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Abstract:     Induction machines transient thermal analysis 
has been a subject of interest for machine designers in their 
effort to improve machine reliability. The stator being static 
is prone to high temperature and the study of transient 
thermal behaviour in the stator is useful to identify causes of 
failure in induction machines. The paper presents a two-
dimensional transient heat flow in the stator of an induction 
motor using arch shaped elements in the r-θ plane of the 
cylindrical co-ordinate system. The model is applied to one 
squirrel cage TEFC machine of 7.5 kW. Finally the 
temperatures obtained by this two-dimensional 
approximation have been compared for different stator 
currents considering the time required for each stator current 
during the transient in direct-on-line starting. 
 
Key words: FEM, Induction Motor, Thermal Analysis, 
Transients, Design Performance. 
 
1.   Introduction 
 
       The general heating problems of induction motor 
and the prediction of temperature rise of magnetic 
core, insulation, conductors etc. are the problems of 
determining the three dimensional temperature 
distribution produced by a system of current carrying 
conductors, which specify different locations of heat 
sources. Often three-dimensional heating problems can 
be reduced to more tractable two-dimensional 
problems by recognizing some simplifying 
assumptions that the essential description of the 
geometry requires only two independent co-ordinates. 
For these types of problems, we may determine 
temperatures by studying only a unit thickness of the 
geometry in the r - θ plane of the cylindrical co-
ordinate system.  

    Most of the earlier designers and researchers have 
traditionally adopted analytical methods such as 
separation of variables, conformal mapping, and 
resistance analog networks for prediction of 
temperatures. The analytical work is largely limited 
and that too with many major assumptions. Even 
though the resistance analog method predicts average 
temperatures quite accurately, the method failed in  

 

 

 

 

 

 

 

 

predicting hot spot temperatures. Rossenberry Jr.[1] 
used thermal resistance networks to predict transient 
stalled temperatures of cast aluminium squirrel cage 
motors as early as 1955. Mellor et al [2] have 
presented exhaustive study on lumped parameters 
thermal model for TEFC machines both under steady 
and transient thermal conditions. 

    Finite difference is one of the popular numerical 
methods widely used. The estimation of core iron and 
copper winding temperatures in electrical machines, 
the finite difference method [3], [4] had been normally 
employed. Even though this method predicts hot spot 
temperatures, the method is not as flexible as finite 
element method [12], [13], [15], [16] in handling 
complex boundary condition and geometry. Use of 
finite elements for solution of heat flow has wide 
acceptance among researchers in recent years. 
Rajagopal et al [9], [10] have carried out two-
dimensional steady state and transient thermal analysis 
of TEFC machines using FEM. The two- dimensional 
finite element procedure was first introduced in papers 
by Clough [5], [6]. 

Use of finite elements has seldom been attempted 
due to the complexity and high cost of computation 
and detailed 2-dimensional transient thermal analysis 
area not known to be reported for direct-on-line 
starting of induction motors. 

      In this paper, a finite element solution of the two-
dimensional transient heat conduction in cylindrical 
co-ordinate system with explicitly derived solution 
matrices is introduced. In the r - θ plane arch shaped 
finite elements are introduced. The explicit nature of 
the solution matrices allows for optimal computer 
usage. The temperature distribution in the r - θ plane 
has been determined by taking only a strip of unit 
thickness in the stator bounded by planes at mid-slot, 
mid-tooth divided into 24 arch shaped elements and 
thus provides a new approach of multi-time interval 
solution to a transient stator heating problem and this 
defines the scope of this technique. The requirements 



 
 

of computer storage for a large number of elements 
have been reduced by the use of half bandwidth of the 
symmetric matrix.  

    The method is directly applicable to the study of 
temperature rise during direct-on-line starting that may 
arise following some intentional starting action. The 
procedure is particularly suited to the study of 
transient heating of the stator coils due to I2R losses in 
the coil slots during starting action .The direct on line 
starting method is the most simple and inexpensive 
method of starting a squirrel cage induction motor. 
 
