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Abstract: This paper aims to investigate iron losses in a 
surface mounted permanent magnet motor. For this, an 
overview of common iron loss models has been initially 
presented. Then, three different loss models have been 
applied for the computation of iron losses in the studied 
machine. The reason of testing several loss models is to 
discuss their advantages and disadvantages and to discuss 
their applicability, stability and efficiency.  To perform this 
study, finite element method is used. Indeed, a considerable 
attention has been paid to the dynamic modeling of the 
rotating machine. Afterward, the employed models have 
been incorporated into the finite element analysis. Finally, 
the obtained results are compared and analyzed. Based on 
the obtained results, on one hand, it is revealed that 
traditional technique is fast and stable while the hysteresis 
models necessitates a lot of time and requires an adequate 
iterative procedure. On the other hand, it is shown that 
traditional technique is simplistic unlike the hysteresis 
models which are more general and accurate.  
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1. Introduction 
 Nowadays, permanent magnet synchronous 
machines (PMSM) are currently used in a board range 
in electric vehicle applications [1] thanks to their 
remarkable advantages such as flexibility of control, 
higher torque capability, higher power density, higher 
efficiency [2-4]. Particularly, surface mounted 
permanent magnet synchronous machines have been 
extensively utilized owing to their compact structure, 
low weight and small size [5]. In this work, the 
considered topology is a surface mounted permanent 
magnet motor. 
 From a technique point of view, permanent magnet 
synchronous machines are basically made of 
ferromagnetic materials. That is why; these materials 
have been increasingly utilized. In fact, considerable 
attention has been paid to the investigation of 
ferromagnetic materials properties in order to improve 
machines performances and efficiency as well. For this, 
several ways have been studied. The most crucial way 
is the analysis of iron losses in these parts in order to be 
considered in the design procedure. 
 During recent years, the investigation of iron losses 

has been regarded as crucial issue. This fact has been 
considered an important subject of research. So, many 
works have been performed to deal with this problem 
[6-9]. Although the great amount of research that is 
done into that field, it has remained a challenge task up 
this date. 
 Generally, loss models may be classified under two 
main groups. The first group corresponds to models 
that estimate losses by post processing the magnetic 
field solution. Hence, losses are not included into the 
magnetic field solution. The second group represents 
models that integrate losses into the magnetic field 
solution. 
 In practice, it is difficult to deal with iron losses in a 
rotating electrical machine because of the complexity 
of the geometry and the interdependency of different 
physical phenomena that occur. In various zones of the 
magnetic circuit, the flux distribution is not pulsating 
with time in one direction. It is generally fully two-
dimensional and highly distorted. Accordingly, 
efficient approach is required for accurate calculation 
of iron losses. In actuality, many researches have been 
performed to deal with this avoided. 
 This work aims for the computation of iron losses in 
a synchronous permanent magnet motor using three 
different techniques. For this end, an overview of iron 
loss models is presented. The studied machine is 
modeled by means of finite element method. Then, the 
adopted approaches are coupled with a two 
dimensional transient finite element analysis (FEA). 
So, many deep simulations are performed.  Finally, the 
obtained results are discussed in order to show where 
these models fail and where they prevail and to discuss 
their effectiveness and their applicability.  
  
2. Overview of Iron loss models 
 Fundamentally, the analysis of iron losses is a vital 
issue since it detriment electrical devices. To deal with 
this issue, many models have been developed in the 
literature.  In the following, the most important and 
common models for iron losses are reviewed. 
 
2.1 Traditional models 
 Historically, models used for the prediction of iron 
losses in ferromagnetic materials goes back to the well 



 

 

known formula which is introduced by Steinmetz in 
1892. Based on this approach, the lamination 
ferromagnetic material is supposed to be supplied by a 
unidirectional and sinusoidal magnetic flux. The iron 
losses are evaluated as follows [10]: 

mP kf B 

                     

                                                    

(1) 

Where 

     f  is the frequency. 

    mB  is the peak value of the magnetic induction.  

    ,k   and  are the model coefficients, depending 

on the used material. 

     After that, Steinmetz separated the total iron losses 

into hysteresis losses and eddy-current ones. Those 

losses are then expressed as follows [11]: 
2 2 2

hyst m cl mP C fB C f B 

                     

                           

(2) 
Where 

      hystC
 
is the hysteresis loss coefficient 

      clC
 
is the eddy current loss coefficient. 

