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Abstract: Twin Rotor Multi Input Multi Output System 
(TRMS) is a highly nonlinear laboratory experimental 
model of helicopter. Real time experimental results are 
presented to prove the Extended Kalman Filter (EKF) 
observer performance in terms of estimation error 
convergence along with the Lyapunov stability analysis. 
The RMS error of the proposed EKF observer is 
compared with the previously published local state 
observer and neural observer estimation results [2]. 
Further an algorithm previously published in [19] is 
applied in real time TRMS and its RMS error are 
compared with earlier results. It is found that the 
proposed observer estimation errors for pitch angle and 
yaw angle are less than the earlier results. The efficient 
results are outcome of Matlab Simulink with Real time 
Windows target hardware–software interface. Robustness 
of the estimator is verified with the externally generated 
manual disturbance and against an unknown indirect 
surge in mains supply of the TRMS hardware. It was 
observed that the estimation errors are within 2 sigma 
limits. Further it is observed that wherever the slope of 
the pitch and yaw angle is fast, the estimation error 
section is denser and the time taken for estimation is less 
and vice versa. 
 
Key words: Nonlinear system, Observer, pitch angle, yaw 
angle, jacobian. 
 
1. Introduction. 
 Measurement of pitch angle, yaw angle and their 
respective rates are important aspects of helicopter 
safety. Exceeding safe pitch angle, bank angle, and 
permissible smooth flight transactions than the 
operating standards may result into an accident. The 
Twin Rotor Multi Input Multi Output system 
(TRMS) is one of the helicopter models [1] which 
provide an experimental facility to researchers. To 
have sufficient description of the nonlinear model of 
TRMS; however, one requires state parameters such 
as pitch and yaw angles and their velocities, 
momentum of main and tail rotor etc. Such sensors 
either are difficult to manufacture, or even if 
available, are costly and may occupy additional 
space in the hardware. This inspires us to go for 
design of observers. An effort in this direction is 
done in [2]. In [2] unknown nonlinearities of the 
TRMS system were estimated using Chebyshev 

neural network (CNN); whereas in local state 
observer the system model was assumed to be 
completely known. Thus a comparison based on 
RMS errors of pitch and yaw angle estimation was 
of concern there. 
The versatility of Kalman filters and its variations in 
real time is described briefly in the forthcoming 
lines. In [3], based on the known uncertainties in 
terms of passive sonar bearing measurements, and 
position of SSBN track, along with SSN‟s velocities; 
EKF is used to provide submarine track rebuilding. 
It was mentioned that prediction error disparity 
could be minimized by knowledge of correlated 
noise and bias in the sonar uncertainty model. 
Aerospace systems are imputed as nonlinear models 
accompanied with noisy and biased transducers 
measurements. EKF is accepted as one of the most 
popular nonlinear filtering technique in the 
aerospace industry [4]. In [5], the EKF is applied as 
estimator to get comprehensive signaling about lack 
of proportion of the absolute vanadium 
concentration in vanadium redox flow batteries 
(VRFB). Estimation of induction motor flux and 
velocity under the variations of stator and rotor 
resistances inclusive of load torque and velocity 
changes is done in a novel way [6]. By sequentially 
deploying two EKFs at each time step (braided 
technique) authors overcomes the problem of 
decreased-estimation-accuracy. Kalman Filter is 
implemented in real time estimation of velocity of a 
mechanical motion system and results obtained are 
compared with those of moving horizon polynomial 
fitting method [7]. In another gigantic area of power 
systems, voltage magnitude and phase angle (static 
states) after estimation are fed to a primary Kalman 
filter. These results are then passed to second stage 
EKF which estimates generator rotor angles and 
speeds (dynamic states) [8].Comparison of EKF 
with Invariant EKF is presented in [9]. In [10], EKF 
is integrated to achieve map matching by comparing 
scans experimentally in Simultaneous Localization 
and Mapping (SLAM) framework. In [11], aptness 
of cascaded EKF is proved for tractor yaw control 
against hitch load variations based on finding a 
method when considerable instigate yaw dynamics 
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is present. The detailed explanation about most 
important properties of filter such as convergence, 
degree of stability associated with errors at starting 
condition can be found in [12]. In [19], a little 
modification in the EKF is done to treat 
nonlinearities in induction machines effectively 
through flux and angular velocity estimation. That 
work was supported by practical usefulness of 
observer. A scalar constant was used to modify the 
Riccati differential equation. This scalar constant 
takes the form of a real square diagonal matrix for 
multi-input-multi-output (MIMO) systems. The 
algorithm in [19] is redesigned for TRMS helicopter 
model and applied in real time TRMS experimental 
system. The RMS values of pitch and yaw angles are 
compared with two other algorithms in earlier 
published literature [2]. However, such complex 
interacting nonlinear systems should be tested with 
response to noise added to either sensors, or to 
process or both. Kalman filters have the advantage 
of rejecting the noise at the same time they provide 
estimation as well. In the literature, no work has 
been reported on application of EKF for estimation 
of pitch and yaw angles of TRMS. 
 Organization of the paper is as follows. In 
Section 2, description of the TRMS is given in terms 
of set of differential equations. Section 3 shows the 
test for local observability. Problem statement and 
EKF observer is explained in Section 4, whereas 
Lyapunov stability analysis is given in Section 5. In 
Section 6 experimental results of the proposed EKF 
observer-estimator and experimental results based 
on algorithm-“EKF based nonlinear observer with a 
prescribed degree of stability” in [19] (please see 
Section 6.1 and 6.2). Further robustness test against 
unknown surge and externally manually created 
disturbance is given in the same section. Section 7 
has discussions in terms of degree of stability and 
tuning. Last Section 8 concludes the work. 
 