2.  Formulation of the Problem   
       The formulation of the transient heat conduction 
problem for finite element analysis follows a weighted 
residual approach. The steps taken in the formulation 
are as follows:  
 

(a)   Formulate the transient heat conduction 
equation in cylindrical polar co-ordinates.  

(b)   Specify interpolation polynomials (shape 
functions) for the element in such a way that 
the element equations can be directly 
integrated.  

(c)   Deduce finite-element equations directly 
from the governing differential equation of 
the problem without any classical, quasi-
variational or restricted variational 
principles.  

(d)   Solve the set of algebraic linear equations at 
each instant in time by Gauss method, which 
takes advantage of the symmetric banded 
nature of the matrices.  

 
3. Transient Heat-conduction  
    The general form of the heat conduction equation is  
 
 TVq ∇−=                                   ….  (1)  
T is the potential function (Temperature) oC.  
V is the medium permeability (Thermal conductivity) 
watt /m oC  
q is the flux (heat flux) watt / m2 .  
   For a solid in which heat is being generated internally 
at rate Q watt / m3, consideration of conservation of 
energy produces the general transient heat conduction 
equation  
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Where, Pm, Cm are the material density and specific 
heat.  
In cylindrical polar co-ordinates, equation (2) can be 
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                                                                            ..  (3)  
Vr, Vθ are thermal conductivities in the radial, 
circumferential directions respectively. 
 
4. Finite Element Equations (The Galerkin 
Method)   
       The solution of equation (3) can be obtained by 
assuming the general functional behaviour of the 
dependent field variable in some way so as to 
approximately satisfy the given differential equation 
and boundary conditions. Substitution of this 
approximation into the original differential equation 
and boundary conditions then results in some error 
called a residual. This residual is required to vanish in 
some average sense over the entire solution domain.  
 
     The approximate behaviour of the potential 
function within each elements is prescribed in terms of 
their nodal values and some weighting functions N1 , 
N2  … such that  
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      The weighting functions are strictly functions of 
the geometry and are termed shape functions. These 
shape functions determine the order of the 
approximating polynomials for the heat conduction 
problem.  
      The weighting functions are strictly functions of 
the geometry and are termed shape functions. These 
shape functions determine the order of the 
approximating polynomials for the heat conduction 
problem.  
     The method of weighted residuals determines the 
‘m’ unknowns Ti in such a way that the error over the 
entire solution domain is small. This is accomplished 
by forming a weighted average of the error and 
specifying that this weighted average vanish over the 
solution domain. 
    The required equation governing the behaviour of 
an element is given by the following expression:  
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Equation (5) can be written as  
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Where To is the temperature at the previous point in 
time and Δt is the time interval.  
 
     Equation (6) expresses the desired averaging to the 
error or residual within the element boundaries, but it 
does not admit the influence of the boundary. Since we 
have made no attempt to choose the Ni so as to satisfy 
the boundary conditions, we must use integration by 
parts to introduce the influence of the natural boundary 
conditions.  
 
4.1. Arch-Element Shape Functions  
Consider the arch-shaped prism element of Fig. 1 
formed by circle arcs radii a, b, radii inclined at an 
angle 2 ∝.  

 
Fig.1. Two-dimensional arch-shaped prism element 
suitable for discretisation of induction motor stator.          
                                   

 
Fig.2. The non-dimensional arch element 

     The shape functions can be defined in terms of a set 
of non-dimensional co-ordinates by non-
dimensionalizing the cylindrical polar co-ordinates r, 
θ, using  
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    The arch element with non-dimensional co-
ordinates is shown in Fig. 2.  
     The temperature at any point within the element be 
given in terms of its nodal temperatures by  
 

DDCCBBAA NTNTNTNTT +++=  ..  (7)  
Where the N’s are shape functions chosen as follows:  
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   It is seen that the shape functions satisfy the 
following conditions  
(a) That at any given vertex ‘A’ the corresponding 
shape function NA has a value of unity and the other 
shape functions NB , NC  have a zero value at this 
vertex. Thus at node j,  Nj = 1  but  Ni= 0 ,  i  ≠  j .  
(b) The value of the potential varies linearly between 
any two adjacent nodes on the element edges.  
(c) The value of the potential function in each element 
is determined by the order of the finite element. The 
order of the element is the order of polynomial of the 
spatial co-ordinates which describes the potential 
within the element. The potential varies as a quadratic 
function of the spatial co-ordinates on the faces and 
within the element. 
 
