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Abstract—Condition monitoring and fault detection of electrical 

machinery are one of the important issue for commercial 

enterprises. Incipient fault detection in hardware can spare a 

large number of rupee in emergency maintenance cost. In present 

article an efficient real time vibration measurement of an 

induction motor bearing on full load has been presented. The 

method used for the analysis and diagnosis of the fault in 

induction motor bearing are probability density distribution 

(PDD), Discrete Wavelet Transform (DWT) as a qualitative and, 

statistical parameters, Fast Fourier Transform (FFT) as a 

quantitative has been used. The discrete wavelet transform is 

used to process the accelerometer signals and discrete wavelet 

coefficient is processed to determine the spectral energy for 

different frequency bands containing the harmonics due to fault. 

The higher spectral energy signal from DWT used for the Fourier 

analysis to get the location of fault.   The statistical parameters of 

detail coefficients are calculated for different levels of wavelet for 

faulty and healthy bearings. The outcomes got have demonstrated 

that this methodology is successful for bearing fault detection and 

analysis. 

 

Index Terms—Bearing Fault, Condition Monitoring, Fast 

Fourier Transform, probability density distribution, Wavelet 

Transform,  

I.  INTRODUCTION 

N the majority of machine, for the  fault detection and 

prognosis, vibration of rotating machine is directly measured 

by accelerometer. Rotating machine, even new one create 

some level of vibration. Small level of ambient vibration has 

been acceptable. However, higher levels and expanding 

patterns are indications of strange machine execution. 

Vibration measurement gives an extremely effective method 

for monitoring the dynamic condition of a machine, for 

example unbalance, mechanical looseness, structural 

resonance, bearing fault and shaft bow. 

Rolling element is the basic parts of rotating electrical 

machinery and due to continuous rotation; a regular 

monitoring has been required. A report on failed components 

of induction motors has confirm that the most significant 

contribute to bearing failure is insufficient maintenance [1],  
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and this can, in turn, result in winding failure within the 

machine [2].  According to the Motor Reliability Working 

Group and investigation carried by the Electric Power   

Research Institute (EPRI), the most common failure mode of 

an induction motor is bearing failure followed by stator 

winding failure and rotor failures. However, bearings are prone 

to failure due to many factors such as erroneous design or 

installation, corrosion, poor lubrication and plastic deformation 

[3]. Therefore rolling bearing failures are one of the leading 

causes of failure in induction motor. This requires the 

development of proper supervising for induction motor bearing 

condition to avoid capital loss. Condition monitoring based on 

vibration signal recording can be analyze both in time domain 

and frequency domain and have been widely used for detection 

and identification of bearing defects in various parts for 20 

years [4]. In time domain analysis mainly use RMS, peak 

level, crest factor, skewness and kurtosis [5]. Among these, 

kurtosis is the most effective. Time domain information mostly 

rich in content, little in information. Fast Fourier Transform 

(FFT) technique used to transform time domain information to 

frequency domain, the characteristic of defect frequencies 

should present corresponding to the bearing defect but 

sometimes these frequencies components are not present in the 

spectra because the impulses generated by defects are hidden 

by noise. To overcome this problem, some signal processing 

techniques or trending is therefore used [6]–[8]. 

In the present work, the utilization of vibration signal for 

monitoring and analysis has been carried out on the induction 

motor of a power plant. The vibrations of the rotating parts of 

the machine were observed for a certain period of time.  The 

diagnosing of defects stand up on the bearings of the 

machineries during selected period was aimed. Bearing 

vibration signal is analyze in time and time- frequency domain. 

In time domain qualitative and quantitate analysis has been 

performed and in time–frequency domain DWT decomposition 

have been applied to recorded vibration data. The study 

includes drive end and non-drive end data that were obtained 

from the machineries, which run under actual operating 

conditions. 

II.  WAVELET TRANSFORM 

The purpose of signal processing is to signify the signal 

efficiently with fewer parameters and less computational time. 

One of the popular signal processing technique is wavelet 

transform. The nature of wavelet transform can be continuous 

or discrete. The continuous wavelet transform (CWT) presents 
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more details about the signal but its takes more computational 

time [9]. 

The continuous wavelet transform of a finite energy signal 

𝑥(𝑡) with considering wavelet𝜓(𝑡)which gives the wavelet 

coefficients by eq, (1) 

 

𝑊(𝑎, 𝑏) = 𝑎−
1

2 ∫ 𝑥(𝑡)𝜓∗ (
𝑡−𝑏

𝑎
)

∞

−∞
𝑑𝑡        (1) 

 

Where, ‘𝑎’ is the dilation parameter controlling the wavelet 

frequency, ‘𝑏’ is the translation parameter localizing the 

wavelet function in time domain and𝜓∗(𝑡) is the complex 

conjugate of the analyzing wavelet 𝜓(𝑡).  

