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Abstract: In a deregulated electricity market one of the most 
important tasks of System Operator is to manage congestion. 
Therefore, investigation of techniques for congestion free-
wheeling power is of paramount interest. One of the most 
practical and obvious technique of congestion management 
is rescheduling the power outputs of generators in the 
system. In the present paper, the optimal rescheduling of 
reactive power generation of both generator and capacitor 
along with the rescheduling of active power is considered to 
relieve congestion. The optimal rescheduling of powers in a 
pool model is formulated as a nonlinear optimization 
problem. This paper proposes Adaptive Fuzzy Particle 
Swarm Optimization based Optimal Power Flow for solving 
the non linear optimization problem to minimize the 
Congestion Cost. For the better performance of Particle 
Swarm Optimization, in the proposed method, the inertia 
weight is dynamically adjusted using fuzzy IF/THEN rules 
to increase the balance between global and local searching 
abilities. The effectiveness of the proposed method has been 
tested on a 75-bus Indian Practical System and 39-bus New 
England system. The simulation experiments reveal that 
AFPSO performs better than other Evolutionary Algorithms 
such as Particle Swarm Optimization, Real and Binary 
Coded Genetic Algorithm and Conventional Optimization 
methods. 
 
Key words: Congestion Management, Evolutionary 
Algorithms, Adaptive Fuzzy PSO, Optimal Power Flow and 
Transmission Congestion Distribution Factors. 
 
1. Introduction 
The privatization and deregulation of electricity 
markets have a very large impact on almost all power 
systems around the world. Competitive electricity 
markets are complex systems with many participants 
who buy and sell electricity. In any competitive market, 
system security plays a vital role from the 
market/system operator’s point of view. When the 
producers and consumers of electric energy desire to 
produce and consume in amount that would cause the 
transmission system to operate at or beyond one or 
more transfer limits, then the system is said to be 
‘congested’. Congestion Management is about 
controlling the transmission system so that limits are 

observed and is perhaps the most fundamental 
transmission management problem. One of the most 
critical and important tasks of System Operator (SO) is 
to manage congestion. Congestion before deregulation 
was treated in terms of steady state security and the 
basic objective was to control the generators’ output so 
that system remained secure (no limits were violated) at 
the lowest cost as seen by the mutually agreeing 
Vertically Integrated Electric Utilities (VIEUs). But 
with deregulation, congestion has become a term in 
conjunction with power systems and competition. 
When there is congestion in a transmission system, 
locational prices can be significantly different from 
those of unconstrained optimal solution. Transmission 
congestion may prevent the existence of new contracts, 
lead to additional outages, increase the electricity prices 
in some regions of the electricity markets, and can 
threaten system security and reliability. The objective 
of the congestion management is to take actions or 
control measures to relieve the congestion of 
transmission networks.   
Several methods of congestion management have been 
reported in literature [1]. Pool and bilateral contract 
dispatches and the priority arrangements for line 
congestion and curtailment strategies are discussed in 
[2]. Srivastava and Kumar [3] presented an OPF based 
model for reducing the congestion to minimize the 
curtailment of contracted power in a power market 
having bilateral and multilateral contracts. An efficient 
procedure minimizing the adjustments in preferred 
schedules to manage congestion is proposed in [4]. 
Optimal dispatch considering dynamic security 
constraints for congestion management is presented in 
[5]. Optimal dispatch model to manage congestion for 
the feasible contracts is presented in [6]. Nanda et al. 
[7] discuss an OPF algorithm developed using the 
Fletcher’s quadratic programming method for 
congestion management to minimize the cost of 
congestion. Jian et al. [8] proposed an OPF based 
approach that minimizes cost of congestion and service 
cost. A congestion cluster based method, which 



 

  

identifies the group of system users according to their 
impact on transmission constraints of interest, has been 
proposed in [9]. Here clusters of type 1, 2 and higher 
based on congestion distribution factors have been 
demarcated, with type 1 cluster consisting of those with 
strongest and non uniform effects on the transmission 
constraints of interest. Sudipta Dutta et al [10] 
proposed PSO based OPF for the optimal rescheduling 
of generators for congestion management using 
generator sensitivities. In this they discussed only the 
optimal re-dispatch of active power and the reactive 
power dispatch has not been taken into consideration. 
But, the reactive power will play a vital role in the 
congestion management in reducing the congestion 
cost. A Zonal model based on AC load flow was 
proposed in [11] and [12]. In these papers the 
zones/clusters are identified based on transmission 
congestion distribution factors and the optimal re-
dispatch is done by Sequential Quadratic Programming 
(SQP) based OPF solution using GAMS software 
package. The SQP based OPF is a conventional 
deterministic optimization method. The conventional 
methods of solution of OPF are based on search 
direction determined from derivative of the objective 
function. Therefore it becomes imperative to express 
the problem in the form of continual differentiable 
function; otherwise, the methods become less efficient. 
To overcome this problem the present paper solves 
optimization problem using Evolutionary Algorithms 
such as Particle Swarm Optimization (PSO), Binary 
Coded Genetic Algorithm (BCGA) and Real Coded 
Genetic Algorithm (RCGA). The Standard PSO 
(SPSO) is more efficient in maintaining the diversity of 
the swarm, since all particles use the information 
related to most successful particle in order to improve 
themselves, whereas, in Genetic Algorithm (GA) the 
population evolves around a subset of the best 
individuals. The PSO technique can generate better 
quality solution within shorter calculation time and 
stable convergence characteristics than other stochastic 
methods like GA [15], [20] and [21]. If the parameters 
of Standard PSO (SPSO) are not properly tuned, it 
leads to premature convergence to local optima due to 
the imbalance between global and local searching 
capabilities [17]. For better performance of the SPSO 
search process, the inertia weight should be 
nonlinearly, dynamically changed to achieve better 
balance between global and local search abilities. The 
inertia weight is nonlinearly and dynamically changed 
using Adaptive Fuzzy Particle Swarm Optimization 
(AFPSO) [18]. The major contribution of this paper is 
that the Adaptive Fuzzy PSO based OPF is proposed 