     Afterwards, the original formula has undergone 

numerous modifications in order to be ameliorated. In 

1988, Bertotti separated the total iron losses into 

hysteresis losses, eddy-current losses and excess losses. 

This loss theory states that under sinusoidal 

magnetization, the total iron losses are given by [12]:
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(3) 

Where 

     hystP  represents the hysteresis losses 

     excC is the excess losses coefficient. 

       is  d  the conductivity of the used material  

     d  is the  lamination thickness. 

     Subsequently, this approach has become widely 

adopted by many researchers.  

    The previously presented iron loss models are 

generally based on the assumption of sinusoidally 

alternating magnetic flux. However, the magnetic flux 

in rotating machines is not unidirectional and 

sinusoidal; it is generally non sinusoidal and highly 

distorted. Fundamentally, the sources of the flux 

distortion are the slotting effects and the harmonics 

caused by pulse-width modulated (PWM) inverter... 

Consequently, the previous models have been 

undergone several modifications in order to account for 

arbitrary flux density waveforms and to improve the 

considered approximations.  

    Practically, the two-component method was 

modified to consider arbitrary flux waveforms and 

minor loops [13, 14]. In addition, in [15] the statistical 

loss theory of Bertotti has been generalized in order to 

consider the dependence of the eddy-current and excess 

losses on the magnetic flux density derivative. 

Accordingly, the iron losses are computed as follows: 
322 2
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(4) 

   Basically, the statistical loss theory of Bertotti is 

commonly used for the computation of iron losses 

under alternating field excitation and  under rotational 

flux density waveform as well, by introducing some 

correcting factors for the hysteresis loss [16-18].  

    Recently, traditional approaches have been widely 

applied in research although they are generally 

considered grossly simplistic. The impetus for their 

attractiveness is thanks to the following reasons [19]:    

 First, the implementation of those models is stable 

since only a lossless single-valued magnetization curve 

is required. In reality, the losses are calculated by post 

processing the magnetic field solution. Second, the 

identification of models parameters is simple. Third, 

the accuracy of the obtained results is acceptable in 

particular regimes and frequencies. Alternatively, the 

post processing models have many drawbacks which 

outweigh the aforementioned advantages. In fact, the 

extensions of the statistical theory of Bertotti are 

suitable only for applications performed in low 

frequency. In addition, the minor loops effects are not 

modeled properly. Furthermore, the effects of core 

losses on the machine characteristics cannot be 

examined. 
 

2.2 Advanced techniques 

    Fundamentally, the track of the B-H behavior is so 

important for the prediction of magnetic losses because 

iron losses can be determined from the loops area. So, 

many models have been proposed in the literature to 

represent the relation ship between the magnetic flux 

density and the magnetic field intensity. Most of the 

developed models are summarized in the next 

paragraphs. 

    Physically, the magnetization process is complicated 

because of the numerous intrinsic complex phenomena 

that can occur during the magnetization mechanism. 

Those magnetic features are domain walls dynamics, 

hysteresis, and eddy current. Indeed, the hysteretic 

behavior is the most complex property of magnetic 

materials.  Mainly, the modeling of this phenomenon is 

a crucial issue. 

    Generally, the term hysteresis is used to examine 



 

rate-independent hysteresis. So, hysteresis loops are 

modeled purely. In fact, the investigation of the static 

hysteresis property only is considered basic and more 

comprehensible. However, from a physic point of view, 

eddy-current problem is an inherent property of 

ferromagnetic materials. These magnetic aspects are 

small details. So, it is difficult to deal with them.           

      Naturally, the hysteretic behavior and eddy-current 

effects are also physically interconnected. Therefore, it 

is vital to adequately model them. In that case, 

modeling hysteresis loops efficiently requires rate-

dependent-hysteresis models. The rate of the magnetic 

field modifies the form of the hysteresis loop and 

enlarges its area; hence, it modifies the energy profile. 

On the basis of this study, dynamic loops shape has to 

be carefully modeled in order to assure accurate 

prediction of iron losses. For this end, advanced 

techniques have been proposed in the literature. In fact, 

many hysteresis models have been widely studied in 

the literature [20-22]. Most of them are static in nature. 

But, some of these approaches have been generalized 

in order to consider the dynamic effects. These 

techniques are physically based. They aim for the study 

of certain physic phenomena such as hysteresis by 

modeling the hysteresis loop shapes. Moreover, these 

models attempt to model iron losses properly by 

integrating losses in the magnetic field solution. 