4.2. Boundary Conditions  
     The details of the induction motor are shown in 
Figure 3. In this analysis, the two-dimensional domain 
of core iron and winding chosen for modeling the 
problem and the geometry is bounded by planes 
passing through the mid-tooth and the mid-slot. This is 
shown in Fig.4, taken from the shaded region A of Fig 
3. The temperature distribution is assumed 
symmetrical across these two planes, with the heat flux 
normal to the two surfaces being zero. From the other 
two boundary surfaces, heat is transferred by 
convection to the surrounding gas. It is convected to 
the air-gap gas from the teeth, to the back of core gas 
from the yoke iron.  
 

 
Fig.3. Half sectional end & sectional elevation of a 7.5 kW 
squirrel cage induction motor 
   



 
 

 
Fig. 4. Slice of core iron & winding bounded by planes at 
mid-slot, mid-tooth.  
 
   The boundary conditions may be written in terms of 
T / nδ δ , the temperature gradient normal to the 

surface.  

Mid-slot surface 0
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Mid-tooth surface 0
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Air-gap surface ( )
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Where, T= Surface temperature and TAG = Air-gap gas 
temperature  

Back-of-core surface, ( )
BC
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(12)     TBC = Back of core gas temperature.  
 
    5.    Approximate Numeric Form  
    The heat flow equation may be formulated in 
Galerkin’s form, the solution being obtained by 
specializing the general functional form to a particular 
function, which then becomes the approximate 
solution sought.  
   using our attention on equation (6), we obtain 
through integration by parts  
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   Where nr is the r component of the unit normal to the 

boundary and dΣ is a differential arc length along the 
boundary. 
Equation (6) takes the form  
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               for  i  = A,  B,  C,  D               ..  (14)  
     The surface integral (boundary residual) in equation 
(14) now enables us to introduce the natural boundary 
conditions of equations (9 – 12).  
 
Equation (14) can be written with respect to the nodal 
temperatures as  
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 for   i  = A,  B,  C,  D                            ..  (15)  
There are four such equations as (15) for the four 
vertices of the element.  
These equations, when evaluated lead to the matrix 
equation  
[ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] [ ]COTHTR SRTSTSSSS ++=+++ θ

.. (16)  
[SR], [ Sθ ]   are symmetric co-efficient matrices.  
[ST]  is the heat capacity matrix.  
[SH]  is the heat convection matrix.  
[T] is the column vector of unknown temperatures.  
[R] is the forcing function (heat source) vector.  
[SC]  is the column vector of heat convection.  
[To]  is the column vector of unknown (previous point 
in time) temperatures.                                   
The explicit derivation of 
[ ] [ ] [ ] [ ]R&S,S,S TR θ matrices of equation 
(16) is given in the appendix.  
  
    6.    Method of Solution  
 
    The system of global equations, as determined by 
equation (16), has to be solved to determine the nodal 
temperatures.  
    The solution of this set of linear simultaneous 
equations is determined by the Gauss method [8], 
which takes the advantage of the banded nature of the 
matrices. To save computer memory, the symmetric 
matrix is half bandwidth, efficiently stored by Gauss 



 

routine, by which extremely large problems can be 
effectively solved.  
 
