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Abstract: The Permanent Magnet-Assisted Synchronous 

Reluctance Motor (PMA-SynRM) drive has become one of 

the most interesting replacements for the high efficiency 

variable speed drive. Herein, sensorless predictive torque 

control of a PMA-SynRM with non-sinusoidal back 

electromotive force (Back-EMF) is introduced. In order to 

control PMA-SynRM, finite control set-model predictive 

control (FCS-MPC) is implemented by means of a 

two-level inverter. Furthermore, an improved form of 

FCS-MPC, i.e., direct mean torque control (DMTC), is 

utilized as a second method to control PMA-SynRM. For 

improving the sensorless the combination of Extended 

Kalman Filter (EKF), Adaptive Filter (AF) and quadrature 

Phase-Locked Loop (PLL) are used for better estimation of 

the non-sinusoidal back EMF, elimination of the high 

order harmonics, and the accurate estimation of position 

and speed rotor, respectively. The simulations in nominal 

and low speed conditions result in effectively minimizing 

torque ripples compared to conventional FCS-MPC. The 

outcomes of the observer simulation are successfully 

guaranteed the accurate estimation of speed and rotor 

position.  

 

Key words: Permanent Magnet Assissted Synchronous 

Reluctance Motor, Extended Kalman Filter, Adaptive 
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I. INTRODUCTION 

Permanent-Magnet Assisted Synchronous 

Reluctance Machines (PMA-SynRMs) are known for 

application in high-efficiency adjustable speed drives 

(ASDs). These ASDs utilize electromagnetic torque 

consisting reluctance and the permanent magnet 

components to achieve this purpose. The amount of 

magnets and the magnet flux linkages are small in 

comparison with the conventional Interior 

Permanent-Magnet Motors (IPMs), and the 

reluctance torque has the most contribution in the 

produced torque. Compared with the conventional 

Synchronous reluctance machines (SynRMs), the 

PMA-SynRMs increase efficiency and power density. 

Altogether, the good characteristics of SynRMs and 

Permanent-Magnet motors are gathered in 

PMA-SynRMs [1]–[4]. 

Conventional direct torque control (DTC) is a 

modern control method that illustrates a good 

dynamic behavior. This method selects the active 

voltage vector (AVV) and the zero voltage vector 

(ZVV) by using a switching table [5]–[7]. However, 

this method has some disadvantages. The most 

important ones are switching frequency variation and 

considerable torque ripple. To tackle these problems, 

a direct mean torque control (DMTC) and then an 

improved algorithm of DMTC were proposed for 

SynRM [8]. Moreover, DTC by using space vector 

modulation [9], Band-constraining DTC [10], and 

predictive DTC [11] are proposed methods for 

reducing the torque ripple. 

Finite control set predictive torque control 

(FCS-PTC) is an effective method. The FCS-PTC 

method calculates all possible voltage vectors within 

one sampling interval and selects the best one by 

using an optimization cost function [12]. The PTC 

method along with DMTC method have been used in 
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SynRM [13] and PMSM [14]. Furthermore, the 

combination of FCS-PTC and DMTC are 

implemented in induction machine (IM) [15]. To use 

predictive control, we need accurate model of 

machine. The PTC method unlike the DTC method is 

not inherently sensorless, consequently the state 

variables of machine should be estimated using 

observer [16]. 

The main source of torque pulsation in the machine 

is existence of the harmonic components of the air 

gap flux [17], [18]. Rotational motion of the magnet 

through the air gap results in nonsinusoidial flux 

density in the stator tooth and yoke. These harmonic 

components include the fifth and seventh harmonic 

[19]. In order to estimate the air gap flux, Luenberger 

observer [20], model reference adaptive system [21], 

sliding mode observer [22] and extended kalman 

filter [23] have been used for IMs. Inaccurate 

estimate of rotor position is due to the harmonics in 

the air gap flux. So, in order to eliminate the 

harmonic components, an adaptive filter should be 

used [24]. In recent years, the use of adaptive filters 

has shown a powerful technique to perform the 

extraction of the sinusoidal waveform while 

separating the harmonic components [25]–[27]. 

Adaptive filter detects the fifth and seventh harmonic 

components based on recursive least square (RLS) 

and least mean square (LMS) algorithm [28]. In 

addition, to reduce the influence of errors in 

estimating speed and position of the rotor, the phase 

lock loop (PLL) should be used rather than 

arc-tangent function. PLL can generate harmonics 

inphase with a reference wave in a manner that its 

stability is the same as the reference wave stability 

[29], [30]. 

Sensorless vector-control for PMA–SynRM using 

sliding mode observer has been presented in [31], 

[32]. Also, Sensorless direct torque and flux control 

with space vector modulation (DTFC–SVM) for 

PMA–SynRM has been successfully implemented in 

a sliding-mode approach [33]. This paper presents 

sensorless FCS-PTC method with improved DMTC 

for achieving low torque ripples of PMA-SynRM 

with nonsinusoidial back electromotive force based 

on extended kalman filter, adaptive filter and PLL. 