2. About System 
 We consider the system in the form [13]  
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are state, input and measurement vectors 
respectively; f  and h  are continuous functions of 

time and , p qv w   are vectors of independent 
uncorrelated continuous random variables with mean 
zero and covariance R  and Q  respectively. Further 

we refer system from [2]. 
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where the constants are as given below [1] 

1 2 1 2 1

1 1 2

1 2

; ; ; ; 0.00 ;

0.1; 0.0 ; 0.02;

0.0135 0.02 0.0924 0.09 6

68 -0.2 0.05

1.1 0.3

; ;

; 0 .2.8;

c gy

g

a a b b B

B I I k k

k k M





    

    

  
 

 
3. Observability Test

 Before we design observer, the system observability 
must be proven. It was revealed in [14] that local 
observability is inference of quiddity of full rank 
(i.e. dim

0( ) dO x n , where n  is the dimension of the 

output). The observability vector ( )O x  for above 

system becomes 

   ( ) 3
T
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where the output vector is  1 3
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When system possesses equilibrium zero, the rank 
becomes five, i.e. at rest; however, for other than 
zero equilibrium, the rank is six. Hence we can say 
that the system is locally observable and the road to 
observer design is clear. 
 
4. Problem Statement and EKF observer 
Continuous time EKF Estimator dynamics [14] is as 
given below by the stochastic model: 
 

 

1

1

ˆ ˆ(t) (x(t), , t) K( )[ (t) (t)]

ˆˆ(t) ( (t), t)

ˆ(t) (t) ( (t), ) (t)

ˆ ˆ(t) ( (t), ) (t) (t) ( (t), t) (t)

ˆ ˆ(t) ( (t), t) (t) ( (t), t) (t) 5

ˆ





  





  







T

T

T T

f u t z z

z h x

K P H x t R

P F x t P P F x Q

P H x R H x P

x

 

Where x̂ represents the estimated states,  





F f
x

and  





H h
x

evaluated with current estimated 

states, ( )K t is Kalman gain of continuous time EKF, 

( )P t error covariance matrix. It should be noted that 

this matrix is to be obtained by solving the Riccati 
matrix differential equation in real time. Continuous 
time EKF assumes coupling of the prediction-
correction mechanism for discrete EKF. Further it is 
to be noted that there is nonlinear function in plant 
but the relationship in output is linear.  
The local state observer in [2] is computationally 
less complex than the online Kalman gain 
computation and solving differential Riccati 
equation online, however such computational 
complexity is justified because of the fast 
convergence of the estimation error to a bounded 
finite set of values. Following assumptions are used 
to design an EKF for TRMS. 
 
4.1 Assumptions 
1) Approximation of f  are acceptable near 

equilibrium points so that the Jacobian exists. 
2) Uncertainties (standard deviations associated with 
each state variable) are known which are further 

expressed in terms of  
1 2

, , , , ,    
      . 

3) Measurement and Process Noise Covariance 
matrices are known. 
 