7. Application to a Polyphase Induction Motor  
 
The problem concerns heat flow through core iron and 
winding in the stator of an induction motor. The stator 
being static is prone to high temperature and the 
temperature distribution of the stator only is computed 
here. The hottest spot is generally in the copper coils. 
The heat from the outer surfaces, i.e., the back of core 
surface and the air-gap surface is lost through 
convective mode of heat transfer. Thermal 
conductivity of copper and insulation in the slot are 
taken together for simplification of calculations [11], 
[14]. 
 
      As the temperature is maximum at the central 
plane, the temperature distribution in the plane can be 
determined approximately by taking this as a two-
dimensional r-θ problem with the following 
assumptions. 
 
     (a) The temperature in the strip of unit thickness on 
the central axis is assumed to be fixed axially i.e. no 
axial flow of heat is assumed in the central plane. This 
assumption is permissible because in the central plane 
where the temperature distribution is maximum, the 
temperature gradient in the axial direction is zero. 
 
      (b) The convection is taken care of only at the 
cylindrical surfaces neglecting the convection at the 
end surfaces. Because of this assumption, the 
temperatures calculated in the central plane will be 
slightly higher than the actual. 
 
      In the case of transient stator heating caused by 
direct-on-line starting, the transient analysis procedure 
is able to provide an estimate of the temperatures 
throughout the volume of the stator at an interval of 
time required to bring the motor from rest to rated 
speed by providing rated voltage and current required 
by the induction motor during the starting action. 

      Assuming that the motor is at rest with its stator 
winding at normal ambient temperature, rated voltage 
and current are injected to the stator winding of the 
machine. The temperatures within the volume of the 
stator are calculated at all nodal points for a period of 
the time required for starting action. 

 
Fig. 5. Slice of core iron & winding bounded by planes of 
mid-slot & mid-tooth divided into arch shaped Finite 
Elements.  
 
    In this analysis because of symmetry the two-
dimensional domain in cylindrical polar co-ordinate of 
core iron and winding, chosen for modeling the 
problem and the geometry is bounded by planes 
passing through the mid-tooth and the mid-slot, which 
are divided into finite elements as shown in Fig 5. 
Arch-shaped elements are used throughout the solution 
region.  
 
7.1 Convective Heat Transfer Co-efficient [7, 9]   
   
    Two separate values of convective heat transfer co-
efficient have been taken for the cylindrical curved 
surface over the stator frame and the cylindrical air 
gap surface.  
 
    The natural convection heat transfer co-efficient on 
cylindrical curved surface over the stator frame are 
dependent on Grashof number (Gr) and Prandtl 
number ( Pr ) according to the following equation  :   
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Where, d  = hydraulic diameter  = 0.26 m  
and K=fluid thermal conductivity =  0.0297386  W / 
moC  
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 And V = Kinematic viscosity = 20.03 x 10-6  m2 / sec.  



 
 

        Gr = 80648337.  

The Prandtl number 
K
CP P

r
µ

==  

Where, CP = Fluid specific heat = 1008.344 J / kg  oC  
and µ = Fluid dynamic viscosity = 2.06  x  10-5  kg / 
m-s  
 Pr  = 0.698.  
By calculation, h = 5.25 W / m2 oC  
 
     The heat transfer co-efficient on forced convection 
for turbulent flow in cylindrical air-gap surface are 
dependent on the Reynolds number (Re) and the 
Prandtl number ( Pr ) according to the following 
equation  :   

      
( ) ( )

d
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Where, K = Fluid thermal conductivity = 0.0297386 
W / m oC 
And   d = Hydraulic diameter = 0.165 m.  
 
    The properties of air are evaluated at film 
temperature with the maximum permissible 
temperature assumed to be 105 oC and an ambient 
temperature assumed to be 40oC.  

The Reynolds number 
µ

==
dVPRe  

Where,   p  = Fluid density  = 1.022 kg / m3  
              V  = Fluid velocity  = 17.5 m / s  
              µ  =  Fluid viscosity  = 2.06 x 10 kg / m – s  
              R  = 143253.64  

The Prandtl number 
K
CP P

r
µ

==  

Where, CP  = Fluid specific heat  = 1008.344 J / kg  oC  
  Pr  = 0.698.  
By calculation, h = 60.16 W / m2  oC .  
 