In DWT, the scale ‘𝑎’ and the time ‘𝑏’ are discretized as 

following: 𝑎 = 2𝑚 and 𝑏 = 𝑛 ∗ 2𝑚where m and n are integers. 

Thus discrete wavelet  𝜓𝑚,𝑛(𝑡) = 2−
𝑚

2 𝜓(2−mt − n) can be 

built, which can also found an orthonormal basis. The DWT 

analysis can be realize by scaling filter h(n), which is low pass 

filter related to the scaling function Ф(t), and the wavelet filter 

g(n), which is high pass filter related to the wavelet function 

ψ(t) [10]. 

 

ℎ(𝑛) = 2−1/2〈𝜙(𝑡), ψ(2𝑡 − 𝑛)〉        (2a) 

 

     𝑔(𝑛) = −1𝑛ℎ(1 − 𝑛)           (2b) 

 

The step of a fast wavelet algorithm is illustrated in Fig.1 in 

which signal decomposes and reconstructed. 

 
Fig. 1.  (a) Decomposition (b) Reconstruction of the signal 

 

In decomposition step, the discrete signal 𝑓(𝑡) is convolved 

with low pass filter 𝐿 and a high pass filter 𝐻, resulting two 

vector 𝑐𝐴1 and 𝑐𝐷1, called approximation and detail 

coefficient respectively. 

In reconstruction step, a pair of low and high pass 

reconstruction filter 𝐿𝑅 and 𝐻𝑅 are convolved with two 

vector𝑐𝐴1, and𝑐𝐷1, respectively, important property of this 

step is  𝑓 = 𝐴1 + 𝐷1. The two signals after reconstruction 𝐴1 

and 𝐷1 called approximation and detail. The symbol ↑2 and ↓2 

represent up sampling and down sampling. 

The procedure of the step can be repeated on the 

approximation vector 𝑐𝐴1 and successively on every new 

approximation vector 𝑐𝐴𝑗 with different scales.An 

approximated signal by DWT can be represented by means of 

wavelet tree with 𝑗 levels as shown in Figure  2. 

Each of the wavelet scales corresponds to a frequency given by 

[11]. 

 

𝑓 =
2𝑖−𝑗𝑓𝑠

2𝑗                                                                            (3) 

 

Where  𝑓 is higher frequency limit of frequency band 

represented by decomposition level  𝑗 , 𝑓𝑠 is sampling 

frequency, 2𝑖 is the number of samples in the signal. 

 
 

Fig. 2. An example of three – level wavelet tree 

 

The reconstructed signal can be observed and analyze 

deviation from the original signal due to present of responsible 

component of fault at each detail level. The frequency bands of 

the detailed coefficient at different decomposition level are 

shown in Table. 1 [12]. 

In the present paper, the vibration of a power plant induction 

motor bearing type 6309 (SKF) was monitored. The rotation of 

the motor are 2900 rpm and signal is recorded at 65536 

samples/sec, each acquired signal has a length of 8192 points. 

The measurement of vibration performed in axial, horizontal 

and vertical directions using accelerometer of bearing. A 

recorded signal from the vertical direction was influential 

compared with the other two directions so the vibration signal 

measured in the vertical direction has been used to describe the 

health of machinery. Two measurements have been taken from 

drive end and non-drive end with a time interval of one week.  

TABLE I. 

 FREQUENCY BANDS AT DIFFERENT LEVELS 

level Frequency band (Hz) 

cD1 8192-16384 

cD2 4096-8192 

cD3 2048-4096 

cD4 1024-2048 

cD5 512-1024 

cA5 0-512 

III.  DATA PROCESSING 

For recorded signal 𝑥(𝑡), a pre-process is necessary to 

lighten the influence of random variables before the analysis. 

This process can be perform as 

 

𝑦(𝑡) =
𝑥(𝑡)−�̅�

𝜎
                                                                      (4) 

 

Where,𝑥(𝑡) is the pre-processed signal,  �̅� is the mean value 

of 𝑥(𝑡)  and 𝜎 denoted the standard deviation of 𝑥(𝑡). 

In bearing fault detection, by examining the magnitude of the 



  

vibration data under operating conditions with incipient 

bearing faults, it is possible to distinguish the normal data from 

faulty data as shown in Fig. 3.Because the early detection and 

isolation of faults is important for condition based 

maintenance, a more sophisticated signal processing is 

necessary. The first approach is to process the recorded data in 

time domain and second approach in time –frequency domain. 