With consideration of system dynamics in equation 

 2 and assumptions mentioned above, one then seek 

to find estimates of pitch and yaw angles so that the 
RMS estimation error is minimized or in other 
words one seeks to find Kalman gain that causes the 
error covariance be bounded [15]. The objective is 
also to implement in the real time environment for 
verification of the experimental results. Major 
reasons for use of EKF in real time implementation 
[16] are scanty computational load [17] and its 

simplicity. One may refer [18] to get the interesting 
profundity of EKF dynamics.  
The process noise matrix Q and sensor noise matix

R have their diagonal elements as given below: 

{0.0099  0.0022 0.0894  0.0017  1.2678 1.2700 }

and {0.0007 0 0.00193}  
respectively. The initial 

value of error covariance matrix is assumed as 
diagonal matrix whose diagonal elements are taken 
as 

{1.0500 0.0500 1.0000 1.0000 1.0000 1.0000}  

where 0  is a constant. 

 
5. Stability Analysis 
Now following [19] for stability analysis; except one 
change is that, freedom parameter is not taken into 
consideration. 
Let the estimation error be defined as below: 

ˆ (6)x x    

Differentiating equation (6) one gets: 
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where ˆ ˆ( , ), ( , ) x x x x are terms of second and higher 

order in power series expansion of    , f h

respectively. Let us proceed with few important 
definitions and some assumptions before stating 
main theorem. 
 
5.1 Definition 1 

The equilibrium 0   of equation  7  is 

exponentially stable if , 0   such that 
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5.2 Definition 2  

The observer given by  5  is exponential observer if 

the estimation error differential equation  7  has an 

exponential stability of equation  8 . 

 
5.2.1 Assumption 1 
The following nonlinearities are bounded 
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such that , 0  G G  for ˆ,  nx x R . 

Also the inequality is regenerated from [19] here 
without proof 
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where 0   is a constant. 
 
5.2.2 Assumption 2 [24] 
For efficient estimation F is bounded with following 
condition.

 12F b

where 0b . 
 
5.2.3 Assumption 3 
 

The Riccati differential equation mentioned in  5

has bounds on error covariance matrix: 
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Theorem 
With 0  , ,Q R  as positive definite matrices, the 

proposed observer in equation  5 is an exponential 

observer. 
 
5.2.4 Proof 

With reference to estimation error equation  6 , the 

exponential stability without free parameter can be 
proven. 
Let a Lyapunov function be selected as 
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with 1  P  
The time derivative of above Lyapunov function is 
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equation  10 , one get:
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This proves the local negative definiteness. 
As 
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With reference to [13]; the above term bonds initial 
error convergence and degree of stability. With this 
in the forthcoming sessions experimental results are 
presented. 
 
6. Real Time Experimental Results  
 
6.1 Results with standard Pdot 

We call the algorithm mentioned in equation  5 as 

standard Pdot for simplicity. The experimental 
verification is done with Feedback Instruments 33-
949 Matlab Simulink Models and Windows Real 
Time target software in External mode for a run time 
of 30 s. The PC used is Intel ( R ) core ( TM ) 2 CPU 
6320 @1.86 GHz, 2.48 GB of RAM. There are two 
integrators used in the experiment. One is for matrix 
Riccati differential equation and other is for 
estimation differential equation as shown above. The 
initial condition for matrix Riccati differential 
equation is as shown above with initial condition 
source as „internal‟ and its upper and lower 
saturation limits are given as 10 . For the integrator 
used for state estimation differential equation the 
upper saturation limit is set as 0.5 . The initial 
condition source has to be given internally in the 
external mode for real time interfacing. Advantech 
PCI 1711 I/O board is used with sample time of 
0.001s. Both the channels of encoders (for pitch and 
yaw angles) have offset set as zero. Various control 
signals are used in simulation mode for testing 
purpose. They are treated as simple sinusoid, multi-
sinusoid and exponential signals. For simple 
sinusoid the control signal is 
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It should be noted that the exponential control 
signals produces considerably large variations in 
yaw angle and hence should not be used in real time 
experimentation. For real time experimental 
estimation multi-sinusoid signals are used. The 
control signals are applied in open loop system. The 
pitch and yaw angle estimations are plotted within 

2 sigma limits of normalized errors. The initial 
condition for the plant and estimator is taken as 

shown 
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Figure 1 and 2 shows the estimated and true states in 
open loop response for multi-sinusoidal control 
signals given to main rotor (pitch motor) and tail 
rotor (yaw angle). It can be observed from the figure 

1 that the estimation error  ˆ x x amplitude remains 

bounded around zero to a small finite set of values. 
Denser sections of error (see figure 3 and figure 4) 
are associated with small prediction time that causes 
increase in average error magnitude, whereas wider 
sections of the error can be observed near time when 
pitch angle changes its transition and thus causing 
reduction in average error.  
 