    The velocity and Reynold’s number in the air-gap 
are functions of rotor peripheral speed, stator 
roughness and air-gap width.  
 
7.2. Thermal Constants [9]  
  
   For a transient problem in two dimensions, the 
following properties are required for each different 
material:   

(a) Thermal conductivity, radial direction, Vr, 
watt /m oC  

(b) Thermal conductivity, circumferential 
direction, Vθ,watt / m oC  

(c) Material density, Pm, kg / m3.  

(d) Material specific heat, Cm, watt Sec / kg  oC    
   The thermal conductivity, material density, material 
specific heat for different materials of induction motor 
stator is given in Table-1. 

Table.1 
Typical set of material properties of induction motor 

stator 
 

 Magnetic Steel Wedge Copper and 
Insulation 

Vr 33.07 2.007 
Vθ 0.826 1.062 
Pm 7.8612 8.9684 

Cm 523.589 385.361 
 
7.3 Calculation of Heat losses 
 
    Heat losses in the tooth and yoke of the core are 
based on calculated magnetic flux densities (0.97 wb / 
m2 and 1.293 wb / m2, respectively) in these regions. 
Tooth flux lines are predominantly radial and yoke 
flux lines are predominantly circumferential. The grain 
orientation of the core punching differs in these two 
directions and therefore influences the heating for a 
given flux density. Copper losses in the winding are 
determined from the length as well as the area required 
for the conductors in the slot. 
Diameter of stator bore D = 165 mm;  
Stator core length L = 140 mm;   
Pole pitch ;mm6.129

4
165

P
DY =×π=

π
=  

And flux per pole 

.bwm16.8bwm1000
1000
140

1000
6.12945.0LYBm =×××==ϕ

Stator Core   
 
Stator core depth = 24.5 mm, Stator slot depth = 23 
mm  
Mean diameter = 165 + 2 × slot depth + stator core 
depth = 165 + 46 + 24.5 = 235.5 mm.  
Area of core = 

223
3

C

m mm45.3155m1015545.3
293.1

1016.82/12/1
=×=

××
=

Β

φ× −
−

 
Volume of core 

3mm1.23345445.23545.3155 =×π×=  
Iron loss in stator core = 90.75 W  
Iron loss in stator core per unit volume   

.mm/W1088708.3
1.2334544

75.90 35−×==  

  



 

   Stator Teeth 
 
Width of tooth = 7.5 mm  
Number of tooth in the stator = 36  
Taking iron factor = 0.9  
Net core length of stator = 0.9 × 140 = 126 mm  
Area of one tooth = width of tooth × net iron length of 
stator = 7.5 × 126 mm = 945 mm2  
Total area of all teeth = 945 × 36 mm2 = 34020 mm2   
Volume of teeth = 945 × 36 × slot depth or tooth 
height  
     = 945 × 36 × 23 mm2 = 782460 mm3  
Iron loss in stator teeth = 30.7 W  
Iron loss in stator teeth per unit volume  

 35 mm/W1092352.3
782460

7.30 −×==  

 
Stator Copper 
 
     The term Direct-On-Line starting as applied to the 
induction motor refers to the system of starting method 
in which the stator windings of the motor is excited by 
rated voltage under D.O.L starting conditions, an 
induction motor usually requires approximately 6 
times its rated current when the rated voltage as 
applied to the stator. 
Referring the equivalent circuit of fig. 6 

 
   Fig. 6. Equivalent circuit on induction motor. 
 
x1=8.15Ω ; Ic=0.176 Amp; r1=2.04Ω; Im= 2.41Amp 

;415;39.2 1
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Electromagnetic torque,  

                 
( ) ( )221

2
21

22
t

S
e XXs/rr

s/rE3T
ʹ′++ʹ′+

ʹ′

ω
=  
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   Starting condition of the motor are those for S=1 

   At starting, S=1      

        ( )
( ) ( )22

2
e 15.81/39.204.2

1/39.2415
50
3T

++π
=  

                          = 91.3575 N.m 

       
39.23
503575.91I1 ×
π×

=   = 44.737A. 