first time to solve Congestion Management problem 
using both the active and reactive power re-scheduling 
by considering all practical constraints with single and 
multi line congestion cases. In the present paper, the 
optimal rescheduling of both active and reactive power 
for Congestion Management problem is formulated as 
a nonlinear optimization problem with three different 
Congestion Cost (CC) functions for both single line 
and multi line congestion cases as follows: 
i) Case-1: With change in real power generation. 
ii) Case-2: With change in real and reactive power 
generation without capacitor reactive power support. 
iii) Case-3: With change in real and reactive power 
generation with capacitor reactive power support. 
To reduce the number of participating generators for 
congestion management in competitive power markets, 
the proposed method utilizes two sets of sensitivity 
indices, viz. Real Power Transmission Congestion 
Distribution Factors (PTCDFs) and Reactive Power 
Transmission Congestion Distribution Factors 
(QTCDFs). The most sensitive clusters/zones have 
been identified as the union of most sensitive zones 
obtained on the basis of real and reactive line flow 
sensitivity indices separately [11], [12]. The 
effectiveness of the proposed method has been tested 
on a 75-bus practical Indian system and 39-bus New 
England Test system and the results are compared with 
the other EAs such as SPSO, BCGA and RCGA based 
OPF methods. All the methods for Congestion 
Management problem have been implemented using 
MATLAB programming. 

2. Congestion Management Problem Formulation 

In the congestion management problem formulation, 
first it is required to find the optimal number of 
generators participating in the congestion alleviation 
process and then application of one of the available 
optimal power flow method to find minimum 
rescheduling cost or congestion cost to alleviate 
congestion. The effect of the generator and capacitor 
reactive support on the generator rescheduling has to 
be formulated. Thus congestion management problem 
formulation consists of two important steps as 
explained below: 
1) Optimal number of generators participating in the 
congestion management 
2) Optimal re-scheduling of real and reactive powers 
of generators with capacitor reactive support 
For the optimal number of generators, this paper has 
utilized two sets of sensitivity indices termed as Real 
Power Transmission Congestion Distribution Factors 
(PTCDFs) and Reactive Power Transmission 
Congestion Distribution Factors (QTCDFs). The 



 

procedure for the calculation of PTCDFs and QTCDFs 
is explained in the following section. 
2.1 Transmission Congestion Distribution Factors 

(TCDFs)  
Transmission congestion distribution factors (TCDFs) 
are defined as the change in power flow in a 
transmission line-k connected between bus-i and bus-j 
due to unit change in the power injection at bus-i. 
Mathematically the TCDF for the line-k can be written 
as:  
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The k

gPTCDF and k

gQTCDF given in the above 

equations represent the real and reactive power flow 
sensitivities of        line i – j with respect to bus real 
and reactive power injections and have been termed as 
real and reactive power transmission congestion 
distribution factors respectively. The derivations for 

k

gPTCDF and k

gQTCDF are discussed in detail in [11].  

The basic power flow equation on the congested line 
can be written as: 
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Where iV and 
i

δ  are the voltage and phase angle 

respectively at ith bus; ijY is the admittance of the line 

connected between buses i and j. 
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k

n
PTCDF and 

k

n
QTCDF are the real and reactive 

transmission congestion distribution factors 
corresponding to a bus-n and a line-k connected 

between bus-i and bus-j. 
' ',  ,    ij ij ij ija b c and d are the 

coefficients which can be obtained using the partial 
derivatives of active and reactive power flows shown in 
equation (2). 
After the calculation of PTCDFs and QTCDFs, these 
will be utilized for identifying congestion clusters 
(zones) for a given system. The congestion cluster of 
type-1 has been defined as the zone having large and 
non uniform Transmission Congestion Distribution 
Factors (TCDFs) and the congestion cluster of type 2 
and higher has been defined as those having small or 
similar TCDFs. The transactions in the congestion 
Zone-1 have critical and unequal impact on the line 
flow. The congestion zones of type 2, 3 and higher are 
farther from the congested line of interest. Therefore, 
any transaction outside the most sensitive Zone-1 will 
contribute very little to the line flow. If more than one 
line congestion conditions are present in the system, 
the congestion zones can be obtained by superimposing 
the zones corresponding to the individual line 
congestion. Thus, the identification of congestion 
zones will reduce the computational burden, 
considerably, in both re-dispatching and physical 
curtailments necessary for the transmission loading 
relief (TLR) in case of emergency and the adjustment 
of system users themselves under normal conditions. 
2.2 Optimal Power Flow (OPF) Problem Formulation 

The optimal re-scheduling of active and reactive 
powers for Congestion Management in a pool model is 
formulated as a Optimal Power Flow (OPF) problem 
with three different Congestion Cost (CC) functions, 
for both single and multi line congestion cases, as 



 

  

follows: 
2.2.1 Optimal re-scheduling of real power 

Case-1: Congestion Cost with real power adjustment 

In this case the rescheduling of active power generator 
has been considered in the congestion cost function. 
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2.2.2 Optimal re-dispatch of real  and reactive 

power 

The reactive power plays an important role in 
supporting real power transfer across the large scale 
transmission system. A sufficient reactive power 
support maintains the power flow within limits on 
transmission lines and voltage within limits at bus bars. 
 Therefore, procurement of reactive power support 
services is becoming important in the competitive 
electricity markets and thus, reactive power has been 
identified as one of the important ancillary services. 
Thus, the VAR support requirement from generators 
and capacitors to manage congestion along with real 
power re-scheduling poses great challenge to System 
Operator in an open electricity market. In the present 
work, the reactive support of generators and capacitors, 
in addition to the re-scheduling of real power 
generation, has been considered to manage the 
congestion. Based on the QTCDFs, the generators from 
the most sensitive zone are selected for the reactive 
support. However, the optimal placement of capacitor 
is selected, in case there is no or insufficient capacitive 
reactive support in the system, at a bus which is having 
most negative QTCDF with respect to congested line. 
The nonlinear optimization problem with the reactive 
power support of generators and capacitor are shown in 
case-2 and case-3 as follows. 
Case-2: Congestion Cost with generator real and 

reactive power adjustment without capacitor reactive 

support 
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Case-3: Congestion Cost with generator real and 

reactive power adjustment with capacitor reactive 

power support 
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Where 

pg
C is the cost of active power generation and is 

modeled by quadratic function as follows: 
2( )  ( ) ( )pg g i g i g iC P a P b P c∆ = ∆ + ∆ +  (26)   