    Below, the most important and common used 

models for hysteresis modeling are reviewed. 
 

2.2.1 Static hysteresis models 

    The most popular static hysteresis models are 

Preisach model and Jiles-Atherton model. In deed, the 

static Preisach model was introduced by Frederick 

Preisach Neel in 1935 to describe the hysteresis loss 

[20].  It was considered a great invention because it is 

physically based. This approach assumes that magnetic 

material behavior can be descried via an infinite set of 

elementary rectangular hysteresis loops ( )H . On 

the basis of Preisach theory, the flux density can be 

expressed as [21]: 

( , ) ( )
S

B p H d d     
                                     

(5) 

Where  

       is the upper switching fields. 

      is the lower 

     ( , )p   is the distribution function over the 

Preisach triangle in the Preisach plane. 

       S is the  Preisach triangle that is mathematically 

defined as: 

{( , ) | , , }s sS H H         

                  

(6) 

 Where 

     sH is the magnetic field intensity in the saturation. 

     Jiles-Atherton model was introduced by Jiles and 

Atherton in (1984, 1986) [22]. It is based on some 

hypothesis concerning the domain wall movement. The 

considered assumptions lead to a differential equation 

with five parameters to identify.  

    In [23, 24], it is stated that the Jiles-Atherton model 

is characterized by simplicity and speed. However, the 

implementation of this model requires many 

experimental data which are not usually available. It is 

also shown in the same articles that the attractive 

features of Preisach model are accuracy, efficiency and 

generality.  These considerable advantages lead to its 

popularity.  
 

2.2.2 Dynamic hysteresis models 

    Different methods have been proposed in the 

literature to model the dynamic hysteresis loops [25-

28]. The most known models are the Preisach model, 

the Jiles-Atherton model and the E&S one. In this 

section, a brief review of the dynamic hysteresis 

models is provided.  

    In 1988, Mayergoyez tried to generalize the static 

property of the classic Preisach model to account for 

dynamic effects [24]. He constrained the distribution 

function to be dependent on the time derivative of the 

magnetic field. Therefore, the dynamic Preisach model 

is mathematically represented as follows [25]: 

 ( , , ) ( )
S

dB
B p H d d

dt                            (7) 

     In 1992, Bertotti proposed a dynamic generalization 

of the Preisach hysteresis model [26]. This theory 

supposed that the Preisach operator switches at a finite 

rate to consider the dynamic effect. Similarly, Jiles has 

attempted to compel several modifications to the 

original model in order to take dynamic effects into 

account [27].  Furthermore, the Generalized Chua-type 

model has undergone several modifications to consider 

eddy-current effects. Then, the relationship between the 

magnetic field density and the magnetic field intensity 

is as follows [28]: 
2
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Where 

     
rv is the reflectivity coefficient  

     
iv   is the  hysteresis one.  

     1B   is the fundamental component of the magnetic 

induction  



 

 

    1w  the fundamental component of the *.  

      Stands for  

    The lack of reliable experimental data hinders the 

use of these dynamic hysteresis models.   

    Advanced techniques aims for the investigation of 

iron losses more adequately seeing that they are 

physically based. Hence, they deal with some 

complicated phenomena. For instance, hysteresis loops 

including minor loops are properly modeled. 

Furthermore, according to these models iron losses are 

incorporated into the finite element analysis. So, they 

influence the field solution. Subsequently, the machine 

characteristics can be examined.  Despite the above 

advantages, advanced models suffer from a remarkable 

problem which is high computation time. The 

convergence is also vulnerably reached in several 

cases. 

 
2.3 Hybrid techniques 

     A technique which is referred to as hybrid technique 

is a combination between a hysteresis model and a post 

processing one. Hybrid techniques aim principally for 

the consideration of the majority of loss phenomena 

using simple concepts. According to these techniques, 

iron losses are generated and calculated from the total 

applied magnetic field strength which is decomposed in 

three components as follows [19]: 

( , ) ( , ) ( , ) ( , )h cl exH t B H t B H t B H t B             (9) 

 Where 

     ( , )hH t B represents the hysteresis component 

which is determined by employing a suitable static 

hysteresis model.  

     ( , )clH t B  corresponds to the eddy-current 

component.  

    ( , )exH t B  represents the excess component.  