Since the starting conditions of the motor are those 
for S=1 to S=0.04, the starting current per phase at 
start i.e, at S=1 is 44.737 Amp and at full load slip 
S=0.04 is 6.658Amp. 

 
At full load slip, S=0.04    

                  

( )
( ) ( )22

2
e 15.804.0/39.204.2

04.0/39.2415
50
3T

++π
=  

  = 50.5935 N.m  
 

04.0/39.23
505935.50I1 ×
π×

=     = 6.658 Amp.      

 
  In order to obtain physically operation in the 

region of slip 0.04<S<1, the current distributions 
during D.O.L starting condition is calculated using 
detailed equivalent circuit of the machine. 

 
At S=0.8, the starting current = 43.336 Amp 
At S=0.6, the starting current = 40.950 Amp 
At S=0.4, the starting current = 36.304 Amp 
At S=0.2, the starting current = 25.631 Amp 
At S=0.08, the starting current = 12.598 Amp 
At S=0.06, the starting current = 9.728 Amp 
At S=0.04, the starting current = 6.658 Amp 
 
Stator Copper Loss during Transient at different 
Slips 

Copper loss at different slips is calculated as below: 
No. of slot = 36                                                        
Volume of copper = 92mm x 409 mm2 = 37628mm3        

 r1= 2.04         
Stator copper loss = 1

2
13 rI  / No. of slots           

At s =1              
Stator copper loss per slot = 

36/)04.2)73.44(3( 2 ×× = 340.131watt 
Stator copper loss per slot per unit volume = stator 
copper loss per slot/ volume of copper = 
340.131/37,628 = 0.009039 watt/mm3 

     Assuming a load of moment of inertia 10 kg-m2, 
the time required is calculated at different intervals of 
speed, i.e., from rest, S=1 to S=0.8 as 3.185 sec to 
accelerate the motor at a speed of 1440 rpm i.e., 0.96 



 
 

of the synchronous speed from rest by direct on line 
starting. The computation of different parameters for 
starting at different slips in direct-on-line mode is 
shown in Table- 2. 

Table.2. 
The different values of stator currents, stator coppers 
loss/slot/unit volume, electromagnetic torque Te and time 
required for starting action at different slips in direct-on-line 
starting. 
 

    
 Solutions are done for the two-dimensional structure 
first with maximum permissible temperature and then 
calculating the heat transfer co-efficient at the mean of 
the two temperatures as tabulated below in table-3. 
The temperatures obtained are found to be within the 
permissible limit in terms of overall temperature rise 
under transient condition. 
 
     Since the temperature evolution in hottest spots is 
obviously the stator copper, temperature variation with 
time at crucial points has been depicted in graphs as 
shown in figures 10-15. 

Node-19

40

42

44

46

48

50

52

54

3.185 2.689 2.271 2.033 1.524 0.398 0.516

Time(sec)

Te
m
pe
ra
tu
re
(o
C)

 
Fig.7. Temperature variation with time 
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Fig.8. Temperature variation with time 

Node-28

40

45

50

55

60

3.185 2.689 2.271 2.033 1.524 0.398 0.516

Time(sec)

Te
m
pe
ra
tu
re
(o
C)

 
Fig.9. Temperature variation with time 
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Fig.10. Temperature variation with time 

 

Slip Current 
(Amp) 

Electro-
magnetic 
torque 
Te(N.m) 

Stator 
copper 
loss 
/slot/unit 
volume 
(W/mm3) 
 

Time ts 

 (sec) 

Time 
ts 
(sec) 