The second term in the objective function shown in 
(18) is the opportunity cost of the generator and it can 
be determine approximately as follows [13]: 
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K is the profit rate of active power generation taken 
between 5% and 10%. 
The third term in the objective function shown in (18) 
is the equivalent production cost for capital investment 
return on the capital investment of the capacitors, 
which is expressed as their depreciation rates for the 
life-span of 15 years as follows[13]: 
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where h represents the average usage rate of capacitors 

taken as 2/3. 
c

Q is in per unit on the 100MVA base.  
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 P and Q
L L

are the total real and reactive power loss 

respectively. The second third and forth terms in (24) 
and (25) incorporates the change in the losses in the 
system occurring due to re-dispatch of the generators 
and capacitors. The real and reactive power loss 
sensitivity with respect to change in real and reactive 
power injections can be derived by using (29) and (30). 
In the following sections various evolutionary 
computation methods are discussed to solve the above 
optimal power flow problems depicted in equation (6) 
to (32). 

3. Evolutionary Algorithms 

Evolutionary Algorithms (EAs)  differ from the 
traditional optimization techniques in that EAs make 
use of a population of solutions, not a single point 
solution. An iteration of EA involves a competitive 
selection that weeds a poor solutions. Several 
Evolutionary search algorithms such as Binary Coded 
Genetic Algorithm (BCGA), Real Coded Genetic 
Algorithm (RCGA), Particle Swarm Optimization 
(PSO) and Differential Evolution (DE) were developed 
independently. These algorithms differ in selection, 
offspring generation and replacement mechanisms. For 
global functional optimization problems BCGA, 
RCGA and PSO are employed in this paper to discover 

solutions for Congestion Management problem with 
three different objective functions depicted in (6) to 
(25). 
3.1 Binary Coded Genetic Algorithm (BCGA) 

GA operates on a population of potential solutions, 
applying the principle of survival of the fittest 
procedure to obtain better and better approximation to 
a solution. At each generation, a new set of better 
approximations is created by selecting individuals 
according to their fitness in the problem domain. This 
process leads to the evolution of populations of 
individuals that are better suited to their environment 
than the individuals from whom they were created [19]. 
Traditionally, solutions are represented in binary as 
strings of 0s and 1s, but other encodings are also 
possible. The evolution usually starts from a population 
of randomly generated individuals and happens in 
generations. In each generation, the fitness of every 
individual in the population is evaluated, multiple 
individuals are stochastically selected from the current 
population (based on their fitness), and modified 
(recombined and possibly randomly mutated) to form a 
new population. The new population is then used in the 
next iteration of the algorithm. Commonly, the 
algorithm terminates when either a maximum number 
of generations has been produced, or a satisfactory 
fitness level has been reached for the population. In 
this paper, tournament selection, single point crossover 
and uniform mutation are employed. 
3.2 Real Coded Genetic Algorithm (RCGA) 

Real number encoding is best used for function 
optimization problems. It has been widely confirmed 
that real-number encoding performs better than binary 
or gray encoding for constrained optimization [21]. 
Owing to the adaptive capability, Simulated Binary 
Crossover (SBX) and Tournament selection is used as 
selection mechanism in order to avoid premature 
convergence. SBX crossover and non-uniform 
polynomial mutation are given below. 
3.2.1 Simulated Binary Crossover (SBX) 

In SBX crossover [21], two children solutions are 
created from two parents as follows: 
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A spread factor 
qi

β is defined as the ratio of the 



 

  

absolute difference in offspring values to that of the 

parents. c
η  is the crossover index.  
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3.2.2 Non-uniform polynomial mutation: 

Newly generated offspring undergoes polynomial 
mutation operation. Like in the SBX operator, the 
probability distribution can also be a polynomial 
function, instead of a normal distribution. The new 

offspring
(1, 1)t

i
y

+
is determined as follows 
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polynomial probability distribution. 
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Where, m
η is the mutation index. 

3.3  Particle Swarm Optimization (PSO) 

PSO is a novel optimization method developed by 
Kennedy, et al. [17]. It is a multi agent search 
technique that traces its evolution to the emergent 
motion of a flock of birds searching for food. It uses a 
number of particles that constitute a swarm. Each 
particle traverses the search space looking for the 
global minimum (or maximum). This Standard Particle 
Swarm Optimization (SPSO) is similar to the other 
evolutionary algorithms in which the system is 
initialized with a population of random solutions. 
However, each potential solution is also assigned a 
randomized velocity, and the potential solutions 
corresponding to individuals. Generally, the SPSO is 
characterized as a simple heuristic of well-balanced 
mechanism with flexibility to enhance and adapt to 
both global and local exploration abilities. SPSO has a 
more global searching ability at the beginning of the 
run and a local searching ability at the end of the run. 
Therefore, while solving problems with more local 
optima, there are more possibilities for the SPSO to 
explore local optima at the end of the run. In the SPSO 
system, particles fly around in a multidimensional 
search space. During flight, each particle adjusts its 

position according to its own experience, and the 
experience of neighboring particles, making use of the 
best position encountered by itself and its neighbors. 
The swarm direction of a particle is defined by the set 
of particles neighboring to the particle and its history 
experience.  
Let x and v denote a particle coordinates (position) and 

its corresponding flight speed (velocity) in a search 
space, respectively. The best previous position of a 

particle is recorded and represented as pBest . 