     This approach is referred to as an hybrid techniques. 

Indeed it is a combination between a static hysteresis 

approach and an empirical one. Hybrid techniques are 

characterized by the generality, the stability and the 

ability to integrate the losses on the field solution. 
 

3. Adopted models formulations 

     In this work, three different techniques have been 

adopted for the analysis of iron losses in the studied 

machine: a traditional technique, an advanced 

technique and a hybrid one. 

    Concerning the first method, the post processing 

model developed in [6] is employed for the estimation 

of iron losses in the studied topology. According to this 

model, iron losses are segregated into three 

components including hysteresis losses, eddy current 

losses and excess one. Then, they are computed using 

the following formulations [7]: 

( ) ( ) ( ) ( )hyst cl exP t P t P t P t  
                                

(10)
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    Where 

     xH  is the radial components of the magnetic field 

intensity  

    yH is the tangential component of the magnetic 

field intensity  

    xB  is the radial component of the induction  

    yB  is the tangential component of the induction. 

 
     , cK , eK and eC are the model parameters.  

    The model parameters are determined using 

experimental data. 

    If the magnetic field varies with a periodic manner, 

the average iron loss density can be determined by 

integrating the previous equations over half period as 

follows: 

2
( )hyst hyst

T

P P t dt
T

 
                   

(14)
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T
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(15) 

2
( )ex ex

T

P P t dt
T
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(16) 

Where 

    T  is the period. 

     Since this model is incorporated into two 

dimensional finite element analyses, the hysteresis 

losses can be obtained by summing hysteresis losses 

per element over the elements number. Then, the total 

hysteresis losses are obtained as follows: 
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(17) 

    The used magnetic parameters are determined for 

each finite element e  at any time step jt . 

Where  

    p is the pair pole number,  

    L  is the machine length,  

   eiA  is the area of the element number i ,  

    eN  is the total number of elements mesh  

    N  is the total number of finite element analysis 

steps.  

The above equation has been coupled with the finite 

element analysis in order to determine the iron losses in 

the studied motor. 

    Similarly, the classical eddy current loss is 

determined as: 
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     In the same way, the excess losses can be evaluated 

as: 
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Concerning the second technique, a vector hysteresis 

model has to be adopted to describe the relation ship 

between magnetic flux density and magnetic field 

intensity in the studied machine in order to take into 

account the rotational magnetic field. In fact, the 

magnetic field in an electrical machine is not 

unidirectional. 

In the present work, the vector Preisach model is 

selected to be adopted to handle the static hysteresis 

component for certain reasons. Indeed, it is by now 

considered the most employed hysteresis model. It is 

considered an efficient tool for hysteresis modeling 

since it is a phenomenological approach. Additionally, 

it is characterized by an elegant mathematical 

formalism. 

According to this theory, the predicted H is given by 

[29]: 

1

2
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n n n

N
s v

n

H H B e e  






                              (20) 

Where 

    dN is the number of direction  

     e is the unit vector along the direction defined by 

the angle . 

    n

s vH


is the geometric projection of H, determined 

by the scalar Preisach model in the direction along 
n

e  . 

In practice, handling the hysteresis behavior of a 

magnetic material using the vector Preisach model 

requires the determination of the Preisach density. So, 

the parameters of the used function have to be carefully 

identified in order to accurately model the hysteretic 

behavior. In our case, the used distribution function is a 

Lorentzian-modified one which is defined as follows 

[29]: 
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Where  cH  is the coercivity field. 

*a IR
                                                            

(22) 

[1, ]s

c

H
b

H
                                                        (23) 

Where sH  is the magnetic field at saturation. 

   This approach is used to model the hysteresis loops 

and to predict iron losses too.  

    Concerning the third technique, an hybrid model is 

used to investigate dynamic hysteresis loops in the 

studied topology and to evaluate iron losses too. This 

model is represented by the following formulation [19]: 
0.5
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Where 

     
( , )hH t B represents the output of any suitable static 

hysteresis model. 

     clC  is the eddy current loss coefficient. 

     The eddy current coefficient is given by the 

following expression: 
2

12
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d
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
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( )
( ) 1
dB t

sign
dt
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    This parameter reflects the behavior of the magnetic 

flux density, whether increasing or decreasing.  



 

 

    In this study, the fist term of the model is calculated 

by applying the Preisach model. 