 
Fig.1 Pitch angle response-true and estimated 
 
This can be well observed in figure 12 and 13 in the 
microscopic view. The yaw response seems to be 
smoother than the pitch response (see figure 2). The 
range of the yaw angle is larger than that of the pitch 
angle. This automatically puts a necessity on the 
yaw encoder to have greater resolution than that of 
pitch encoder. Also the interaction between yaw 
angle and pitch rotor exits which is reason for the 
non-minimum phase-type behavior of the TRMS. 
 

 
Fig.2 Yaw angle response is smoother than pitch  
 
Various measurement noise values are selected by 
experimental testing and the response is shown in 
figure 5 and 6. It should be noted that the limits of 
the integrator causes saturation in the yaw response 
to clip at 0.5 rad (see figure 6).Such limitations are 
necessary if any corrective action is to be taken 
based on estimation (for example controling action 
on any of the states) in future work. Measurement 

noise1 values are  0.000235 0.000800 .Other 

measurement noise values tested were 

 0.010000 0.060000 . 

 

 
Fig.3 Pitch angle estimation error 

 



 

 

 
Fig.4 Yaw angle estimation error 
 

 
Fig.5 Pitch Response with Measurement Noise1 

 
As these values increases, the estimated values 
moves on the upside and cause saturation, and 
should be avoided. Similarly it is observed that if the 

process noise matrix Q  is taken as 100 times the 
value assumed at the end of Section 3, then the 
estimation error in pitch angle increases 

considerably (i.e. about 0.1 rad), whereas the yaw 

angle error is about 0.05  rad. Now the 
experimental results of modified Pdot are presented. 
 
6.2 Experimental results of modified Pdot 
In [19] an alogrithm named “an EKF based 
nonlinear observer with a prescribed degree of 
stability” is discussed. The reason behind calling this 
as modified Pdot is clarified in the Riccati 

differential equation in [19] which is given below: 
 

 
Fig.6 Yaw Response with Measurement Noise1 
because of integrator saturation limit exceeded 
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In [19] the purpose of modification was explained 
on the basis of degree of stability in advance and 
effective treatment of nonlinearities. This is a kind 
of modified EKF nonlinear observer with an additive 
term of instability [19]. It should be noted that such 
algorithm can be applied on nonlinear system 
however there is no nonlinear relationship in output 
function. Here one generalizes local exponential 

stability of equation  8 . Further the real constant 

in [19] is a scalar quantity. In order to implement the 
modified Pdot algorithm for TRMS, this becomes a 
real square diagonal matrix. By experimental trials 
this matrix is taken as 

{0.01 1 0.0000300 1 1 1}diag . Now this 

modified algorithm which takes the name of 
modified Pdot is applied on the nonlinear TRMS. 
The results are given below. 
From both the responses (figure 7 and figure 8) it is 
clear that there is a kind of phase lag between the 
true and estimated states. If the constant matrix is 
made zero then the algorithm becomes a standard 
Pdot algorithm. 
The robustness performance of the estimator is 
tested in two ways. A real unknown magnitude surge 
is reflected on power supply of TRMS. This surge 
however does not make any reflection on control 
signal coming from PC. The reason is assumed as 
the Switch Mode Power Supply of the PC did not 
pass the surge to control signal. 



 

 
Fig. 7 Pitch response with modified Pdot 
 
 

 
Fig.8 Yaw response with modified Pdot 
 
As the surge is outcome of various unknown loads 
connected in parallel, its magnitude could not have 
been detected nor is such arrangement available in 
the experimental set up. 
Still thankfully the surge is reflected in the response. 
The surge effect is shown in figure 9 and 10 where 
as figure 11 shows control signal pattern. The surge 
came at after 25 s and there is a sudden uplift in 
pitch angle. The yaw response in this case is seen 
more sensitive. The estimator response can be said 
satisfactory in this unknown surge case.  
Secondly a manual external disturbance is exerted in 
vertical direction whose magnitude is about 0.2 rad. 
This will cause oscillations in pitch angle. However 
there is almost nil effect however on the yaw angle 
as the disturbance do not affect the horizontal 

direction. In both cases the estimator performance is 
better to test robustness. For all the cases of 
experiments the control signal is same as shown in 
figure 9. 
 

 
Fig.9 Robustness: Pitch response with surge in 
mains supply of TRMS hardware. 
 

 
Fig.10 Robustness: Yaw response with surge in 
mains supply of TRMS hardware. 
 