The index of the best particle among all the particles in 

the group is represented as gBest . Finally, the 

modified velocity and position of each particle can be 
calculated as shown in the following formulae:   
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Where w is the inertia weight of the particle, C1 and C2 

are two trust parameters, k is pointer of generations, 
k

i
x  

is current position of particle at the kth generation, 
k

iv is 

velocity of particle at the kth generation and rand( ) is a 
uniform random value in the range [0,1].  

4. Adaptive Fuzzy Particle Swarm Optimization 

(AFPSO) 

As evolution goes on, the swarm might undergo an 
undesired process of diversity loss. Some particles 
become inactive while they lose both global and local 
searching capabilities in the next generations. 
Considering Equations (37) and (38), there are three 
problem-dependent parameters, the inertia weight of 
the particle (w) and two trust parameters (C1 and C2). 
The inertia controls the exploration properties of the 
algorithm, with larger values facilitating a more global 
behavior and smaller values facilitating a more local 
behavior. The trust parameters indicate how much 
confidence the particle has in itself (C1) and how much 
confidence it has in swarm (C2). Therefore, for better 
performance, the inertia weight should be nonlinearly 
and dynamically changed to have better dynamics of 
balance between global and local searching abilities.  
Due to the lack of knowledge of the searching process, 
it is very difficult to design a mathematical model to 
adapt the inertia weight dynamically [18]. The 
Adaptive Fuzzy Particle Swarm Optimization (AFPSO) 
is proposed in the subsequent part of this paper to 
design a fuzzy system to dynamically adapt the weight 
for the Congestion Management problem. Fuzzy 
IF/THEN rules in the Table 1 are used for the proposed 



 

method. Here the number of linguistic variables is 
taken as 3. The number of fuzzy rules become 3×3=9. 
If number of linguistic variables is more than 3, the 
computation process will become tedious. If it is less 
than 3, the accuracy suffers. Hence, the optimal 
number of linguistic variables taken in the present work 
is as 3. 
4.1 Fuzzy Formulation 

To obtain a better inertia weight under the fuzzy 
environment, inputs: fitness of the current location 
(solution) and the current inertia weight, and output: 
the correction of inertia weight are all needed to 
express in fuzzy in fuzzy set notations. Here all 
membership functions are triangular in shape for 
simplicity. Each input is fuzzified as follows using 
three linguistic variables such as SM, M, L (Small, 
Medium and Large respectively). The values for the 
membership functions are chosen from the prior 
experience as shown in the Figure 2. Recall that, it is 
very difficult to develop a crisp mathematical model for 
adaptive PSO to dynamically change the inertia 
parameter. So, simple plain-language IF/THEN rules 
are suitable to calculate the amount of inertia weight 
correction in the adaptive fuzzy PSO process for the 
Congestion Management problem. 
Normalized fitness: The fitness of the current solution 
(location) is very important to predict the inertia weight 
for the right choice of velocity. Normalized fitness 
value is used as input to bind the limit between 0 and 1 

as min

max min

CC CC
NormFIT

CC CC

−
=

−
                        (39) 

    
1 1t t t

i i i
w w w

+ += + ∆                (40) 

In case of minimization problem like congestion 
management problem, a lower value NormFIT 

indicates the better solution. CCmin is a small value 
which is less than any acceptable feasible solution cost. 
CCmax is a very large value which is greater than or 
equal to any acceptable feasible solution cost. 
Congestion Cost (CC) from equation (6), (11) and (18) 
at the first iteration may be used as CCmax for the next 
iterations. The range of NormFIT has been chosen as 0 
to 1.0 based on the prior experience as shown in Figure 
2(a).  
Current inertia weight: Inertia weight is between 0.4 
and 1.0. This range is fitted to the shape of the 
triangular membership function as shown in Figure 

2(b).  
Current inertia weight correction: for the correction of 
the inertia weight both positive and negative 
corrections for the inertia weight has been considered. 
The change of the inertia weight is presented in 3 
linguistic variables ‘Negative’, ‘Zero’ and ‘Positive’ 

(NE, ZE and PE). The range of change in inertia 
weight has been chosen as -0.1 to 0.1 for the inertia 
weight correction ∆w from the prior experience as 
shown in Figure 2(c).  
IF/THEN rules and defuzzification: simple IF/THEN 
rules are shown in Table 1 where there are 3×3=9 
possible rules for two input variables and three 
linguistic variables of each input variable. Fuzzy 
control inputs are usually crisp. For the current 
Congestion Management problem, the degree of 
membership of NormFIT and w are calculated from the 
Figure 2(a) and 2(b), respectively.   
Larsen product is used as the fuzzy implication 
operator for the individual rules. Using arithmetic 
product, the degrees of fulfillment of the rules in Table 
1 that fire, are evaluated. So, the Degree Of Fulfillment 
(DOF) for rule r is DOFr=µNormFIT . µw. for each rule 
output will be transformed or scaled in accordance with 
the DOF. The total output is the union of the results 
from the fired rules. Finally, the total output is 
defuzzified to a crisp value (dw) by the centroid 
method. The process of Fuzzy control is shown visually 
in Figure 3 for an input set of (1, 0.7). The correction 
in inertia weight ∆w obtained as output of Fuzzy 
Inference System (FIS) is added in the current iteration 
inertia weight value to obtain the inertia weight for 
next iteration as depicted in equation (40). 
2.3 Algorithm for the AFPSO can be described as 
follows 
Step 1: Initialize the parameters of PSO. 
a) Learning factors C1 and C2; Inertia weight factor w; 
b) Population size; Maximum number of iterations; 
Step 2: Randomly generate the initial positions (Xi) and 
velocities (Vi) of all particles in the population. These 
initial particles must satisfy the lower and upper limits 
of each variable.  