1 44.73 91.3575 0.009039 0.0 
 3.185 

0.8 43.336 107.157 0.008485 3.185 
2.689 

0.6 40.95 127.569 0.007576 5.874 
2.271 

0.4 36.304 150.406 0.005955 8.145 
2.033 

0.2 25.631 149.938 0.002968 10.178 
1.524 

0.08 12.598 90.566 0.000717 11.702 
0.398 

0.06 9.728 71.995 0.000428 12.091 
0.516 

0.04 6.658 50.593 0.000200 12.607 
 



 

Table.3: Solutions are done for the two-dimensional 
structure 
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Fig.11. Temperature variation with time 

Node-33

40

40.5

41

41.5

42

42.5

43

3.185 2.689 2.271 2.033 1.524 0.398 0.516

Time(sec)

Te
m
pe
ra
tu
re
(o
C)

 
Fig.12. Temperature variation with time 

 

 
 

 
8. Data Analysis 
 
     Since the hottest spots are found to be in the stator 
copper as envisaged from the calculated temperatures 
for the two-dimensional structure during the D.O.L 
starting period the temperature variation with time in 
each node of copper is taken as an index to understand 
the temperature profile during the transient. It is to be 
noted that the temperature is found to be maximum at 
the nodes pertaining to copper in the axis of symmetry.  
     As a consequence, the temperature variation with 
time at hottest spots has been depicted in graphs as 
shown in fig.7-12 to compare the magnitude of the 
maximum temperature variation with time at different 
nodal points along the stator copper winding.  
 
9. Conclusion  
 

The two-dimensional transient finite element 
procedure for the thermal analysis of large induction-
motor stators provides the opportunity for the in-depth 
studies of stator heating problems. By virtue of the 
new, explicitly derived arch element, together with an 
efficient bandwidth and Gauss routine, extremely large 
problems can be efficiently solved. 

A new two-dimensional finite element procedure in 
cylindrical polar co-ordinates, with explicitly derived 
solution matrices, has been applied to the solution of 
the transient heat conduction equation during direct-

N
od
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CORRESPONDING TEMPERATURES FOR DIFFERENT STATOR CURRENTS DURING DIRECT-ON-LINE 
STARTING 
Q=0.009039 
        

Q=0.008485 Q=0.007576 Q=0.005955 Q=0.002968 Q=0.000717  
 

Q=0.000428  
 

I1=44.737 
Amp 
Starting 
time=3.185 
sec 

I1=43.336 
Amp 
Starting 
time=2.689 
sec 

I1=40.949 Amp 
Starting 
time=2.271sec 

I1=36.304 
Amp 
Starting 
time=2.033 sec 

I1=25.631 Amp 
Starting 
time=1.524 sec 

I1=12.598 
Amp 
Starting 
time=0.398 
sec 

I1=9.728 
Amp 
Starting 
time=0.516 
sec 

19 40oC 44.021oC 47.273oC 49.692oC 51.337oC 51.889oC 51.910oC 51.902oC 
20 40oC 44.056oC 47.359oC 49.826oC 51.510oC 52.071oC 52.096oC 52.094oC 
21 40oC 44.022oC 47.269oC 49.663oC 51.267oC 51.750oC 51.758oC 51.733oC 
22 40oC 43.696oC 46.431oC 48.351oC 49.557oC 49.802oC 49.737oC 49.637oC 
23 40oC 41.576oC 42.835oC 43.788oC 44.455oC 44.694oC 44.708oC 44.718oC 
24 40oC 40.414oC 40.965oC 41.480oC 41.929oC 42.224oC 42.299oC 42.383oC 
28 40oC 48.116oC 53.421oC 56.780oC 58.561oC 58.439oC 58.112oC 57.670oC 
29 40oC 48.544oC 54.242oC 57.909oC 59.919oC 59.903oC 59.593oC 59.166oC 
30 40oC 48.424oC 54.254oC 58.113oC 60.311oC 60.460oC 60.198oC 59.823oC 
31 40oC 50.038oC 56.491oC 60.370oC 62.223oC 61.746oC 61.012oC 60.360oC 
32 40oC 42.122oC 43.267oC 43.937oC 44.249oC 44.112oC 43.976oC 43.831oC 
33 40oC 40.576oC 41.251oC 41.802oC 42.229oC 42.466oC 42.513oC 42.566oC 



