
dispersion. Moreover, limited battery power, limited 
bandwidth, high bit error rate, short lifetime of 
underwater sensors create  major challenges in the 
design of underwater acoustic networks [16], [17]. 
In this paper, a node estimation technique is 
proposed which can be more efficient method than 
the existing methods used in underwater network for 
node estimation. The proposed method is based on 
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the cross-correlation [18-21] of the acoustic signals 
received at three sensors in the network. In the 
proposed estimation technique the mean of cross-
correlation function (CCF) is used as the estimation 
parameter. The transmitted signals from a number of 
different random signal sources (nodes) within range 
are received by three sensors placed in the network; 
the received signals are summed at each of the three 
sensor locations. Then, for each pair of sensors the 
CCFs and the mean of the CCFs are calculated. After 
calculating the mean of CCFs for each pair of sensors 
their average will be calculated. The estimation of 
the number of signal sources (assumed in our case 
the number of nodes in an underwater network) can 
be obtained based on the average of these mean of 
the CCFs. Finally, the error in estimation of the 
proposed technique will be compared with other 
techniques. 

 
2.  Formation of CCF from random signal sources  
     Let us, consider a 3D space where three receiving 
nodes are placed in a triangular form and are 
surrounded by N transmitting nodes as shown in 
Fig.1.Assuming that the transmitting nodes are the 
sources of white Gaussian signals and are uniformly 
distributed over the volume of a large sphere inside a 
cube, because only a sphere provides equal amounts 
of signals from every direction. In this case, three 
sensors form an equilateral triangle inside the 
spherical network, where the centre of the sphere lies 
at the centroid of that triangle as shown in Fig.1. 

 
Fig. 1.  Distribution of underwater network nodes with 

three sensors and N transmitting nodes  
 
       For the origination of CCFs in triangular sensor 
(TS) case, three sensors, H1, H2 and H3, and a node 

N1, are placed at locations (ݔଵ, ݕଵ, ݖଵ), (ݔଶ, ݕଶ, ݖଶ), 
 respectively (using ,(ସݖ ,ସݕ ,ସݔ) and (ଷݖ ,ଷݕ ,ଷݔ)
rectangular coordinate system), somewhere inside the 
network as shown in Fig. 2. 
 

 
 

Fig. 2. Underwater network with three sensors and only 

one node N1 

    To formulate CCF, the 3D space is considered as a 
cube such that the dimension of the cube is equal to 
the diameter of the sphere and three sensors, H1, H2 
and H3, and a node N1, are placed at locations (ݔଵ, ݕଵ, 
 ,(ସݖ ,ସݕ ,ସݔ) and (ଷݖ ,ଷݕ ,ଷݔ) ,(ଶݖ ,ଶݕ ,ଶݔ) ,(ଵݖ
respectively (using rectangular coordinate system), 
somewhere within the cube. The distances between 
the sensors are then: 
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Here, ݀ୈ୆ୗభమ= distance between H1 and H2, 
          ݀ୈ୆ୗమయ= distance between H2 and H3, 
          ݀ୈ୆ୗయభ= distance between H3 and H1. 
These sensors are located such that, 
 ݀ୈ୆ୗభమ = ݀ୈ୆ୗమయ = ݀ୈ୆ୗయభ = ݀ୈ୆ୗ. 
 
    The propagation velocity is constant, which is the 
proposed case, the sound velocity Sp, in the medium. 
Now, getting probe request, a node emits a very long 
Gaussian signal, which is recorded by the sensors 
with corresponding time delays. The signals in the 
sensors are cross-correlated, which takes the form of 
a delta function as it is a cross-correlation of two 
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white Gaussian signals where one signal essentially 
is a delayed copy of the other. The position of this 
delta in the CCF will be the distance equal to the 
delay difference of the signals from the centre of the 
CCF where the position is called a bin in this paper. 
This holds for all nodes and the formation of CCF for 
N number of nodes can be expressed as follows [22]:  
    Consider that node N1 emits a Gaussian signal 
S1(t), which is infinitely long. Then the signals 
received by H1, H2 and H3 are, respectively 

 
																		ܵ୰భభ(ݐ) = ଵଵߙ ଵܵ(ݐ − ߬ଵଵ)                       (1)                     
																		ܵ୰భమ(ݐ) = ଵଶߙ ଵܵ(ݐ − ߬ଵଶ)																				     (2)                              
																		ܵ୰భయ(ݐ) = ଵଷߙ ଵܵ(ݐ − ߬ଵଷ)                       (3)                                                 
 
where, ߙଵଵ, ߙଵଶ and	ߙଵଷ are the respective 
attenuations due to the absorption and dispersion 
present in the medium, and ߬ଵଵ = ௗభభ