Step 3: For each particle, set pBest i to the current 

position and set gBest to the current best position of 

the swarm. 
Step 4: iteration count starts K=1; 
Step 5: a) Calculate the fitness value of each particle 
using objective function shown in equation (6), (11) 
and (18).    

b) Update the pBest i and gBest corresponding to 

the best solution. 
c) Update the inertia weight (w) according to the 

equation
1 1t t t

i i i
w w w

+ += + ∆ . Also modify the velocity 

and position of each particle according to equation 
(37) and (38). 
Step 6: If iteration count reaches the maximum 
iterations, go to Step 7. Otherwise set K=K+1 and go to 
Step 5. 
Step 7: The particle that generates the latest gBest  is 

the optimal value of Congestion Cost. 



 

  

The detailed flow chart for the AFPSO based 
Congestion Management is given in Figure 4. 
5. System Studies and Simulation Results 

The proposed method AFPSO based Congestion 
Management in a pool model has been illustrated on a 
75-bus Indian system and 39-bus New England system 
for both single and multi line congestion cases. And the 
results are compared with other evolutionary 
algorithms SPSO, RCGA and BCGA. All the EAs for 
the Congestion management problem are implemented 
using MATLAB 7.0 on a PC with a Intel Dual Core, 
2.0GHz and 3GB RAM. Owing to the randomness of 
the EAs, their performance cannot be judged by the 
result of a single run. Many trials with independent 
population initializations should be made to acquire a 
useful conclusion of the performance of the algorithm. 
An algorithm is said to be robust, if it gives almost 
consistent result during the trials for all experiments. 
Hence, in this paper 25 independent trials are 
conducted. The best, worst and mean obtained in 25 
trials are used to compare the performance of different 
EAs. The maximum number of function evaluations is 
set to 10000 for the population size of 50 for all the 
algorithms. Therefore, the number of iterations 
required for 10000 function evaluations is 200. 
5.1 Parameter Selection 

Optimal parameter combinations for different methods 
are determined by conducting a series of experiments 
with different parameter settings before conducting 
actual runs to collect the results. In RCGA, crossover 
probability PC is varied between 0.4 and 0.9 in steps of 
0.1 and for each PC the performance is analyzed. Other 
parameters such as mutation probability (Pm), 

crossover index (
c

η ), mutation index (
m

η ) and penalty 

factor (PF) are selected as recommended by Deb [21]. 
It is found that the following parameter setting 
produces the best result in terms of best and mean. 

Pc=0.8; Pm=1/n; 
c

η =5; 
m

η =20; PF=100. 

In SPSO, there are two parameters namely Vmax and 
inertia weight factor (w), to be adjusted for optimum 
performance besides swarm size. After series of 
experiments conducted, it is found that the following 
parameter setting produces the best result in terms of 
best and mean. 
Vmax=0.2; C1=C2=1; PF=100; w=0.4.  

5.2 39-bus New England system  

The 39-bus system is simplified representation of the 
345-kV transmission system in the New England 
region having       10 generators and 29 load buses. The 
congestion cost has been determined for a pool based 
model by considering the reactive power support 

provided by the generators and the optimally placed 
capacitors apart from real power scheduling of 
generation. The values of the generator PTCDFs and 
QTCDFs for congested line 34-14 of 39-bus system are 
shown in Table 4. The plots of PTCDFs and QTCDFs 
at each bus with respect to the congested line have 

been depicted in Figure 10. It can be seen from the 
Table 4 as well as Figure 10 that Zone-1 and 2 have the 
non-uniform values of PTCDFS and QTCDFs to the 
congested line power flow. The magnitudes of the 
sensitivity values are also much larger. Thus the 
generators G3, G8 and G10 are selected for the 
congested line 34-14 from the most sensitive zones 
Zone-1 and 2 to participate in the congestion 
management based on the qualifying bids in the 
market. The capacitor has been located optimally on 
bus-14 based on its most negative reactive power flow 
sensitivity index value which has been found to be -

0.3601. Whereas, the reactive power flow sensitivity 
indices at other buses are found to be less than the 
index at bus-14.   In the multi line congestion case, the 
two lines 34-14 and 36-21 have been found to be 
congested. For managing the congestion the generators 
G3, G4, G6, G8 and G10 have been selected from the 
most sensitive Zone-1 and 2 based on the qualifying 
bids in the market. 
The line ratings and base case line flows for 39-bus 

system are given as follows: 

a) Single line congestion:  
b) Line rating for line 34-14=2.500pu;  
c) Base case=2.67pu; 
d) Multi line congestion:  
Line rating for line 34-14=2.500pu;  
Base case=2.667pu; 
Line rating for line 36-21=3.000pu;  
Base case=3.195pu; 
The different cases taken for the study are: 
Case-1: With change in real power generation. 
Case-2: With change in real and reactive power 
generation without capacitor reactive power support. 
Case-3: With change in real and reactive power 
generation with capacitor reactive power support. 