 
 

on-line starting. Though the results are approximate, 
the method is fast, inexpensive and leads itself to 
immediate visual pictures of the temperature pattern in 
a two-dimensional slice of iron core and winding in 
the stator of an induction motor. 
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  Appendix  
 
      Explicit derivation of the solution matrices:  
 
     Equation (15) represents four finite element 
equations, which involve integration over the domain 
of the arch element, so that no numerical integration is 
required by the computer. The first term of the 
integration is (for vertex A).  
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Referring to equation (7) , we see that  
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Referring to equation (7) , we see that  
 

{ }
r
NTT

r
N

r
T A

A δ
δ

=⎥
⎦

⎥
⎢
⎣

⎢

δ
δ

=
δ
δ

r
NT

r
NT

r
NT D

D
C

C
B

B δ
δ

+
δ

δ
+

δ
δ

+  

and
r
N

r
T

T
A

A δ
δ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

δ
δ

δ
δ   

Based on the shape functions in equation (8), and 
noting that  

νδ
δ

α
=

θδ
δ

ρδ
δ

=
δ
δ 1;

a
1

r
 

We can deduce that  
      

( )
( )

( )
( )

( )
( )

( )
( )22

2

D22

2

C22

2

B22

2

A
A qa4

1vT
qa4
1vT

qa4
1vT

qa4
1vT

r
T

Tr
T

−

−
+

−
+

−

−
+

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

δ

δ

δ

δ

δ

δ  

And in the same way  



 

   
( ) ( )22

2

22
B

22

2

22
A

A
2 qa4

a
b

a
T

qa4
a
b

a
TT

T
T

r
1

−

⎟
⎠

⎞
⎜
⎝

⎛ −ρ

ρ
+

⎟
⎠

⎞
⎜
⎝

⎛ −ρ

ρ
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

θδ

δ

δ

δ

θδ

δ  

( )

( )
( )

( )2222
D

2222
C

a4
a
b1

a
T

qa4
a
b1

a
T

ρ−

⎟
⎠

⎞
⎜
⎝

⎛ −ρ−ρ

ρ
+

⎟
⎠

⎞
⎜
⎝

⎛ −ρ−ρ

ρ
+  

Where   ;
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b1q −=  note that in cylindrical polar  
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Now performing the integration, term by term,  
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   Formulation of the Heat Capacity Matrix. 
 
   The heat capacity term in equation (15) for i  = A is   
 θ

Δ ∫ drdrTN
t2
CP2

A
D

mm

)e(

 

[ ] θ+++
Δ

= ∫ drdrNNTNNTNNTNT
t
CP

DADCACBAB
2
AA

D

mm

)e(

 

In non-dimensional notation, the integrand becomes  
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Now performing the integration over (ρ, ν) space  
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Forcing Function Vector  
 
From equation (15), the first term of the forcing 
function vector is:    
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Evaluating the other three, we obtain  
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As a check, the sum of all these terms is Q α (a2 - b2), 
which is the total heat generated in the element.  
 
Formulation of the heat convection matrix: On 
Cylindrical Curved Surface 
  
The heat convection term in (15) for i  = A is  
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Now performing the integration in non-dimensional 
notation 

2
2
A

S

dsNh
)e(

2

∫

3
ahdsNNh;ah

3
2

2BA
S )c(
2

αρ
=∞ρ= ∫  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Evaluating the other terms, we obtain 
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Heat Convection Vector: On cylindrical curved 
surface  
From (15), the first term of the heat convection vector 
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  Evaluating the other terms, we obtain  
 

   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

αρ= ∞

0
0
1
1

aTh]s[ T
   

 


