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Abstract: This paper proposes neural networks based 
direct adaptive state feedback control for the uncertain 
model of permanent magnet synchronous motor (PMSM). 
The proposed method used two types of neural networks 
(NN) to approximate the unknown model of PMSM; 
Backpropagation and Radial Basis Function (RBF) neural 
networks. Backpropagation (BP) and RBF neural network 
with single hidden layer were trained using MATLAB/NN 
Toolbox. The simulation results proved the effectiveness of 
the proposed method at various operating conditions. It 
exhibits considerable amount of torque ripples, adequate 
dynamic torque performance and improved speed 
response. Also, RBF neural network proved its superiority 
over backpropagation neural network in terms of faster 
speed and torque response at start up, steady state, step 
loaf disturbance and speed variations. 
 
Key words: RBF neural Network, PB neural Network, 
Adaptive Control, Permanent Magnet Synchronous Motor. 

 
1. Introduction. 

Permanent magnet synchronous motors have gained 
popular interest in the industry area due to their high 
efficiency, high power density, large torque to inertia 
ratio, wide speed operation, absence of rotor windings 
and absence of external rotor excitation. Due to these 
advantages, many control methodologies were applied to 
achieve high performance requirements such as adaptive 
backstepping, feedback linearization, fuzzy and neural 
networks based controllers. Some of them don’t make 
the performance of the system at the optimum level due 
to the high nonlinearities present in the motor or because 
some of the motor parameters isn’t possible to measure 
them. Therefore, an adaptive controller is required to 
maintain the improved system performance in the 
presence of parameters uncertainties or external 
disturbance.  

Input-output linearization and feedback linearization 
design may lead to cancellation of some useful 
nonlinearities in the design stage. This requires the 
known of exact values of the plant parameters to 
compensate for the parameters uncertainties, load torque 
disturbance and magnet flux. This make the controllers 
may give unsatisfactory results as the plant parameters 
vary because of different operating conditions such as 
variation of temperature, saturation and external 
disturbances.  

Therefore, adaptive input-output linearization with 
on-line estimation of the stator resistance, flux and 

motor inductance [1], adaptive backstepping and 
dynamic surface controllers [2-4] have employed to 
overcome these operating conditions. Although they 
compensated the uncertainties and various operating 
conditions, have asymptotic stability, improved response 
and preserve and take all the nonlinearities into account 
in the design of the controller, they require the 
knowledge the exact motor model. 

Model reference adaptive control (MRAC) is based 
on the parameter update law which is based on the error 
difference between two models; reference model and 
adjustable model. Recent research tried to avoid 
depending on the stator resistance because it may suffer 
from integrator related problems like drift and 
saturation. Therefore, reactive power based (MRAC) for 
speed estimation is more popular as it is less parameter 
sensitive depending only on the stator inductance [5, 6]. 

Many methods were proposed to estimate the 
parameters of the PM motor especially the speed to 
eliminate the sensors cost, temperature sensitivity and 
reliability decrease. These methods like back-emf based 
method which is highly sensitive to machine parameters 
and state observer-based method which employ 
Extended Kalman Filter (EKF), Extended Luenburger 
observer (ELO) and sliding mode observer. But EKF 
requires long computational time because of the several 
matrix operations and suffers from the computational 
complexity and parameters sensitivity. Moreover, the 
sliding mode observer suffers from the chattering 

problem [7-11].  
In these controllers, the estimated parameters were 

used directly in the controllers or to calculate the 
controller parameters. These methods can be considered 
parameters dependent control methods. But in this 
paper, a simple method of the adaptive controller is 
based on the uncertain model of the motor not on the 
estimated parameters. This method doesn’t depend on 
any equation based on model parameters calculations. 
Neural networks were known as universal function 
approximators of highly nonlinear models. Therefore, 
they were used to model the PM motor without prior 
knowledge of the PM parameters [16].  

Neural Networks can save lots of efforts on system 
modeling. It doesn’t require the mathematical model of 
the plant. Therefore, it can be used to approximate 
continuous unknown nonlinear systems using previous 
measured data of the plant where they were used to 



 

 

reproduce the dynamics of the plant by building a model 
from the experimental observations of the system. 

In this paper, the model was investigated under 
different values of supply voltages and was trained off 
line. The model was created by NNTOOL command in 

the MATLAB package. 
 