ௌು
 , ߬ଵଶ = ௗభమ

ௌು
  and 

߬ଵଷ = ௗభయ
ௌು

 are the respective time delays for the signal 
to reach the sensors.  
    Thus for a dense network having N nodes, if the 
transmitted signals from the nodes are denoted as 
S1(t), S2(t), S3(t), ......, SN(t) respectively, the 
corresponding delays to reach H1 are denoted as ߬ଵଵ, 
߬ଶଵ, ......, ߬ேଵ, and the corresponding attenuations are 
as ߙଵଵ, ߙଶଵ, ......, ߙேଵ, the composite signal received 
by H1 can be expressed as: 

												ܵ୰ౙభ(ݐ) = ෍ߙ௝ଵ ௝ܵ൫ݐ − ௝߬ଵ൯
ே

௝ୀଵ

																											(4) 

    Similarly, if the transmitted signals from N nodes 
are denoted as S1(t), S2(t), ......, SN(t) respectively, the 
corresponding delays to reach the sensors H2 and H3 
are denoted as ߬ଵଶ, ߬ଶଶ, ......, ߬ேଶ, and ߬ଵଷ, ߬ଶଷ, ......, 
߬ேଷ, respectively, and the corresponding attenuations 
are as ߙଵଶ, ߙଶଶ, ......, ߙேଶ, and ߙଵଷ, ߙଶଷ, ......, ߙேଷ, 
respectively, the composite signals received by the 
sensors H2 and H3 can be expressed as: 

										ܵ୰ౙమ(ݐ) = ෍ߙ௝ଶ ௝ܵ൫ݐ − ௝߬ଶ൯
ே

௝ୀଵ

																													(5) 

and 

									ܵ୰ౙయ(ݐ) = ෍ߙ௝ଷ ௝ܵ൫ݐ − ௝߬ଷ൯
ே

௝ୀଵ

																													(6) 

respectively. 
 
    Then, the CCFs between the signals at (H1, H2), 
(H2, H3) and (H3, H1) are, respectively: 

(߬)ଵଶܥ										 = න ܵ୰ౙభ(ݐ)	ܵ୰ౙమ(ݐ − ߬)
ାஶ

ିஶ
 (7)															ݐ݀

(߬)ଶଷܥ									 = න ܵ୰ౙమ(ݐ)	ܵ୰ౙయ(ݐ − ߬)
ାஶ

ିஶ
 (8)																ݐ݀

(߬)ଷଵܥ								 = න ܵ୰ౙయ(ݐ)	ܵ୰ౙభ(ݐ − ߬)
ାஶ

ିஶ
 (9)															ݐ݀

which take the form of a series of delta functions 
[22]. Here, τ = ݀ୈ୆ୗ / ܵ୔, is the time shift in cross-
correlation. One such CCF obtained with N (=1000) 
nodes is shown in Fig. 2. Bins, b in the CCF (as 
shown in Fig. 3) is defined as a place occupied by a 
delta inside a space of a width twice the distance 
between sensors and that place is determined by the 
delay difference of the signal coming to the sensors. 
The deltas of equal delay differences are placed in 
that particular bin. 
 

 
Fig. 3. Bins, b in the cross-correlation process 

 
 
3.  Counting the number of nodes from the mean 

of CCF 
        
     It is known that the cross-correlation function 
produced from white Gaussian signals follows the 
binomial probability distribution [22] in which the 
parameters are the number of nodes, N, and the 
number of bins, b [22]. Then the expected value, i.e. 
the mean, m of the CCF is defined as [22] 

                          
b
Nm              (10) 

where b is the number of bins in the cross-correlation 
process and is obtained from the experimental setup 
with sampling rate, SR, distance between sensors, 
dDBS, and speed of propagation, SP as [22], [23]:  

                  

														ܾ = 2×݀DBS×ܵR
ܵP

− 1																												(11) 
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     Thus the estimation of N is obtained from 
equation (10) as: 
 

)12(mbN   
    This is the relationship between the number of 
nodes, N, and the mean, m, of the CCF. Since we 
know b and can measure m from the CCF, we can 
readily determine the number of nodes, N. Now, the 
theory for node estimation from the mean CCF for 
three sensor case are discussed below:  
 
