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Abstract: In this paper an ABC transient model of the 

three phase induction motor is developed that depends on 

self and mutual inductance calculations based on accurate 

2D finite element analysis (FEA). This model can 

represent both healthy and faulty motor conditions. The 

rotor broken end rings faults are studied thoroughly 
including their effects on the motor speed, motor torque, 

rotor bars and end ring currents distribution. Flux 

distribution and the forces exerted on the rotor bar are 

also studied. Broken end rings causes non-uniform 

distribution of the rotor bar currents which will lead to 

fluctuations in the motor torque and speed. Also it results 

in non-uniform radial forces affecting the bars which will 

increase the mechanical stresses on the rotor shaft and 

bearings. 
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1. Introduction 

 Induction motors are the most used motor in 

industrial and domestic applications. They are 
rugged, mechanically simple, easy to maintain and 

simple to control. Motor electrical faults are divided 

into stator and rotor faults. One of the rotor faults are 

broken end ring fault. This fault is mostly caused by 
manufacturing defects and maintenance procedures. 

For detailed and accurate analysis of motor 

performance in faulty conditions, an accurate model 
for the motor in which all conditions can be 

considered is of great importance. In [1], basic 

methods for faulty induction motor modeling have 
been reviewed such as magnetic equivalent circuit 

method, finite different method, winding function 

method, and finite-element method (FEM). A 

detailed steady state model was developed to 
simulate rotor cage and unbalanced voltage faults in 

[2-3]. FEM has been introduced as one of the most 

comprehensive modeling methods. FEM was used to 
accurately calculate the steady state equivalent circuit 

parameters of the induction motor in [4-5]. The 

parameters for a two-axis model suitable for dynamic 

analysis were calculated using finite-element analysis 
(FEA) [6-7]. A finite element-state space coupled 

(CFE-SS) model with iterative solution was 

developed in [8], where it was used to obtain the 

dynamic performance of the induction motor. Time-
stepping finite element method (TS-FEM) coupled 

with circuit and mechanical equations were 

successfully used to analyze the transient and steady 
state performance [9-10]. In [11] the broken end 

rings fault was discussed using extended park vector 

approach. In [12] the transient analysis and 
simulation for broken bars and end rings were 

developed using machine parameters calculated from 

FEM. TS-FEM was used to study broken end rings 

fault among other rotor faults in [13]. In [14], the 
effects of broken end ring fault on the torque-speed 

characteristics of the motor were discussed.  

This paper presents a study for the performance of 
induction motor using an ABC transient model with 

self and mutual inductances calculated from a 

commercial FEM software package. The motor is 
analyzed under healthy and under various broken end 

ring fault conditions. The cases of healthy rotor, one 

broken end ring, two adjacent broken end rings and 

two non-adjacent broken end rings are studied. The 
motor performance including the stator, bars and end 

rings currents, the developed torque and the motor 

speed is discussed. The current density in the bars, 
the magnetic flux density distribution and the force 

exerted on the bars are also analyzed. It was found 

that the non-uniform distribution of the bar currents 

that was caused by the broken end ring segments, 
will cause fluctuations in the motor torque and speed, 

which increase as the number of broken segments 

increases. On the other hand, the radial forces are 
non-uniform causing mechanical stresses on the 

motor shaft and bearings. 
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2. Motor Parameters Calculations 

It is well known that the stator windings of the 

induction motor are divided into three symmetric 
phases and that the cage rotor constitutes bars that 

are interconnected with two rings, one from each 

side. It can be assumed that the current in the rotor 

flows in loops where each rotor loop is formed of 
two bars and two ring segments as shown in Fig. 1.   

The self and mutual inductances of the motor are 

calculated using 2D model for the induction motor. 
The model has been analyzed – by utilizing a 

commercially available package – using the finite 

element method (FEM) where non-linear magnetic 

characteristics were taken into account.  
 The flux linking with the stator phases or the 

rotor loops can be calculated from the vector 

magnetic potential as given: 

                     (1) 

To calculate the self and mutual inductance for 

stator phases, the model is solved with only one 
energized stator phase. The self-inductance will be: 

       
   

  
,       (2) 

where i = 1, 2 or 3 and     is the flux linking the 

phase number i due to current in the same phase. 