5.3 75-bus Indian system  

The practical 75-bus Indian system represents a 
reduced network of Uttar Pradesh State Electricity 
Board’s (UPSEB )network comprising of 400-kV and 
200-kV buses with 15 generators, 24 transformers and 
97 lines. The values of the generator PTCDFs and 
QTCDFs for congested line 26-41 of 75-bus system are 
shown in Table 4. The plots of PTCDFs and QTCDFs 
at each bus with respect to the congested line have 



 

been depicted in Figure 11. It can be seen from the 
Table 4 as well as Figure 11 that Zone-1 has the non-
uniform values of PTCDFS and QTCDFs to the 
congested line power flow. The magnitudes of the 
sensitivity values are also much larger. Thus the 
generators G3, G12 and G13 are selected for the 
congested line 26-41 from the most sensitive Zone-1 to 
participate in the congestion management based on the 
qualifying bids in the market. In the multi line 
congestion case, the two lines 26-41 and 19-36 have 
been found to be congested. For managing the 
congestion the generators G3, G9, G12 and G13 have 
been selected from the most sensitive Zone-1 based on 
the qualifying bids in the market. 
The line ratings and base case line flows for 75-bus 
system are given as follows 
a) Single line congestion:  
Line rating for line 26-41=4.000pu;  
Base case=4.030pu; 
b) Multi line congestion:  
Line rating for line 26-41=4.000pu;  
Base case=4.030pu 
Line rating for line 19-36=2.000pu;  
Base case=2.055pu; 
The different cases taken for the study are: 
Case-1: With change in real power generation. 
Case-2: With change in real and reactive power 
generation without capacitor reactive power support.    
The optimal re-dispatch of active and reactive powers 
and Congestion Cost (CC) for 39-bus and 75-bus 
system using the proposed AFPSO based OPF and 
other EAs, for Case-1, Case-2 and Case-3, are shown 
in Table 2(a), 2(b) and 2(c) respectively. From the 
simulation results shown in Table 2(a), 2(b) and 2(c), it 
is observed that the Congestion Cost (CC) and optimal 
change in real and reactive powers with the proposed 
AFPSO based OPF, for all cases, are smaller as 
compared to the other EAs. It can also be seen from the 
Table 2(c) that capacitor reactive support is more 
effective in reducing the congestion cost. The 
congestion cost is found to be minimum with both 
generator and capacitor reactive power support in the 
system. 
It is also found that the generators are subjected to a 
lower magnitude of re-scheduling in the presence of 
reactive power provided by the generators and 
capacitors. From the Table 2(a), 2(b) and 2(c), it has 
been observed that the congestion cost for multi line 
congestion case is more as compared to single line 
congestion cases. Figure 5 to 8 shows the convergence 
characteristics of BCGA, RCGA, SPSO and AFPSO 
respectively. Figure 9 shows the comparison of the 
convergence characteristics of all the proposed 

methods. From these figures it can be observed that the 
AFPSO is better among the other EAs in terms of 
solution quality to reach the global optimum solution. 
From the Table 3(a), the computation time for the 
proposed AFPSO based OPF is found to be slightly 
higher as compared to SPSO based OPF as it takes 
more time per iteration due to the Fuzzy evaluation 
process. And the line flows in the congested lines, 
shown in Table 3(a) are found to be less for the 
proposed AFPSO based OPF as compared to the other 
EAs. For the purpose of comparison, the results are 
directly taken from the respective papers [9] and [11]. 
From the Table 3(b), the Congestion Cost is found to 
be less with the proposed AFPSO based OPF method 
as compared to the other EAs such as BCGA, RCGA, 
SPSO based OPF and the methods proposed in [11] 
and [9].  
Therefore from the Table 3(b) and Figure 12, it has 
been revealed that AFPSO based OPF provides the 
more economical solution to Congestion Management 
than the methods proposed in [11] and [9]. 

6. CONCLUSION 

This paper has presented an optimal power dispatch 
model for congestion management and minimization of 
congestion cost using Adaptive Fuzzy PSO (AFPSO) 
based OPF. The proposed method is compared with 
other Evolutionary Algorithms, viz. BCGA, RCGA 
and SPSO based OPF methods. The studies are carried 
out on 75-bus Indian system and 39-bus New England 
Test System. The impact of reactive power support 
from both the generator and capacitor has also been 
studied. From the results presented in this paper, 
following main conclusions can be made. 
1) The Congestion Cost with the proposed AFPSO 
based OPF method is found to be smaller as compared 
to the SPSO, RCGA and BCGA based OPF methods.  
2) The congestion costs for cases employing reactive 
power support from generators and capacitors are 
considerably less than the cases without any reactive 
support. 
3) The amount of rescheduling of real power 
transactions is reduced in the presence of reactive 
support considered in the system for congestion 
management. 
4) The Congestion Cost is significantly higher for 
multi line congestion case than single line congestion 
case. 
Thus, the proposed AFPSO based optimal rescheduling 
method is more effective in reducing the congestion 
cost and it offers more economical solution to the 
congestion management as compared to the BCGA, 



 

  

RCGA, SPSO and conventional optimization methods. 
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Figure 2. Member ship function of Normalized fitness, Current inertia weight and change of inertia weight 

 

   
 

 
Figure 10: PTCDFs and QTCDFs of all busses in the 39-bus System for the congested line 34-14 

 

Figure 10(b). QTCDFs at all the buses in the 39-bus 
system 

 

Figure 10(a). PTCDFs at all the buses in the 39-bus 
system 

Figure 3. Fuzzy evaluation of the inertia weight correction 
for an input set of (1, 0.7) from MATLAB simulation. 

 

TABLE 1: Fuzzy rules for 

Inertia weight correction 

Rule No. NormFIT w dw 

1 S S ZE 

2 S M NE 

3 S L NE 

4 M S PE 

5 M M ZE 

6 M L NE 

7 L S PE 

8 L M ZE 

9 L L NE 
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Figure 2(a). Membership of Normalized fitness 
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Table 2(a): Change in active power generation, congestion cost and time for 39-bus system for case-1 

39-bus New England Test System 
Single line congestion case  Multi line congestion case 

 BCGA RCGA SPSO AFPSO  BCGA RCGA SPSO AFPSO 

∆Pg3 -0.7289 -0.7294 -0.7278 -0.7261 ∆Pg3 -0.0634 -0.0633 -0.0633 -0.0632 

∆Pg8 0.3341 0.3335 0.3334 0.3326 ∆Pg4 0.2000 0.2001 0.1994 0.1992 

∆Pg10 0.4003 0.3996 0.3987 0.3981 ∆Pg6 -0.9997 -1.0006 -0.9972 -0.9960 

∆Pg8 0.4668 0.4664 0.4655 0.4649 

∆Pg10 0.4001 0.4001 0.3993 0.3986 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

