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Abstract: In this paper we describe a fault tolerant 
control (FTC) based on detection of stator inter-turn 
short circuit (ITSC) faults in doubly-fed induction 
generators (DFIG) for wind power applications. The 
proposed technique is based on the adaptive observer 
(AO). We show how the proposed approach can be 
successfully adopted in order to offset the effect of all 
possible faults which can occur. To achieve this goal, we 
develop an algorithm that allows the passage from 
nominal controllers designed for healthy condition, to 
robust controllers designed for faulty condition. This 
algorithm serves as fault indicator as well.  
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I. INTRODUCTION 
Wind energy generation is an economic and own alternative 
relatively to various exhaustible energy sources [1]. 
 this paper deals with the problem of the wind turbine speed 
control. The considered generator is a doubly fed induction 
(DFIG). The rotor is connected to the power grid through an 
AC-DC-AC converter, while the stator is directly connected 
to the network. The fundamental advantage of this 
arrangement is that the power flowing through the converter 
is only a fraction of the total wind turbine power.  
To maximize the wind energy extraction, variable wind 
turbine speed control (MPPT), were proposed. 
This technique requires the knowledge of the wind speed, 
and consists in varying the turbine speed reference 
according to that of the wind [2-3]. In the other hand, 
different techniques have been used to design the MPPT 
control law. In [7-5-8], a simple linear controller is 
proposed. However, for systems such as DFIG-wind 
turbine, which enjoys non-linear dynamics, the performance 
of such regulator degrades during wide variations of wind 
speed. Also neural, fuzzy or hysteresis methods are used to 
design the wind turbine control system [9]. However, those 
techniques do not make use of the exact nonlinear DFIG-
wind turbine model in the control design. Consequently, the 
obtained controllers are generally not backed by formal 
stability analysis and their performances cannot be 
expressly quantified. 
The fault detection and localization unit detects the 
occurrence of fault and determines its nature. This can be 
realized by analysing the change of the rotor resistance and 
then take the appropriate decision: accept the default or stop 
the machine and execute a curative maintenance. [10-12]. 
To obtain this difficulty, some previous works propose 

adaptive observer for estimating rotor resistance [4-6].  
In this paper proposes a novel adaptive estimation method 
developed, to design an adaptive observer 

The controlled quantities are calculated using stability 
analysis based on Lyapunov theory. Theis method of control 
is implemented by Matlab/simulink and several steady 
results are given and confirm the validity of the approach. 

 

 
 
 
Fig.1 Block diagram of speed and reactive power 

controls of DFIG 

The schema of the device studied is given by Fig.2. 
 

 
 

Fig. 2 Block scheme of the wind energy conversion 
system based a DFIG. 



                
  

 
 

 
II. DFIG MODELING 

In the stator reference frame (αs-βs), the 
mechanical/electrical energy conversion process is 
described by the equations of DFIG are defined by:  
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The equations of stator and rotor flux are given as 
follows: [4-20]    
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The electromagnetic torque can be expressed by:  
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The principle of vector control with stator flux oriented 
of the DFIG is shown in Figure (3). The stator flux vector 
will be aligned on the‘d’ axis and the stator voltage vector 
on the ‘q’ axis, this last constraint is favorable to obtain a 
simplified control model [23]. 

 
Fig. 3 Respective position of the references (αs, βs) 

and  (αr,βr) 
 
In a stationary reference frame (αs-βs), The DFIG 
electrical equations written in the state-space can be 
expressed as follows: [22]. 
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And ( )rsm LLL /1 2−=σ   , mecpw Ω=  

where Rs and Rr are the stator and rotor resistance, 
respectively.. Ls , Lr and Lm are the stator and rotor 
full inductance, the magnetization inductance, 
respectively. 
The electromagnetic torque equation becomes: 
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II.   DFIG WITH STATOR INTER-TURN FAULT 
OF A STATOR PHASE WINDING 

An inter-turn fault of a stator phase winding is a result 
of the deterioration of insulation between the 
individual coils. This is in essence a short circuit of 
the stator phase winding, which changes the 
symmetrical stator current to one that is asymmetrical. 
For predicting the electrical behavior from the stator 
supply due to an inter-turn fault, it would appear that 
the impedance of the short-circuited stator winding 
has decreased. [11] 
The degree to which its impedance has decreased 
depends on the severity of the fault. To simulate the 
inter-turn fault on the DFIG, the impedance of the 
stator phase winding is decreased by placing a resistor 
in parallel with the winding, as shown in Fig. 4 [16]. 

 

 

 

Fig. 4 Stator winding configuration with the inter-turn 
short circuit fault in phase ‘a’. 

 

The stator resistance matrix can be rewritten as 
follows:  
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          However, we keep the matrix of stator 
voltages unchanged.  