While the mutual inductance is calculated using: 

       
   

  
,        (3) 

where i & j= 1 , 2 or 3 and     is the flux linking 

the phase number j due to current in phase number i. 

The stator self and mutual inductances can be 

expressed as follows: 

Ls = ls + Los,       (4) 

     
   

 
,         (5) 

where ls is the stator leakage inductance and Los is 

the stator magnetizing inductance.  
The self-inductance of rotor loops can be 

calculated in a similar manner and expressed as 

follows:   
Lr = lr + Lor,        (6) 

While the mutual inductance, considering only the 

fundamental component, can be expressed as 

follows: 

                    ,      (7) 

where h & m = 1, 2, … Nb refers to a rotor cage 

loop number (h ≠ m), lr is the rotor leakage 

inductance, Lor is the rotor magnetizing inductance 
and α is the rotor slot pitch.   

It should be pointed out that the mutual-

inductances between stator phases and rotor loops are 

rotor-position-dependent. Hence, the following stator 
to rotor approximate mutual-coupling, considering 

only the fundamental component, expression may be 

adopted: 
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where, k = 0, 1 or 2, n = a, b or c denotes a 

particular stator phase and Losr is the maximum 
mutual coupling. 

The stator winding resistance is calculated using 

the relation: 

    
     

   
,       (9) 

where Ns is the number of turns per phase, lmt is 

the turn mean length, σ is the conductivity of copper 

and Ac is the conductor cross section area. 
The rotor bar and end ring segment resistances are 

calculated from the following equations. 
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        (11) 

where, lb is the bar length, Ab  is the bar cross 

section area, , Di is the inner ring diameter,  Dr is the 
diameter at the middle of the bar, Nb the number of 

bars, t is the ring height and Kring is a correction 

factor given in [15]. 
The rotor parameters are referred to the stator side 

using the effective turns-ratio.  

a = 
     

     
,     (12) 

where  

 Kws =     
  

 
  

     
   
 

 

     
  
 
 
,            (13) 

Kwr =     
 

 
 ,    (14) 

where, Nr is the number of turns of the rotor loop, 
θs is the stator coil span angle, q is the number of 

slots per pole per phase, and αs is the stator slot pitch. 

 

 

Fig. 1. Schematic Diagram for the rotor loops (formed by 

the bars and end rings) showing the rotor loop currents. 

 
 



 
 

3. Induction Motor Modeling 

The voltage differential equations correlating the 

induction motor voltages and currents may be 
expressed in the form: 
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where 
dt

d
p  , while ssR , rrR , ssL , rrL and  

T

rssr LL   are given in matrix form as shown below: 
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It should be mentioned that the above matrices 

could be modified in accordance with the different 
fault conditions.  In case of broken end rings, the 

loop containing the broken ring is considered an open 

circuit as shown in Fig. 2. This can be simulated by 

increasing the resistance of the broken segment. The 
resistance of the broken segment in this analysis is 

considered to be 1000 times its original value.  

For simplicity, (15) may be written in the form: 

(22)                                          .)( IpLRV   

By re-arranging (22) to incorporate rotor motion 

we get: 
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mechanical equation of motion and force acting on 
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in terms of its current density ( J

) and flux density ( B ) acting on it may be given by 
the expressions: 
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where LT  is the load torque and J is the motor 

moment of inertia, P is the number of per poles and

bl is the bar length. 

It turns out that equations (24)-(26) may be 

collectively dealt with as an initial value problem 
(IVP). Once this IVP problem is solved, currents in 

the stator phases and the rotor loops may be 

determined for a given load torque and specific 

motor parameters. 