3625.6 

3634.5 

3630.1 

 

 

 

3624.9 

3630.8 

3627.0 

 

 

 

3618.3 

3625.5 

3621.3 

 

 

 

3611.1 

3616.1 

3613.6 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

5253.1  

5274.1 

5263.6 

 

 

 

5252.1 

5267.9 

5261.7 

 

 

 

5242.6 

5254.6 

5249.3 

 

 

 

5232.1  

5242.5 

5237.2 

75-bus Indian Practical System 
Single line congestion case  Multi line congestion case 

 BCGA RCGA SPSO AFPSO  BCGA RCGA SPSO AFPSO 

∆Pg3 0.2046 0.2046 0.2040 0.2039 ∆Pg3 0.4490 0.4492 0.4480 0.4472 

∆Pg12 -0.4236 -0.4236 -0.4230 -0.4214 ∆Pg9 -0.5003 -0.4998 -0.4986 -0.4977 

∆Pg13 0.1999 0.1997 0.1996 0.1993 ∆Pg12 -0.1895 -0.1894 -0.1891 -0.1886 

∆Pg13 0.1999 0.2000 0.1997 0.1991 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

1948.8 

1954.6 

1950.8 

 

 

 

1948.4 

1953.2 

1950.5 

 

 

 

1944.9 

1949.3 

1946.5 

 

 

 

1941.0 

1944.8 

1942.2 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

3098.6 

3107.9 

3101.7 

 

 

 

3098.0 

3105.1 

3102.2 

 

 

 

3092.4 

3098.5 

3095.6 

 

 

 

3086.2 

3090.8 

3088.4 

 

Figure 11: PTCDFs and QTCDFs of all busses in the 75-bus System for the congested line 26-41 

 

Figure 11(a). PTCDFs at all the buses in the 75-bus 
system 

Figure 11(b). QTCDFs at all the buses in the 75-bus 
system 

Figure 12. Comparison of Congestion Cost 
 



 

 

Table 2(c): Change in active and reactive power generation, congestion cost and time for 39-bus system for case-3 

39-bus New England Test System 

Single line congestion Multi line congestion 
 BCGA RCGA SPSO AFPSO  BCGA RCGA SPSO AFPSO 

∆Pg3 -0.7022 -0.7014 -0.6999 -0.6987 ∆Pg3 -0.4997 -0.4994 -0.4992 -0.4977 

∆Pg8 0.3083 0.3080 0.3077 0.3068 ∆Pg4 0.2000 0.1998 0.1995 0.1992 

∆Pg10 0.3998 0.3996 0.3995 0.3985 ∆Pg6 -0.4513 -0.4509 -0.4501 -0.4494 

∆Qg3 -0.3882 -0.3883 -0.3870 -0.3866 ∆Pg8 0.3572 0.3570 0.3563 0.3559 

∆Qg8 0.3420 0.3422 0.3415 0.3405 ∆Pg10 0.3997 0.3996 0.3989 0.3983 

∆Qg10 -0.3999 -0.3995 -0.3987 -0.3984 ∆Qg3 -0.4996 -0.5002 -0.4989 -0.4979 

∆Qc14 0.3254 0.3255 0.3250 0.3244 ∆Qg8 0.3583 0.3577 0.3576 0.3567 

∆Qg10 -0.3625 -0.3619 -0.3617 -0.3612 

∆Qc14 0.3274 0.3271 0.3262 0.3257 

CC 

($/Hr) 

Best 

Worst 

Mean 

 

 

3468.1 

3478.5 

3474.4 

 

 

3467.4 

3475.3 

3470.6 

 

 

3461.1 

3468.0 

3464.5 

 

 

3454.2 

3459.3 

3457.3 

CC 

($/Hr) 

Best 

Worst 

Mean 

 

 

4632.3 

4646.2 

4639.9 

 

 

4631.3 

4641.9 

4637.5 

 

 

4623.0 

4632.2 

4628.7 

 

 

4613.7 

4620.6 

4615.9 

Table 2(b): Change in active and reactive generation, congestion cost for 39-bus 

system for case-2 

39-bus New England Test System 

Single line congestion Multi line congestion  
 BCGA RCGA SPSO AFPSO  BCGA RCGA SPSO AFPSO 

∆Pg3 -0.7064 -0.7063 -0.7061 -0.6983     ∆Pg3 0.1797 0.1797 0.1794 0.1793 

∆Pg8 0.3142 0.3144 0.3136 0.3105     ∆Pg4 -0.4505 -0.4511 -0.4501 -0.4488 

∆Pg10 0.3998 0.3998 0.3993 0.3950    ∆Pg6 0.3346 0.3346 0.3340 0.3330 

∆Qg3 -0.5001 -0.5001 -0.4986 -0.4938     ∆Pg8 0.3595 0.3593 0.3589 0.3581 

∆Qg8 0.6588 0.6594 0.6573 0.6512    ∆Pg10 -0.3905 -0.3901 -0.3894 -0.3886 

∆Qg10 -0.2457 -0.2457 -0.2452 -0.2425 ∆Qg3 0.4667 0.4661 0.4658 0.4649 

∆Qg8 -0.2528 -0.2527 -0.2523 -0.2519 

∆Qg10 0.1797 0.1797 0.1794 0.1793 

 

CC 

($/Hr) 

Best 

Worst 

Mean 

 

 

 

3496.8 

3507.3 

4501.5 

 

 

 

3496.1 

3504.1 

3500.9 

 

 

 

3496.1 

3496.7 

3492.0 

 

 

 

3482.8 

3488.0 

3484.6 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

5072.2 

5087.4 

5078.9 

 

 