If we mean by «µ » fraction of the number of shorted 

turns of phase « a » , then we have a healthy portion 
of a fraction µ−1  of turns and we suppose the 

phases "b" and "c" healthy.  We will have the new 
inductance stator matrix following: [15-17] 
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(7) 
Therefore, the matrix of mutual inductances is: 
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Rotor inductance matrix remains equal to that of the 
healthy cases. [ 18-19-21] 
 

III.   ADAPTIVE OBSERVER 
 

        The objective is to determine the mechanism 
adaptation of the speed and the rotor resistance. The 
structure of the observer is based on the DFIG model 
in stator reference frame.  
A linear state observer can then be derived as follows 
by considering the mechanical speed as a constant 
parameter during a sampling time since its variation is 
very slow. 

The model of the observer is written [11-13-14]  
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The machine parameters are assumed to be perfectly 
known, the rotor resistance is unknown. We define 

∧
−= rrr RRRδ                              (10)      



                
  

The symbol ∧  denotes estimated values and G is the 
observer gain matrix. We will determine the 
differential system describing the evolution of the 
error                  
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The state matrix of the observer can be written as        
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Then, we can write      
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We define the Lyapunov function 
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λ  is a positive scalar. 

 This function should contain terms of the difference 

δω  and rRδ to obtain mechanism adaptation. The 

stability of the observer is guaranteed for the 
condition          
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     The rotor flux components can not be measured. In 
addition, the flux dynamic is faster than the machine 
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    We consider the hypothesis of a slowly varying 

regime for the machine parameters, thus    
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Finlay, we obtain     
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This condition can be verified if 
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We obtain the adaptation mechanism in the form  
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The matrix of gain G is selected such as the 
eigenvalues of the matrix A−GC are in the left plane 
half of the complex plan and that the real part of the 
eigenvalues is larger in absolute value than the real 
part of the eigenvalues of the state matrix A.  

The estimated electromagnetic torque is expressed    
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IV. SIMULATION RESULTS 

   A doubly-fed induction generator model was 
developed in Matlab/simulink, the simulation results 
shown below are for a 7500W generator, The 
simulation test involves the wind speed variation and 
the reactive power reference constant equals to zero. 

A  Health operation 
 

       the DFIG is tested and simulated in a healthy 
operation with wind speed applied to the DFIG then  
the simulation results for active and reactive power 
developed as shown in Fig (6-7-8) 

 
Fig. 5 Variation of wind speed 

 

 

Fig. 6 Speed of healthy DFIG and its reference with 
variation of wind speed 

 
Fig. 7 Electromagnetic  torque 

 

 
Fig.8 Stator active and reactive powers of healthy DFIG 

with wind speed variation 
 

B  Inter-turn stator fault operation of the DFIG 
 
In this part, we present simulation results for the 
DFIG operation with stator inter-turn short circuit 
fault. The inter-turn fault is introduced in winding of 
stator phase "a". 
We note that the performances of DFIG reduced when 
the increase of the fault dergre that influences on the 
equilibrium of the three stator phases and therefore 
the equilibrium of the stator currents which affects the 
power output, this increase is due to the presence of 
short-circuit fault. Their responses present a 
deformations after augmentation of stator and rotor 
short-circuit fault degree to 5% à time t=1s. 



                
  

 
Fig. 9 Speed of faulty DFIG and its zoom with wind speed 

variation with Stator inter-turn short 
circuit

 
 

Fig. 10 Electromagnetic torque of faulty 
DFIG

 

Fig. 11 Stator reactive and active powers of faulty DFIG 
with wind speed variation. 

 
Fig.12 Observed rotor resistance of faulty DFIG. 

 

 

 

Fig. 13 Stator phase current and its zoom of faulty 
DFIG  with speed wind variation 

 

 
Fig. 14  Reference rotor flux of faulty DFIG. 

 
 
       V.  CONCLUSION 
 
In this paper, we presented a new scheme of adaptive 
observer of Double Fed Induction Generator, based on the 
estimation of the value of the rotor resistance. The 
estimation of the rotor resistance is based on the  use of the 
error between real and estimated value of DFIG in faulty 
condition, this will have to improve the performances of the 
adaptive observer. The results show that the proposed 
adaptive observer offers better performances of robustness 
and stability and precision., even in presence of rotor 
resistance variation. The formal results are confirmed by 
simulations. 
Future works concern real true implementation of the 
proposed scheme to validate these theoretical results. 

 



                
  

 
Appendix I.  Double Fed Induction Generator Parameters 
Electrical Index Value 
Rated power 

sP  
7500W 

Stator resistance 
sR  

0.455 Ω 

Rotor resistance 
rR  

0.62 Ω 

Stator leakage 
inductance sL  

0.0083 H 

Rotor leakage 
inductance rL  0.0081 H 

Magnetizing 
inductance 

mL  0.0078 H 

Number of pole 
pairs 

P 2 

Inertia J 0.31125 kg. m2 

Viscous friction fv 0.00673 kg.m2.s-1         
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