Since this technique is employed for the computation 

of iron losses in a surface mounted permanent magnet 

motor, a vector model in developed to account for 

rotational magnetic field.  

    According to the advanced model and the hybrid 

one, the total power losses are computed using the 

Poynting vector theorem as: 

1

1
( )

T

yx
x y

T

dB
P H dt

T dt

dBdB
H H dt

T dt dt


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


                          

(26) 

The alternating power losses component can be 

computed as follows: 

1
cosa

T

d B
P H dt

T dt
 

                               

(27) 

Where 

      is the angle between B and H .  
The rotational losses component can be evaluated as 

follows:  

  1
( )r z

T

d
P H B dt

T dt


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(28) 

Where 

     is the angle between the magnetic flux field B and 

the x-axis.

 

 

   In this work, the total power loss is calculated the 

Poynting vector theorem. In reality, the magnetic field 

components are determined from a two dimensional 

finite element analysis. Accordingly, the magnetic 

losses per element are calculated as follows:
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    The used values are determined from the finite 

element analysis.  

    As it has been previously mentioned, the analysis is 

restricted to a half period. Consequently, the interval 

between consecutive time steps is determined as 

follows: 

1
2

j j

T
t t t

N
                                                 (30) 

Where   

   jt  is the current instant 

   1jt   is the previous instant. 

    The total magnetic losses can be obtained by 

summing losses per element over the elements number. 

So, the total magnetic losses are evaluated as follows:
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4. Application to a synchronous permanent magnet 
motor 
 
4.1 Machine data 

The studied machine, illustrated in Fig. 1, is a 3-phase, 

4-poles, 48-stator slots configuration. This topology is 

synchronous surface-mounted permanent magnets 

motor with an outer rotor, a radial air gap flux and 

distributed windings. The stator is constructed of 

laminated iron (M800-65A). The rotor core is made up 

of iron too. The used permanent magnets are the 

Neodymium-Iron-Boron (NdFeB).The different parts 

of the machine are defined by these models: The 

laminated iron is defined by the initial magnetization 

curve. The utilized permanent magnet is defined by the 

relative permeability r , the coercive force cH  and 

the residual flux density rB  . 

The machine characteristics are given in table 1. 
Table 1 
Machine characteristics  
 
Nominal torque 

(N. m) 

 
Nominal output 

Power (kW) 

 
Nominal Speed 

(rpm) 
 

60 
 

9.42 
 

1500 

 

 
Fig. 1.General layout of the SPM [30]. 

The analysis of the studied machine by means of FEM 

is quite difficult. Due to the motor’s periodicities and 

symmetries, we take into account one quarter of the in 



 

the analysis process. Additionally, we apply some 

boundary conditions to assure the continuity of the 

model. The meshed study domain is illustrated in the 

following figure. 

 
 

Fig. 2. Meshed study domain and boundary conditions. 

 

4.2 Finite element analysis  

In this section, a two dimensional finite element 

analysis is carried out to investigate the magnetic field 

behavior in the studied machine. The two-dimensional 

finite-element formulation of the nonlinear problem 

can be expressed as follows:  

   z
FP z z

A
v A J

t



   


                         (32) 

Where  

     FPv  is the coefficient of fixed point method.  

     zA  is the potential vector  

    zJ is the current density one.  

    The magnetic flux density components are 

determined from the above analysis results.  The 

obtained values are then used as input of the applied 

models.  

    Primarily, the employed models have been 

identified using some experimental data generally 

provided by manufacturer. The traditional model has 

been identified using experimental data illustrated in 

the Figure 3 by minimizing the quadratic error 

between experimental data and calculated ones. 

    Similarly, the advanced model is indentified using 

the material technique data illustrated in Figure 5 by 

minimizing the quadratic error between measured data 

and simulated ones.  

 
Fig.3.Experimental data of iron losses of the used 

material [7]. 

    In order to prove that the Preisach model parameters 

are indentified properly, a comparison between the 

simulated and experimental major loops of the 

considered material is performed. The obtained result is 

illustrated in Fig. 5. 

 
Fig.4.Experimental and simulated hysteresis loops 

[29]. 

    It is clear that the obtained result is satisfactory since 

the modeled hysteresis loop is in a good agreement 

with the measured one. 