 

5071.2 

5082.8 

5075.5 

 

 

 

5062.0 

5072.1 

5065.2 

 

 

 

5051.9 

5059.4 

5056.5 

75-bus Indian Practical System 

Single line congestion Multi line congestion  
 BCGA RCGA SPSO AFPSO  BCGA RCGA SPSO AFPSO 

∆Pg3 0.2001 0.2001 0.1994 0.1992 ∆Pg3 0.5685 0.5681 0.5674 0.5662 

∆Pg12 -0.4107 -0.4108 -0.4103 -0.4088 ∆Pg9 -0.5003 -0.5003 -0.4985 -0.4982 

∆Pg13 0.1999 0.2000 0.1997 0.1992 ∆Pg12 -0.3473 -0.3478 -0.3468 -0.3459 

∆Qg3 -0.4996 -0.4994 -0.4993 -0.4978 ∆Pg13 0.2001 0.1998 0.1997 0.1992 

∆Qg12 0.0346 0.0346 0.0345 0.0345 ∆Qg3 0.4474 0.4476 0.4467 0.4455 

∆Qg13 0.3869 0.3865 0.3860 0.3848 ∆Qg12 -0.4995 -0.5003 -0.4994 -0.4980 

∆Qg13 -0.4997 -0.4998 -0.4991 -0.4981 

 

CC 

($/Hr) 

Best 

Worst 

Mean 

 

 

 

1917.5 

1923.2 

1919.8 

 

 

 

1917.2 

1921.6 

1919.9 

 

 

 

1913.7 

1917.5 

1915.8 

 

 

 

1909.9 

1912.7 

1910.5 

 

CC  

($/Hr) 

Best 

Worst 

Mean 

 

 

 

3716.3 

3727.4 

3722.2 

 

 

 

3715.5 

3724.0 

3719.5 

 

 

 

3708.8 

3716.2 

3712.4 

 

 

 

3701.4 

3706.9 

3703.5 

 



 

  

  

 

 
 

 

 

Table 3(b): Comparison of Congestion cost for 39-bus system 

   
 

Case 1 
as in ref. 

[9] 

Case 1 
as in ref. 

[11] 

 
BCGA 

 
RCGA 

 
SPSO 

 
AFPSO 

Case-1 4242.8 3643.8 3625.6 3624.9 3618.3 3611.1 

Case-2 ------- 3514.4 3496.8 3496.1 3496.1 3482.8 

Case-3 ------- 3485.5 3468.1 3467.4 3461.1 3454.2 

 

Table 3(a): Line flows for all methods for 39-bus system 

   
 

 
BCGA 

 
RCGA 

 
SPSO 

 
AFPSO 

Line flows 
Line 34-14 

Line 36-21 

 
2.4995 
2.5515 

 
2.4993 
2.5514 

 
2.4990 
2.5510 

 
2.4990 
2.5510 

Computation 
Time in 
(Sec) 

 
40.12 

 
32.23 

 
29.55 

 
31.30 

 

Table 4: PTCDFs and QTCDFs of generators indifferent Zones for bothe test systems 

39-bus New England Test System for congested line 34-14 75-bus Indian System for congested line 26-41 

PTCDFs PTCDFs 

 

Zone 1 

 

Zone 2 

 

Zone 3 

 

Zone 4 

 

Zone 1 

 

Zone 2 

 

Zone 3 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

 

Gen 

No. 

 

 

PTCDFs 

 

1 -0.0891 2 -0.1201 9 -0.0599 4 0.0621 1 -0.1001 4 0.0340 5 0.0398 

3 0.1691 8 -0.1069   5 0.0621 2 -0.0789 8 0.0171 6 0.0398 

  10 -0.128   6 0.0629 3 0.2212 10 0.0061 7 0.0420 

      7 0.0629 9 -0.1178 14 0.0389   

 11 0.0048 15 -0.0269   

12 -0.1329     

13 -0.1309     

QTCDFs QTCDFs 

 

Zone 1 

 

 

Zone 2 

 

 

Zone 3 

 

 

Zone 4 

 

Zone 1 

 

 

Zone 2 

 

 

Zone 3 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

 

Gen 

No. 

 

 

QTCDFs 

 

1 -0.0499 2 -0.1221 9 -0.0566 4 0.0538 1 0.0769 4 0.0340 5 0.0398 

3 0.1590 8 -0.1049   5 0.0538 2 0.0348 8 0.0171 6 0.0398 

  10 -0.1248   6 0.0531 3 0.1455 10 0.0061 7 0.0420 

      7 0.0538 9 0.0538 14 0.0389   

 11 0.3588 15 -0.0269   

12 0.0629     

13 0.0648     
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Figure 5. Convergence characteristics of  
BCGA based OPF 
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Figure 6. Convergence characteristics of  
RCGA based OPF 
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Figure 7. Convergence characteristics of  
SPSO based OPF 

Figure 9. Compariosion of Convergence characteristics 
of BCGA, RCGA, SPSO and AFPSO 

 

Start 

Run base case power flow using FDLF 
program and find the initial values. 
 

Find PTCDFs and QTCDFs using 
equation (4) 

Form the zones/clusters and select the most 
sensitive generators as explained in section 2 

Iter=1 

Determine ∆Pg, ∆Qg, and ∆Qc and update powers 

,g g g g

new old new oldP P P Q Q Qg g

new oldQ Q Qc c c

= + ∆ = + ∆

= + ∆
 

Determine the line flows using FDLF  

Congestion 

relieved? 

Iter=Iter

+1 

NO 

YES 

Record the optimal values of Congestion 
Cost, change in powers, line flows and time  

Stop 

Run OPF using AFPSO to solve (6) to (25) for 
optimal reschedule of active and reactive powers  

Figure 4. Flow chart for proposed AFPSO based congestion 

Figure 8. Convergence characteristics of  
AFPSO based OPF 
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