2. Mathematical Modeling of Permanent Magnet 

Synchronous Motor. 
The d and q-axis stator voltages for PMSM referred 

to rotor reference frame may be expressed as: 
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where vd and vq are the d-q axis stator voltages, R is the 
stator resistance, Ld and Lq denote the stator inductances 
in the d-q axes, P is the number of pole pairs, id and iq 
are the d-q axis stator currents, ωs is the rotor speed, λaf 
is the rotor permanent magnetic flux [12, 13]. 

The developed electromagnetic torque can be 
expressed as; 
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The governing electromechanical equation is: 
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Where Te is the developed torque, J is the rotor moment 
of inertia, B is the viscous friction factor and TL also 
represents the applied load torque disturbance. If Ld= Lq 
for surface mounted PMSM, Then, the torque will be 
function of the q-axis current component only as 
follows: 
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where kt is the torque constant 
Using the PM model represented by Eq. (1), the 

motor was operated under various values of the supply 
voltage and measuring the various corresponding values 
of the d-q axis stator currents id and iq of the PM motor, 
the training data were obtained and used in training the 

neural networks using MATLAB/NN Package.  
 
3. New Direct Adaptive robust State Feedback 

Controller. 

The PM motor can take the form as shown below: 
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Considering the model of nonlinear uncertain system 
is represented by: 
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 Where y is the system output, d models the disturbance, 
f and g are unknown continuous functions with g 
bounded away from zero. Without loss of generality, we 
assume that g(x) is strictly positive. 

 Let x = [y, ……. , y(n−1)], then the system (2) can 
be represented in canonical controllable form as 
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Where xi=[x1, x2, x3, ...], u and y are the state 
variables, system input and output, respectively, which 
are all assumed to be available for measurement; fi(xi) 
and gi(xi), i = 1, . . ., n, are smooth nonlinear functions 
that contain both parametric and nonparametric 
uncertainties. gi(xi) is usually referred to as the gain 
function. 

The main control objective is to design a control 
input u that forces the system output y to track a given 
desired trajectory yd that has bounded derivatives up to 
the n-th order.  

Let the system tracking error e=x-xd, then the 
tracking error dynamics can be expressed as: 
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Then, an appropriate control law can be presented [5-7]: 
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Where )(ˆ xf and )(ˆ xg  are approximations of 

)(xf and )(xg which will be obtained by neural 
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The controller in (6) is composed of two terms; feed-

farward term )(
)(ˆ n

dyxf  to compensate for error and 

model uncertainties and linear term ke to stabilize the 
system.  

By applying the control law (6) to the motor model 
(2) in the synchronous reference frame where vd and vq 
are the control inputs. Then, the control law in the d and 
q axis can be expressed as: 
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v are the outputs of the neural models as 

mentioned in section 2. 
Then, the block diagram of direct adaptive state 

feedback controller implemented by 
MATLAB/SIMULINK package can be represented as 
shown in fig. 1. 
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Fig. 1 Block diagram of direct adaptive state feedback 

controller using MATLAB/SIMULINK 

 
4. Stability analysis of the controller. 

Let the system tracking error e=x-xd. For the 
convenience of stability analysis in the following steps, k 

is selected as: 
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Replacing the controller (5) in (4) results the following 

errors: 
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Where g(x) in our case is a constant gain in the model 
(2) and the term 0)()(ˆ  xguxg . Since the nonlinear 

model will be approximated and identified by neural 
network for example RBF NNs that can be expressed as 
following: 
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Where ε(z) is the so-called NN functional approximation 

error; 
mRz is the input of NNs; 
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ξ(z) is usually chosen as the Gaussian function: 
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the center of ξ(z), and ηi is the width, which are usually 
selected according to the priori information about f(z). 
Then, the equation (6) can be written as follows: 
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the basis function vector in approximating f(x) and 
abbreviated to ξ and θ is the corresponding weight 
parameter.  
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Where σ(x) is the functional approximation error 
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the optimal parameters in approximating f(x). 
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Differentiating the Lyupanov function as follows: 
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Since   is very small, k can be chosen as a large 

positive constant. Then, the system will converge to a 

very small neighborhood of the reference signal [14-15]. 

 

5. Back propagation Neural Network (BP NN). 
BP Neural Network is a multilayer fully connected 

network. It consists of three layers; input layer, hidden 
layer and output layer. The number of neurons in the 
input layer is equal to the number of inputs. The neurons 
in the hidden layer are nonlinear where in the output 
layer are linear ones. The number of hidden neurons is 
sufficient to achieve better accuracy of the neural 
network. 