Figure 12 and 13 are the microscopic view of the 
pitch and yaw response taken when the initial 
position is slightly different, which shows the 
mechanism of prediction –correction in EKF. It can 
be clearly seen how the error magnitude and the time 
between the two predictions changes as the slope of 
the pitch or yaw angle changes while going through 
zero angle or during transition from positive or 
negative peak. Because of the space limitation the 
responses of the estimator for other initial conditions 



 

 

 
Fig.11 Control signal for all above experiments 
given to both motors (i.e. main and tail rotor) 
 
as well as various set of control signals are 
represented here.  
The effect of process noise can be verified in a 
different way by only making change in individual 
element of process noise matrix. The initial value of 
error covariance matrix is considerably greater than 
the process noise matrix. This result in a sharp 
transition in reduction of estimation error .This also 
can be observed by plotting the trace of error 
covariance matrix. Though the error plots are given 
here of pitch and yaw angle, it is possible to have 
similar plots of all the variables of the systems, 
however one need in that case the operating range of 
the respective state variables. Un-availability of the 
statistical characteristics of the sensors is one of the 
hurdles in detail analysis and design of EKF. 
An external manual disturbance of magnitude 0.2 
rad in vertical direction is generated and its 
associated response is shown in figure 14 and 15. 
If such disturbance is to be generated in horizontal 
direction, then there will be negligible variations in 
yaw response. 
 

 
Fig.12 Microscopic view of EKF pitch estimation 
 
For comparison, the performance of Local state 
observer and Neural observer RMS pitch and yaw 
errors published in [2] is compared with the 

proposed two estimators: estimation with standard 
Pdot  and with modified Pdot and given below in 

Table 1 (see next page). 1rmsE and 3rmsE  are the RMS 
estimation errors associated in pitch and yaw angles 
respectively. 
 

 
Fig.13 Microscopic view of EKF yaw estimation: 
the estimation error amplitude as well as time taken 
for estimation is minimum for larger slope and vice 
versa 
 

 
Fig.14 Disturbance response (manual disturbance) in 
upward direction of magnitude about 0.2 rad causing 
oscillations in pitch angle 
 
Because of the space limitations the error plots are 
given here. Further the speed of convergence in both 
the algorithms can be compared. That can be treated 
as future scope. From this comparison it is clear that 
the additional computational complexity in EKF 
because of online Jacobian solving is compensated 
by reduction in estimation error.  



 

 
Fig.15 Disturbance response: as the disturbance is 
acting vertically, the yaw response is not much 
affected 
 
Table 1 
Comparison of RMS estimation error algorithms 
 
Observer 

 

1rmsE  
 

3rmsE  

 
Local State Observer 
[2] 

 
0.0040 

 
0.0263 

 
Neural Observer [2] 

 
0.0023 

 
0.0088 

 
Proposed EKF observer 

 
0.0016 

 
0.0017 
 

With modified Pdot 0.0016 0.0018 
 
 
7 Discussions  
 
7.1 Degree of Stability 
It was pointed in [20] that the dive of initial error 
ζ(0) is rightly affiliated to the degree of stability. 
The bigger the degree of stability, quicker   
converges to zero at the early state. From the 
estimation error plots (i.e. figure 3 and figure 4); it is 
clear that the degree of stability is large. It was also 
pointed in [20] that if q  was zero, which indicates 

question mark on degree of stability confidence. 
Note that EKF may diverge if we test it for higher 
control signal amplitudes or frequencies or with 
different set of initial conditions, resulting in 
oscillatory response.  
 
7.2 Tuning  
Getting feasible covariance matrix elements need 
repetitive tuning based on observed filter response 
[21]. We also have selected the tuning parameters 

after several trials. Also an eency value of system 
noise covariance matrix for upswing in EKF 
applicability is one of the plenty of options [22]; 
specifically the case when one do not have statistical 
characteristics of sensors.  
 
8 Conclusions 
We present a standard EKF observer for a multi 
input multi output TRMS. Practical real time 
experimental results are shown to prove the 
applicability of EKF. It was observed that the 
estimation errors are within 2 sigma limits. 
Robustness of the estimator is checked against an 
unknown surge in mains supply of the TRMS 
hardware and externally manually generated 
disturbance of considerable magnitude. The 
disturbance response is satisfactory. The degree of 
stability of observer is demonstrated with estimation 
error convergence towards zero. Considerable 
reduction in RMSE has been obtained with the 
proposed EKF in comparison to that gained in [2]. A 
modified Pdot algorithm which was referred from 
[19] also is designed and applied to TRMS practical 
experimental setup. Its RMS error also is compared 
with that in [2]. Further it was observed that 
wherever the slope of the pitch and yaw angle is fast, 
the estimation error section was denser and the time 
taken for estimation is less and vice versa. 
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