Simulation results using Matlab/Simulink show the 

validity of the proposed control method and observer 

scheme as well as the excellent dynamic response of 

the electromagnetic torque, low torque ripples and 

enhance the performance of the observers in wide 

speed rang. 
 

II. MODEL PREDICTIVE TORQUE CONTROL OF 

PMA-SYNRM 

A. PMA-SynRM model 
The voltage equation of a PMA-SynRM in the 

synchronous reference frame can be expressed as 

follows: 

qs
qs s qs e ds
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ds s ds e qs

d
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where, RS is stator resistance and ωe is electrical rotor 

angular speed, uds and uqs are the d and q-axes 

voltages, and ids and iqs are the d and q-axes currents. 

Ψqs and Ψds are stator flux components in d and 

q-axes. Rotor nonsinusoidal flux distribution 

produces two new components: Ψqm and Ψdm that are 

the rotor flux linkages in d and q axes, respectively. 

Stator flux equations of the PMA-SynRM in the d-q 

reference frame are expressed as follows: 

If the back EMF harmonics higher than sixth order 

are negligible, the back EMF equations i.e., eds and eqs 

that are the d and q-axes back EMFs, are given as 

fallow: 
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where, E1 and E6 are the amplitude of the fundamental 

component and sixth order harmonic of the back 

EMFs, in the synchronous reference frame due to the 

nonsinusoidal rotor flux, respectively. According to 

(2)-(5), (1) can be rearranged as 
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where, Ld and Lq are d and q-axes inductances, 

respectively. Since the rotor flux can not vary sharply, 

the derivative of rotor flux components are 

zero ( 0, 0)qm dmd dt d dt   . 

Now the electromagnetic torque can be defined as 

fallows: 

 

 

  

  

3

2 2

3

2 2

3

2 2

ds qs qs ds

d ds ds e qs

q qs qs e ds

qm ds dm qs d q ds qs

p
T i i

p
L i e i

L i e i

p
i i L L i i

 





 

 

 

 

   

 

 
B. Improved DMTC 

 

Direct mean torque control (DMTC) was 

introduced to control the mean value of the torque at 

reference value [14]. Fig. 1 shows a typical cycle of 

operation of the improved DMTC. In this method, the 

interval switching time are divided into two segments 

including AVV and ZVV. Formerly, when AVV 

applies the torque increment occurs at the beginning 

cycle. Following, the reaching to virtual hysteresis 

width ∆T, ZVV applies and the torque decreases. In 

the steady state, the value of Tn at the beginning of a 

cycle should be equal to its value Tn+1 at the end. The 

hatch area in Fig. 1, shows the torque response during 

the cycle of n. The value of the torque at the end of 

the cycle Tn+1 can be described directly by the 

following formula: 
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Fig. 1. Typical operation cycle of DMTC in steady state. 

The virtual hysteresis width ∆T can be expressed: 
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By eliminating tAVV in (9), virtual hysteresis width 

(∆T) can be calculated from (10), as follows:   
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(11) can be derived from inserting (10) to (8); thus:  
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Fig. 2. Voltage space vectors, sectors and stator flux 

variation. 



As can be seen in Fig. 2, in two-level inverter, the 

six possible AVVs have different effects on the flux 

as well as on the torque. With respect to improved 

DMTC, it is assumed that the stator flux vector (Ψ) is 

situated in the mth sector (m =1,...,6) of the α−β plane 

(Fig. 2) for positive rotation (ω >0). The two most 

favorable voltage vectors are preselected, and thus 

calculating tAVV for both of them. For increasing the 

value of ψ, the AVVs um+1 can be selected, while 

selecting um+2 results in decreasing its magnitude. It 

should be noted that the value of T increases 

irrelevant from the number of sectors. 
 

C.   Calculation of the Torque Slopes 

DT/dt can be determined by differentiating (7), as 

shown in (12): 
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From (12) and (6) and by supposing that a ZVV is 

exerted to the motor, the torque decreases, and its 

time derivative is obtained as follows: 
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Besides, for an AVV, the torque derivative is 

obtained as fallows: 
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Another criterion is required to determine which 

voltage vector should be exerted to the motor. This 

criterion is based on the predictive control which is 

addressing the minimizing the torque ripple as well as 

the flux ripple. 
 

D. Torque and flux prediction 
Fig. 3 is the block diagram of the proposed control 

structure. In order to decide the best voltage vector, 

the FCS-PTC approach can be applied. In this 

approach a cost function that is the evaluation 

criterion to decide which AVV is the best to be 

applied. Because the torque and flux are the control 

variables in DMTC method, the cost function is 

defined as fallows: 
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where, Tk+1 and ψs,k+1 are the predicted values of 

torque and stator flux, respectively, and T
*
 and ψ

*
 are 

the reference values of torque and stator flux, 

respectively. Kψ is a weighting factor that handles the 

relative importance between torque and stator flux 

control. 

For small values of a control sampling time Ts , the 

d−q components of the stator current vector and stator 

flux vector can be predicted at the end of the 

switching interval By Euler’s approximation of (1) 

and (6): 
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The torque prediction at the end of the same 

interval can be obtained by 
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With respect to the prediction of the torque and 

stator flux for every AVV and following by 

substituting them into the cost function, the AVV that 

minimizes the cost function is selected as the best 

voltage vector. 
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 Fig. 3. Block diagram of the proposed FCS-PTC with 

improved DMTC for the PMA-SynRM. 
 