 

Fig. 2. Schematic Diagram for the rotor loops (formed by 

the bars and end rings) showing the rotor loop currents in 

case of one broken end ring. 

4. Simulation Results 

A 5.5 kW, 380 volts, 4-pole, 48 stator slots and 28 
rotor bars induction motor was used to perform the 

analysis. Sample simulation results for four cases are 

demonstrated below. In specific, simulation results 
for the cases of; healthy rotor, one broken end ring, 



 
 

two adjacent broken end rings and two non-adjacent 

broken end rings are demonstrated. 

For healthy rotor case the currents in the rotor end 
rings are similar and the currents in the bars are also 

similar as shown on Fig. 3 and 4. While in the case of 

one broken end ring (end segment of rotor loop 1 as 

shown in Fig. 2), the end ring currents are no longer 
similar as shown in Fig. 5.  The end ring currents in 

the ring segments adjacent to the broken one and in a 

ring segment away from the broken one are shown. 
The peak current in the end rings adjacent to the 

broken end ring has decreased compared to the 

healthy case while in the end ring away from the 

broken one the current is almost the same as the 
healthy case. As a result, the bar currents adjacent to 

the broken end ring segment are not similar as shown 

in Fig. 6. The peak bar current of the bar before the 
broken end ring decreased while the one after 

increased compared to the healthy case. Similar 

results are obtained for the case of two adjacent 
broken end rings, which are segments of rotor loops 

1 and 2, as shown in Fig.7 and 8. An increase in the 

peak bar current in the bar after the broken end rings 

is noticed compared to the one broken end ring case. 
The case of two non-adjacent broken end rings, 

which are end ring segments of rotor loops 1 and 14, 

is shown in Fig. 9 and 10. The bar currents in the 
bars adjacent to the two broken end rings behaves 

similarly to previous broken end ring cases.  

 The motor torque and speed at the different cases 
described above are shown in Fig. 11 and 12 

respectively. It’s obvious that there are fluctuations 

in the motor torque in the different cases of broken 

end ring which results in fluctuations in the motor 
speed. As the number of broken end ring increases, 

the average torque decreases and the fluctuations 

worsens.   

 
Fig. 3. End ring currents for healthy rotor at rated 

conditions. 

 
Fig. 4. Bar currents for healthy rotor at rated conditions. 

 
Fig. 5. End ring currents for the case of one broken end 

ring at rated conditions. 

 
Fig. 6. Bar currents for the case of one broken end ring at 

rated conditions. 

 
Fig. 7. End rings currents for the case of two adjacent 

broken end rings at rated conditions.  
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Fig. 8. Bar currents for the case of two adjacent broken 

end rings at rated conditions. 

 
Fig. 9. End rings currents for the case of two non-

adjacent broken end rings at rated conditions. 

 
Fig. 10. Bar currents for the case of two non-adjacent 

broken end rings at rated conditions. 

 
Fig. 11. The motor torque at different cases at rated 

conditions. 

 
Fig. 12. The motor speed at different cases at rated 

conditions. 

 
Fig. 13. Magnetic flux density distribution for a healthy 

rotor at an arbitrary chosen instant. 

 
Fig. 14. Current density distribution in stator phases and 

rotor bars for healthy rotor at the same instant of Fig. 13. 

 
Fig. 15. Radial forces for healthy rotor at rated conditions 

at the same instant of Fig.13. 
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Fig. 16. Tangential forces for healthy rotor at rated 

conditions at the same instant of Fig. 13. 

 

Forces affecting each bar were calculated using 
the same FEM software that was used to calculate the 

inductances. For all cases the tangential and radial 

forces are calculated at an instant where the current 

in phase ‘a’ is maximum. 
The magnetic flux density distribution and current 

density distribution for a healthy rotor is shown in 

Fig. 13 and 14, respectively. The radial and 
tangential are shown in Figs. 15 and 16, respectively. 