    The estimation parameter, ݉ୟ୴ୣ୰ୟ୥ୣ

ଷେେ୊  is obtained by 
taking mean, ݉ଵଶ, ݉ଶଷ and ݉ଷଵ	from three CCFs.  
݉ୟ୴ୣ୰ୟ୥ୣ
ଷେେ୊  can be expressed as: 

 

݉ୟ୴ୣ୰ୟ୥ୣ
ଷେେ୊ =

݉ଵଶ + ݉ଶଷ +݉ଷଵ

3
																	

=

ܰ
		ܾଵଶ

+ ܰ
		ܾଶଷ

+ ܰ
ܾଷଵ

3
																					(13) 

Here, ܾଵଶ = ܾଶଷ = ܾଷଵ = ܾ; so, it is found that  
 

݉ୟ୴ୣ୰ୟ୥ୣ
ଷେେ୊ =

݉ଵଶ +݉ଶଷ +݉ଷଵ

3
																

= 	
ܰ
ܾ
																																																		(14) 

From  ݉ୟ୴ୣ୰ୟ୥ୣ
ଷେେ୊  the number of nodes, N can be 

calculated easily. 
 
 
4.  Simulation Result  
        
    Now, a setup will be employed to perform the 
simulations to verify the theoretical results by those 
from the simulations. Simulations have been 
performed by Matlab programming. For simulation 
environment it is assumed that three sensors are 
placed in triangular shape somewhere in the middle 
of a sphere inside a cube such that the diameter of the 
sphere is equal to the dimension of the cube, and the 
sphere is filled with a number of uniformly 
distributed nodes that emits white Gaussian signals. 
The other parameters are radius of the sphere is 
2000m; N=1,10, 20,…,100; signal length is 106 
samples; signal propagation speed is 1500m/s; 
absorption coefficient is 1; dispersion factor is 0, 
equal received powers from all nodes, no background 
noise and sampling rate SR = 180 kSa/s. The signals 

(responses to probe requests from the sensors or 
autonomous) emitted from the nodes are collected by 
the sensors. By cross-correlating these three signals 
at the sensors, three set of CCF are obtained. Using 
these CCF, the estimation tool, i.e., the average of the 
mean of the CCF is calculated. Simulation results for 
different bin number are shown in the following Figs.  
 

 
              Fig. 4. Mean of CCF  versus number of nodes, N 

for b=29, dDBS =0.125m 
 

 
                Fig. 5.  Mean of CCF  versus number of nodes, 

N for b=59, dDBS =0.25m 
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             Fig. 6.  Mean of CCF  versus number of nodes, N 

for b=119, dDBS =0.5m 
 
 

    Fig. 4 to Fig. 6 show that the theoretical and 
corresponding simulated results for the estimation of 
the number of nodes in a network in terms of the 
estimation parameter, ݉ୟ୴ୣ୰ୟ୥ୣ

ଷେେ୊  of CCF, which show 
that the simulations match the theory properly and is 
the indication of effectiveness of the process. The 
solid lines indicate the theoretical results and the 
circles the corresponding simulated results. The 
variations of b in the three different Figs. are as a 
result of varying dDBS (sampling rate and propagation 
speed is kept constant). The distances between the 
sensors are: 0.125m in Fig. 4, 0.25m in Fig. 5 and 
0.5m in Fig. 6. 
    However, the above results indicate that the 
process is applicable for node estimation in 
underwater environment. At the same time, it is clear 
that the number of bins, b affects the estimation 
parameter and it can be seen that the value of the 
estimation parameter is lower in case of higher b and 
vice-versa and  simulated results  more perfectly 
matched with the theoretical results. By taking more 
number of bins better result can be achieved. Number 
of bin can be varied by varing sampling rate, 
propagation velocity or the distance between sensors 
as expressed in equation (11).   
    Now, another approach will be taken, the sampling 
rate will be doubled (360kSa/s) and the process will 
be repeated. A comparison will be observed for the 
estimation process for the same number of bins as 
before. 

 
             Fig. 7. Mean of CCF versus number of nodes, N 

for b=29 and dDBS =0.0625m 

 
 
              Fig. 8.  Mean of CCF versus number of nodes, N 

for b=59 and dDBS =0.125m 

 
 
              Fig. 9. Mean of CCF versus number of nodes, N 

for b=119 and dDBS =0.25m 
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    From Fig. 7 to Fig. 9 it can be observed that 
improvement in result occurs with the increase in 
number of bins as previous sampling rate. 
    Now, the results will be shown for the estimated 
number of nodes, N (estimated) with respect to exact 
number of nodes 
 

 
Fig. 10.   Comparison of theoretical and simulated number 

of estimated nodes 
 
Fig. 10 shows the comparison of theoretical and 
simulated number of estimated nodes (for bin 
number 119). In this Fig., the solid line indicates the 
theoretical result and the circles the corresponding 
simulated results. From Fig. 10, it is clear that, the 
theoretical and simulated results are very close to 
each other, which indicates the validity of the 
proposed approach. 
 