In time domain qualitative analysis using PDD and 

quantitative analysis using statistical parameter has been 

performed. To better explore fault-related information, in time-

frequency domain DWT can be used to divide finer frequency 

ranges and calculate the energy of each sub- band.  

 

 
 

Fig. 3.  (a) Non drive end (b) Drive end vibration signal of rolling bearing.  

IV.  BASIC STATISTICAL PARAMETER FOR DATA ANALYSIS 

One of the simpler detection and diagnosis approaches is to 

analyse the measured vibration signal in the time domain.The 

simplest, though not the most reliable way to detect faults in 

machines is to compare their vibration levels with standard 

criteria for vibration severity. In the time domain analysis, first 

we use the probability density distribution function ( )p x of 

vibration signal. The probability density of the distribution of 

data sample is defined as: 

 

𝑝𝑟𝑜𝑏[𝑥 ≤ 𝑥(𝑡) ≤ 𝑥 + 𝑑𝑥] = 𝑝(𝑥)𝑑𝑥                                   (5) 

 

Fig. 4 and Fig. 5 shows PDD of non- drive end and drive 

end recorded vibration data of an induction motor for a 

recording time duration of one week. To analyse the vibration 

signal for a bearing in a good condition, along with the sample, 

probability density distribution reveals that a bearing in good 

condition has vibration probability density depicts a roughly 

Gaussian curve, whereas a deterioation and damaged bearing 

lead to non-Gaussian distribution withdominant tails because 

of a relative increase in the number of high levels of 

acceleration [13], [14]. From figure it is concluded that non-

drive end shows perfect gaussian curve for both the recording 

which indicate that non-drive end is in healthy condition while 

drive end shows the peeky gaussian curve in later recording, 

which leads to suspecius damage of the bearing.   

 

 
Fig. 4.  PDD of non-drive end vibration signal of rolling bearing.  

 

 
Fig. 5.  PDD of Drive end vibration signal of rolling bearing.  

 

The qualitative analysis is not much reliable. Hence, instead 

of studying the probability density distribution curves, it is 

often more informative to examine the numerical parameters. 

Statistical parameters that have been calculated in time domain 

are generally used to express average properties of recorded 

signal from rotating machine. The mean value, 𝜇 and standard 

deviation, 𝜎 are the two fundamental quantities for a given 

data set {𝑥𝑖}  is used in this paper and these are defined as 

follows: 

𝜇 =
1

𝑁
∑ 𝑥𝑖

𝑁
𝑖=1 ,                 (6) 

 

𝜎 = √
1

𝑁
∑ (𝑥𝑖 − 𝜇)2,𝑁

𝑖=1              (7) 

 

Where, N is the number of the data points. 

For the Gaussian probability distribution, two parameters 

that reflect the departure from normal distribution are 

skewness (𝑐) and kurtosis(𝑘). These are calculated as follows: 

 

𝑐 =
[

1

𝑁
∑ (𝑥𝑖−𝜇)3𝑁

𝑖=1 ]

𝜎3  ,                                                       (8) 

 

𝑘 =
[

1

𝑁
∑ (𝑥𝑖−𝜇)4𝑁

𝑖=1 ]

𝜎4 ,                                        (9) 

 

For a perfect normal distribution, 𝑐 is equal to zero. 

Skewness is a measure of symmetry, or more precisely, the 

lack of symmetry. A distribution, or data set, is symmetric if it 
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looks the same to the left and right of the centre point. A 

negative value is due to skewness towards lower values while 

a positive indicates non symmetry towards high value. For 

small data sets, one often gets values that different from zero. 

The kurtosis or flatness 𝑘 is indicates impulsiveness of the 

signal and it is very close to unity for normal distribution. 

Theses statistical parameter may use to perform a quick check 

of the changes in the statistical behaviour of a signal [15].  

V.  RESULT AND DISCUSSION 

For more reliable damage detection the recorded signals are 

decompose using DWT and reconstructed. The decomposed 

signals are set of frequency bands and indicated by D1, D2, 

D3, D4, D5, and A5 as shown in Figure 6 and 8 for non-drive 

and drive end recorded signal on difference of one week. In 

these figures, the approximate (A5) and five levels of details 

(D1-D5) are chosen for each signal. The non-drive end data 

has not significant changes in magnitude on both the recording 

data. However for drive end data; there are significant changes, 

in both the recording in all the sub-bands of the DWT 

decompositions. Based on these plots qualitatively fault can be 

separated from the normal condition. From the figure 8 it can 

also observed that the maximum changes of magnitude in sub-

band D2 which is belong to higher frequency. This hints to 

focus on D2 sub-band. Further, energy is calculated of each 

sub–bands as shown in figure 7 and figure 9. When this 

approach applied to the available data, it is found that, the 

abnormal change in energy in sub-band D2 of drive end signal. 