The modeling of PM motor was carried out by taking 
various values of the supply voltages and measuring the 
stator currents at certain value of load torque. The input 
pattern of the neural network in the proposed method is 
time delayed series of the stator currents in the d-q axes; 



 

 

id and iq and the output of the network are the d-q axis 
stator voltages; vd and vq. As shown in fig. 2, by off line 
training, the NN can be adjusted with the hidden layer 
containing 10 neurons with a tanh activation function 
and an offset, whereas the output layer contains two 
neurons with a linear activation function (Purelin. 
function). The network was trained with the modified 
Levenberg-Marquardt backpropagation algorithm given 
by: 

               xk+1= xk− [J
T
J+ μI ]−1J

T
e 

Where J is the Jacobian matrix that contains first 
derivatives of the network errors with respect to the 
weights and biases, e is a vector of network errors, I is 
the identity matrix and μ is a scalar constant. 

 This method of training is more suitable for BP 
neural network, faster than Gauss-Newton method or 
variable learning rate, required few training epochs 
and took only a few seconds to achieve the goal using 
the MATLAB/NN toolbox. The transfer function of 
the k-th neuron (Tansig.) in the hidden layer is 
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The adaptation learning rule (learnGDM) calculates 
the weight change dW for a given neuron from the 
neuron's input P and error E, the weight (or bias) W, 
learning rate lr, and momentum constant mc,  
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Fig. 2 The structure of back propagation (BP) neural network  
 

according to Gradient Descent with Momentum: 
dW = mc*dWprev + (1-mc)*lr*gW 

The previous weight change dWprev is stored and 
read from the learning state LS. The structure of BP 
neural network is shown in fig. 2. 

 
6. Radial Basis Function Neural Network (RBF NN). 

The RBF neural network consists also of three 
layers. But in this work, it is consists of two layers 
hidden layer and output layer. The input data to the 
hidden layer is the Euclidean distance of the input and 

the output is the radial basis function of the neuron 
input. It implements a gaussain function in the hidden 
layer. The mapping between the input and the output of 
the hidden layer is nonlinear and between the hidden 
layer and the output layer is linear. A partial persistency 
of excitation (PE) condition can be satisfied by local 
radial basis functions for any periodic trajectory. Then, 
the exponential stability can be achieved and also 
accurate approximation of the NN in a local region along 
the periodic or recurrent trajectory [17-19]. 

While RBF network model has the advantage of 
much less training time as compared to the back 
propagation network model, it suffers from the 
drawback of requiring more number of neurons than the 
BP network model for the same error goal, Compared to 
BP NN, RBF NN has faster rate convergence and better 
learning capability without local minima. The output of 
the hidden neuron can be expressed as: 
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width, which are usually selected according to the priori 
information about f(z). The structure of BP neural 
network is shown in fig. 3. 
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Fig. 3 The structure of radial basis function (RBF) neural 

network 
 

7. Simulation Results 
In order to validate the effectiveness of the proposed 

approach, we investigated it by MATLAB/SIMULINK 
and used the following PMSM parameters as follows: Ld 
= Lq = 0.012 H, R = 2.875 Ω, J = 8 × 10−4 kg.m

2
, B= 

0.001 N.m.s/rad, kt = 1.15 N.m/A, P = 4, and λaf = 
0.19167 V.s.   

By setting the reference d-axis current idref=0 to 
achieve the maximum torque per ampere and obtaining 
the reference torque from the speed controller which 
employs conventional PI controller, the block diagram of 
the proposed system with the new proposed control 

method can be implemented as depicted in fig. 4. 
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Fig. 4 Block diagram of the proposed method using 

MATLAB/SIMULINK 

To study the robust performance of the proposed 
method, many tests were carried out at various operating 
conditions. 

 
7.1 Comparison of step up response for RBF and BP 
NN’s 

Fig. 5 shows the start up speed response of the 
proposed method with RBF and BP neural networks. It 
is evident that RBF neural network has faster response 

than BP NN with the proposed method. 
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Fig. 5 The speed response of the proposed method with 

RBF and BP neural networks 

 

Fig. 6 depicts the start up torque response of the 
proposed method with RBF and BP neural networks. It 
is clear the torque of the proposed method with RBF 
neural network settles at 13.5 ms while it settles at 21.5 
ms for the proposed method with BP neural network. 
Also, the torque has minimum ripples with the proposed 
method.  