    Afterwards, the used models have been coupled with 

the two-dimensional finite-element analysis. In the case 

where the advanced technique and the hybrid ones are 

used, an iterative method ought to be employed to 

invert the applied models in order to be suited for 

modeling hysteresis phenomenon when coupled with 

the finite element equations. In the literature, several 

iterative methods have been given to deal with this 

problem: Fixed point technique or Newton-Rapshon 

method.  

      In this work, the fixed point technique is chosen to 

be employed as it is suitably stable and able to cope 

with nonlinearity. 

 

5. Simulation results 

   After the implementation of the advanced model and 

the hybrid one, we investigate the static hysteresis 

behaviour and we determine the dynamic hysteresis 

Periodicity 

Simulated 

Experimental 

  

Dirichlet condition 



 

 

loops in such point in the machine. In fact, local 

computation has been carried out in particular elements 

belonging to a stator tooth. The obtained results are 

illustrated in Figs. 5, 6, 7 and 8. 

 
Fig.5.Static hysteresis loop at a point in the middle of a 

tooth. 

 
Fig.6. Dynamic hysteresis loop at a point in the middle of 

a tooth. 

 
Fig.7. Static hysteresis loop at a point in the root of a tooth. 

 
Fig.8. Dynamic hysteresis loop at a point in the root of a 

tooth. 

    Referring to the previous figures, one can notices 

that dynamic loops are quite bigger than the static 

hysteresis one. This proves that the hybrid techniques, 

takes into account dynamic effects. Also, we can 

remark that both models consider minor loops. 

According to Figure 9, we notice that the effect of 

minor loops is so clear. So, we can deduce that hybrid 

technique is able to take small details into account.  

Consequently, it is clear that both hysteresis models 

model hysteresis loops properly. Particularly, the static 

hysteresis model is more comprehensible while the 

hybrid model is general. 
After the investigation of magnetic field in the 

machine, iron losses are computed using models 
developed in the previous sections (see table 2). 

 
Table 2 
Machine iron losses under load conditions 
 

Models 
 

Traditional technique 
 

Advanced technique 
 
Hybrid technique 

 
Total losses (W) 

 
386.87 

 
507.63 

 
536.37 

 
Hysteresis losses (W) 

 
253.96 

 
417.09 

 
445.83 

 

    Accordingly to the previous table, it is obviously 

clear that the losses determined using the traditional 

method is the lowest value. This is because of the use 

of the lossless single-valued magnetization curve. In 

other words, the iron losses value does not affect the 

machine characteristics.  



 

    In contrary, we can remark that the value of iron 

losses computed using the hybrid technique is the 

highest value. This is due essentially the fact that 

hybrid technique account of small physique details. 

This technique is physically based so it affects the 

physique phenomena inside the machine.  

    Similarly, the value of iron losses computed using 

the Preisach model is comparable to the value 

calculated using the hybrid model. Subsequently, the 

obtained results are quite reasonable. 

   Referring to the previous table, we notice that the 

value of hysteresis losses predicted using the advanced 

technique and the hybrid one is quite higher than the 

one estimated using the traditional technique. This 

confirms the accuracy and the efficiency of the 

hysteresis models  

since they are physically based and they affect the 

machine characteristics. Moreover, all the models are 

stable.  
  

6. Conclusion 
    This work deals with the investigation of iron losses 
in a surface mounted permanent magnet motor. At first, 
a summary of general iron loss models has been 
presented. Indeed, these models may be classified 
under two groups. The first group represents models 
which evaluate losses by post processing the magnetic 
field solution. Hence, losses are not incorporated into 
the magnetic field solution. The second group 
corresponds to models that integrate losses into the 
magnetic field solution. Afterward, a dynamic 
modeling of the studied machine is performed using 
the finite element method.  Then, three loss models 
have been incorporated into two dimensional stepped 
finite element analysis to evaluate iron losses in the 
studied machine. The reason of testing some different 
loss models is to discuss their advantages and 
disadvantages and to discuss their applicability, 
stability and efficiency as well.  Finally, the obtained 
results are compared and analyzed. Based on the 
obtained results, it is shown that the post processing 
model is the fastest one. It is stable too. But, it is 
simplistic since it post processes the magnetic solution. 
 On the contrary, the advanced model and the hybrid 
one requires lots of time to converge. Nevertheless, 
they are phenomenological. So, they influence the 
magnetic features of the machine. Particularly, the 
hybrid technique is more general, it accounts of the 
majority of physique phenomena and it is stable too. 
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