5. Analysis of error in estimation 
       
    There is always an error presents in every 
simulation and the quantity of error represents the 
performance of the estimation. The error of the 
estimation can be measured in various ways. 
Numerically, estimation error can be represented in 
different ways: such as-(i) as a true error, or (ii) as a 
statistical error. A true error is preferable when the 
parameter used in the experiment is not random, i.e., 
it gives a fixed estimation every time for a particular 
setup. Whereas, in an experiment with random 
numbers, as the estimated values vary from time to 
time for a particular setup, thereby indicating a 
certain statistical property, it is better to represent the 
error statistically. As the proposed cross-correlation 
is a statistical technique, the statistical error, the 

coefficient of variation (CV), is used as its error in 
estimation in order to fully assess the accuracy of the 
proposed estimation techniques. To obtain a 
simulated CV of estimation, a simulation process is 
run 1000 times for a particular N and b. From these 
1000 values of estimated N, the standard deviation 
and mean of estimation and, thus, the CV, are 
obtained. In this case firstly, the mean of the CCF 
from 100 iterations, and then the estimated N̂  using 
the expression of N related to this mean, are 
obtained. Secondly, to obtain the CV, the same 
process is continued 1000 times without any change 
in parameters and the values of all estimated N̂  are 
recorded. Finally, the CV for one iteration is obtained 
from the ratios of the standard deviation to the mean 
of those values as [24]: 

 
Now, if u iteration is used, the standard deviation 

and, thus, the CV, are reduced to
u

1    so that the CV 

after the uth  iteration is 

 
 
 
6.  Comparison of error with previous estimation 

techniques 
 

     Now, the error involved in estimation process of 
the proposed technique will be compared with those 
of previous techniques: the probabilistic framed 
slotted ALOHA (PFSA) [1]; the Good-Turing (GT) 
[10] estimator protocol, DIIPUC [13], [14]; two 
sensors cross correlation technique based on the ratio 
of mean and standard deviation of CCF [24] and two 
sensors cross correlation technique based on the 
mean of CCF [25]. The CVs are compared keeping 
the estimation time fixed. 
 
    In the above Fig.11 CCF: MEAN (3 sensors) is the 
proposed method, CCF: MEAN (2 sensors) is the 
two sensors cross correlation technique [25] which is 
the latest work before the proposed method which 
used two sensors and the mean of CCF was the 
estimation parameter, CCF: RATIO is two sensors 
cross correlation technique [24] and rest three are 
conventional protocol-based techniques. 
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Fig. 11. Comparison of CV of our proposed method with 

previous techniques. 
     
    In the above comparison it is considered a very 
long fixed signal length, Ns, of 158093 samples, 
Sampling rate 390000 HZ , signal propagation speed 
1500m/s, bin number119 and  dDBS=0.25m. For 
conventional protocol-based techniques the 
considered values of the parameters are:  First frame 
size, F1=512; the maximum transmission range of the 
probing node is Rt=2000m; the number of bits per 
packet is Bn= 112 bit/packet. The bit rate of the 
channel, BR= 15kbps considering 15kHz bandwidth 
and BPSK modulation technique, number of packets 
per slot, ρ =1for DIIPUC, ρ is 4 is GT, ρ is 1.59 for 
PFSA and estimation time is 40.5367 seconds. 
    Corresponding to CV it can be concluded that the 
proposed approach gives better accuracy than 
previous methods. Although Good Turing (GT) [11] 
method is better for fewer numbers of nodes the 
proposed technique is better for dense network which 
is usual case for underwater network.  
 
7.  Conclusion 
 
    In this paper a theoretical models and 
corresponding techniques of node estimation in 
underwater wireless sensor network has been 
proposed. Later a simulation has been performed 
assuming an environment similar to a dense 
underwater wireless sensor network. From the 
simulation results it has been observed that the 

proposed method is efficiently applicable for node 
estimation in dense underwater wireless sensor 
network. Also, error in estimation is calculated and 
compared with previous techniques which indicate 
that the proposed approach is better than other 
techniques in underwater environment. In this paper 
no practical work has been performed which can be 
performed in ocean wireless sensor network in 
further research. In addition, locating the exact 
physical positions of the nodes can be analyzed in 
future research. 
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