Figs. 7 and 8 display the stator currents for the 
proposed method with RBF and BP neural networks 
where the two types of neural networks achieve ripples 

free stator currents. 
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Fig. 6 The torque response of the proposed method with 

RBF and BP neural networks 
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Fig. 7 The stator currents of PMSM for the proposed 

method with BP neural NN  
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Fig. 8 The stator currents of PMSM for the proposed 

method with RBF NN 
 

7.2 The proposed method with RBF NN 
7.2.1 The effect of changing the load torque 

Fig. 9 displays the dynamic torque response of the 
proposed method with RBF NN tested  with load torque 
(1 n.m) added at t= 0.1 to the starting load torque (TL=6 
n.m) and removing it at t= 0.12. Fig. 10 shows the 
torque response for removing the load completely at 
t=0.15 s. 
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Fig. 9 The step up and down torque response of the 

proposed method with RBF NN at t= 0.1s 
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Fig. 10 The torque response of the proposed method with 

RBF NN for removing the load completely at t= 0.15s 
 

As shown in figs. 9-11, It was clear that the torque 
changes softly at step up, step down and very small 
undershoot when completely removing the load torque at 
t= 0.15 s. 

Fig. 11 shows that the speed can track the reference 
speed without steady state arror for step up load 
torque at t= 0.1, step down load torque at t= 0.12 and 
completely removing it at t=0.15 s. 
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Fig. 11 The speed response of the proposed method with 

RBF NN for step up and step down load torque 
 

7.2.2 The effect of changing the reference rotor speed 
Fig. 12 displays the reference speed (80 r/s) and 

decreasing it to 40 r/s at t= 0.1 s and setting it to zero at 
t= 0.12 to show the torque response as shown in fig. 13. 
As seen in fig. 13, the torque maintains its reference 
value (4 n.m) except large undershoot at the instants of 
changing the rotor speed or setting it to zero. 
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Fig. 12 The step down speed response and braking the 

motor at t= 0.1 s and t=0.12 respectively 

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

-5

0

5

10

Time (s)

T
o

rq
u

e 
(N

.m
)

 
Fig. 13 The torque response for changing the rotor speed 

 

7.3 The proposed method with BP NN 
7.3.1 The effect of changing the load torque 

The proposed method with PB NN was tested at t= 
0.1 s by adding load torque (1 n.m), removed at t=0.12 s 
and completely removing the load at t=0.15s. Fig. 14 
shows a small overshoot of the torque response at the 
instants of adding the load (1 n.m) and removing it and 
larger overshoot compared to the RBF NN when 
completely removing the load at t=0.15 as shown in fig. 
15.  

 

0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14
4

5

6

7

8

Time (s)

L
o

ad
 T

o
rq

u
e 

(n
.m

)

 
Fig. 14 The step torque response of the proposed method 

with PB NN with step up load at t= 0.1s and step down load 
at t=0.12. 
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Fig. 15 The torque response of the proposed method with 

PB NN for removing the load completely at t= 0.15 s. 

 
Fig. 16 depicts the ability of the PMSM drive to 

recover to the reference speed after stepping down the 
load at t= 0.12 with small undershoot or completely 
removing it at t= 0.15 s with small overshoot within 5 
ms. 
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Fig. 16 The speed response of the proposed method with 

PB NN for step load torque at t=0.1 s 
 

7.3.2 The effect of changing the reference rotor speed 
As displayed in fig. 17 the speed has large under shoot at 

the instants of stepping down the speed to 20 r/s (t=0.1 s) and 
setting it to zero at t=0.14 s. 
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Fig. 17 The step down speed response and braking the 

motor at t= 0.1 s and t=0.14 respectively 
 

Fig. 18 displays the torque response has large overshoots at 
the instants of stepping down the speed at t=0.1 s and setting it 
to zero at t=0.14 s.  
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Fig. 18 The torque response for changing the rotor speed 

 

8. Conclusion 
A new method of direct adaptive control is proposed 

for PMSM. The method employed state feedback 
controller for the uncertain model of PMSM. The 
controller used two famous types of neural networks to 
approximate the uncertain nonlinear model of the 
permanent magnet synchronous motor. The method was 
tested and validated by MATLAB/SIMULINK Package. 
The proposed method achives higher performance for 
the motor with faster speed and torque response and 
minimized torque ripples without prior knowledge of the 
motor parameters and independent of the motor model. 
The RBF neural network provides better performance 
than BP neural network as it gives faster torque, speed 
response and more reliable performance for speed 

variations or load disturbance.  
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