It can be seen from these figures that, for the case of 

healthy rotor, the radial forces are almost symmetric 

and cancel each other. On the other hand, the 
tangential forces, which are responsible for 

generating the motor torque, are symmetrical under 

the machine poles.  
 The magnetic flux density distribution and 

current density distribution for the case of one broken 

end ring are shown in Fig. 17 and 18, respectively.  
Distributions of the tangential and radial forces 

corresponding to the same instant are shown in Fig. 

19 and 20, respectively. It can be observed from Fig. 

19 that the radial forces are asymmetrical in this case, 
leading to a net radial force affecting the rotor shaft 

and, eventually, the bearings. Moreover, the 

tangential forces are no longer symmetric under the 
machine poles as shown in Fig. 20. The negative 

tangential forces cause a decrease in the average 

torque compared to the healthy case. 

Moreover, distributions for the magnetic flux 
density and current density in case of two adjacent 

broken end rings are shown in Fig. 21 and 22, 

respectively. The tangential and radial forces are 
shown in Fig. 23 and 24, respectively. It can be 

observed from Fig. 23 that the asymmetry in the 

radial forces has increased in comparison to the case 
of one broken end ring. Such increase in the 

asymmetry would negatively affect the bearings life 

time.  

 
Fig. 17. Magnetic flux density distribution for one broken 

end ring shown in black at an arbitrary chosen instant. 

 
Fig. 18. Current density distribution in stator phases and 

rotor bars for one broken end ring shown in black at the 

same instant of Fig. 17. 

 
Fig. 19. Radial forces for one broken end ring at rated 

conditions at the same instant of Fig.17. 

 
Fig. 20. Tangential forces for one broken end ring at rated 

conditions at the same instant of Fig.17. 
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Fig. 21. Magnetic flux density distribution for two 

adjacent broken end rings shown in black at an arbitrary 

chosen instant. 

 
Fig. 22. Current density distribution in stator phases and 

rotor bars for two adjacent broken end rings shown in 

black at the same instant of Fig. 21. 

 
Fig. 23. Radial forces for two adjacent broken end rings at 

rated conditions at the same instant of Fig.21. 

 
Fig. 24. Tangential forces for two adjacent broken end 

rings at rated conditions at the same instant of Fig.21. 

 
Fig. 25. Magnetic flux density distribution for two non-

adjacent broken end rings shown in black at an arbitrary 

chosen instant. 

 
Fig. 26. Current density distribution in stator phases and 

rotor bars for two non-adjacent broken end rings shown in 
black at the same instant of Fig.25. 

 
Fig. 27. Radial forces for two non-adjacent broken end 

rings at rated conditions at the same instant of Fig.25. 

 
Fig. 28. Tangential forces for two non-adjacent broken end 

rings at rated conditions at the same instant of Fig.25. 
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Increased asymmetry of the tangential forces, as 

illustrated by Fig. 24, would result in increased 

torque and speed variations. The negative tangential 
forces cause a decrease in the average torque 

compared to the healthy case. Similar results for the 

case of two non-adjacent broken end rings are shown 

in Fig. 25-28. 
It can be seen from the magnetic flux density 

distributions, shown in Fig. 13, Fig. 17, Fig. 21 and 

Fig. 25, that the distribution in the faulty cases are 
asymmetric compared to the healthy case.   

 

5. Conclusions 

This paper presents an efficient model to analyze 
broken end rings fault conditions for induction 

motors using a FEM approach coupled with an ABC 

transient model. The pattern of the asymmetry in bar 
and end ring currents resulted from various broken 

end ring faults can be deduced and analyzed. Effects 

on the motor torque and speed can be detected. Using 
the proposed approach it is possible to asses 

instantaneous radial and tangential force asymmetries 

resulting from single or multiple broken end ring 

conditions. The proposed approach may be utilized in 
predicting the net mechanical stresses on the motor 

shaft and bearings which may lead to motor 

eccentricity and bearing faults as a result of rotor 
faults. Deterioration in motor performance may also 

be assessed. 
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