Which confirm that the D2 sub band is rich in information. 

The change in energy in case of non-drive end signal in all 

sub-band is insignificant and in a regular pattern. Statistical 

parameters of sub band D2, also has been calculated and 

shown in Table II and Table III for both non-drive end and 

drive end data respectively. The comparison result shows, 

there is a radical change in peak value and standard deviation 

of the D2 sub band of drive end signal in comparison with D2 

sub band of non-drive end signal. The kurtosis values of the 

bearing also shows the trend; kurtosis value increases as the 

bearing defect increases, i.e, kurtosis value recorded on 

31/05/2011 is less than the kurtosis value recorded on 

06/06/2011.   

Only identifying the fault in the bearing is not sufficient [16] 

[17]. It is also important to know the location of fault in the 

bearing so that proper replacement can be manage. In order to 

know the location of fault it is necessary to observe the 

frequency due to damage of the bearing. It is known that, the 

different location of fault in the bearing produce different 

frequencies and it is decided by its structural design.  

The challenges are to identify the fault frequency as the 

recorded data are become noisy during recording and fault 

frequencies are generally hidden. The fault frequencies 

corresponding to fault location are provided in Table IV. These 

frequencies are Fundamental Train Frequency (FTF), Ball Spin 

Frequency (BSF), Ball Pass Frequency, Outer Race (BPFO), 

Ball Pass Frequency, Inner Race (BPFI) and have been 

calculated as follows [6]: 

1                                                                         (10)
2

dr

d

Bf
FTF cos

P
 

   
  

   

2

1                                                           (11)

2

d dr

d d

P Bf
BSF cos

B P

 
    

    
    

 

 *                                                                      (12)BPFO N FTF

 ( )                                                                                      (13)
r

BPFI f FTF   

Where, rf , dB , dP ,  are the revolution per second of 

inner race or the shaft, Ball diameter, pitch diameter and 

contact angle respectively. Manufacturers often provide these 

fault frequencies in the bearing data sheet.  

In order to get the fault location the FFT is perform on D2 

signal of drive end data and shown in Figure 10. The obtained 

frequency is corresponding to the fault on ball of the bearing 

that is 300 Hz. Hence, on the basis of above analysis, it is 

concluded that health of drive end side ball bearing is not in 

good condition in comparison with non-drive end side. It is 

also confirmed that the fault exist in ball of the bearing.  

 
Fig. 6.  Details and approximations of vibration signal of non-drive end  

 

 
Fig. 7. Average Energy Contained in the Frequency Sub-Bands for 

Vibration Data for Non-Drive End. 
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TABLE II.  STATISTICAL PARAMETER OF NON-DRIVE END SIGNAL  

Date Sub-band 

(D2)  

Peak Std 

deviation 

Skewness Kurtosis 

31/05/

2011 

4096-8192 2.300 0.567 -0.017 4.762 

06/06/
2011 

4096-8192 3.698 0.932 0.018 3.659 

 

TABLE III.   STATISTICAL PARAMETER OF DRIVE END SIGNAL 

Date Sub-band 

(D2)  

Peak Std 

deviation 

Skewness Kurtosis 

03/05/
2011 

4096-8192 1.389 0.347 -0.014 4.216 

06/06/

2011 

4096-8192 9.447 2.039 0.016 4.462 

 
Fig. 8.  Details and approximations of vibration signal of drive end. 

 

 
Fig. 9. Average Energy Contained in the Frequency Sub-Bands for 

Vibration Data for Drive End. 

 

 
Fig. 10. FFT of Signal D2 Sub-Bands of Drive End Data 

 

TABLE IV.  FAULT FREQUENCIES 

Machine BPFI 

(Hz) 

BPFO 

(Hz) 

BSF 

(Hz) 

      FTF 

      (Hz) 

Frequency 501.94 368.06 302.81 20.45 

VI.  CONCLUSION 

 In this study, fault diagnosing techniques of the ball roller 

element bearing of power plant induction motor have been 

investigated. All measured data are analyzed and compare 

using DWT in time-frequency domain and statistical 

parameter, PDD in time domain. DWT node energy decided 

the present of faults, as it increases significantly in drive end 

data. Finally, location of faults also investigated using Fast 

Fourier Transform method. Vibration monitoring and discrete 

wavelet transform as a predictive maintenance tool. Ball 

bearing defect on drive end side were successfully diagnosed.  
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