 

E. Modeling of EKF estimator for back EMF 

estimation 

Fig. 4 is the block diagram of the proposed 

observer structure. As considered before, the 

FCS-PTC method is dependent on speed and position 

of the rotor. Therefore, an observer is required to 

estimate the speed and position of the rotor. For 

estimation of the position, the air gap flux estimation 

is needed that is obtained by the Kalman Filter. This 

filter is an optimal stochastic method for state 

estimating and filtering in linear systems. For 

nonlinear systems, the Extended Kalman Filter 

should be considered [34], [35]. The state space 

equation can be described as follows: 
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where x(t), u(t), and y(t) are the states, inputs, and 

outputs of the system, respectively. The system noise 

σ(t) and measurement noise μ(t) are supposed to be 

zero mean and white with Gaussian distributions of 

covariances Q(t) and R(t), respectively. Once a 

nominal solution to the nonlinear (19) has been 

obtained, the linearized perturbation equations of the 

system are as follows: 
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where, the Jacobian matrix (F) and output matrix (H) 

are determined in the following form: 
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The optimum state estimated sequence   n is a 

minimum variance estimation of the x(t) that is 

obtained by the filter. Both the optimum state and its 

covariance Pn produced by the filter are put in a 

two-step loop. The EKF procedure can be defined by 

a two-step recursive algorithm. 

The predicted estimation is attained from (20) and 

through a simple rectangular integration as [38]: 
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The estimation covariance can be predicted by 
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where, K and H that are respectively, the filter gain 

matrix and the transformation matrix are described by 
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 Fig. 4. EKF and AF with the quadrature PLL. 

From (6), the PMA-SynRM voltage and the flux 

linkage can be defined in the rotor reference frames 

as fallows:  
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F. Adaptive filter with PLL for compensation 

of position harmonic error 

Following the estimation of the back EMF, speed 

and position of the rotor based on the arc tangent 

function is calculated from the below equations 

[36]–[39]: 
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where,  α and  β are the estimation back EMF in α 

and β-axes, respectively. It should be noted (30) and 

(31) suffer from the lack of the accuracy due to 

appearance of harmonic in air gap flux. In order to 

reduce the effect of estimation error, PLL was used as 

a replacement of arc tangent function. Because the 

back EMF changes in different speeds, the input 

estimation back EMF for the PLL is normalized [29]. 

The normalized error position of signal is calculated 

from the below equation as follows: 

   
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e ee e

e e
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Therefore, the estimation of rotor position acquired 

from the PLL can be achieved as follows: 

1ˆ i
e p

k
k
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  
   
  

 

Considering the dominant fifth and seventh 

harmonic components of back EMF generated by air 

gap flux harmonics, the phase difference between 

actual rotor position and estimated rotor position of 

the PMA-SynRM can be expressed as [36]: 

 6 6
ˆ sin 6e e e ee t         

where, e6 is the amplitude of the equivalent sixth back 

EMF harmonic and θe6 is the initial phase. It is 

noticeable that there is an additive error in the phase 

difference due to the sixth back EMF harmonic. 

However, due to the widely bandwidth of the PLL, 

utilizing the type-II system will partially eliminate the 

sixth harmonic. In addition, the difficulty of design of 

the type-II system parameters to eliminate the sixth 

harmonic without influencing on the fundamental 

components is due to variation of the speed. 

Therefore, an adaptive filter (AF) with PLL is used 

for the effectiveness compensation of harmonics in 

back EMF [30]. 
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 Fig. 5. Harmonic detection based on the adaptive filter 

Wiener theory as a widely used kind of adaptive 

noise-cancelling method is an efficient method to 

eliminate the fifth and seventh harmonics of the back 

EMF estimations. This technique eliminates the given 

harmonic by self-tuning the filter coefficients with the 

adaptive method. 

Fig. 5 depicts the theory of the harmonic 

eliminating on the base of the adaptive 

noise-cancelling technique with two orthogonal 

references for the position estimator. p(n) denotes the 

primary input which is comprised of a given signal 

and an additional harmonic signal. The two 

orthogonal signals, i.e., the first row and the second 

row of matrix r(n), denote the harmonic references 

that the high-order harmonic components are 

converged to them. w1(n) and w2(n) are the adjustable 

filter coefficients corresponding to the harmonic 

references. The sum of these two weighted references 

form the output of filter h(n) that indicates the 

harmonic estimation. The fundamental component of 

desired signal is acquired from the error signal e(n) 

resulted from deducting h(n) from p(n). 

Correspondingly, making the filter output h(n) to 

converge to the real high-order harmonic components 

is the objective of adaptive filter. Adjusting the filter 

coefficients is done by the RLS algorithm because of 

its fast convergence speed, [28]. 

The normalized estimations of back EMF, i.e.,  nα 

and  nβ, that are comprised of the fifth and seventh 

harmonic components, are multiplied by sin(5θ e), 

cos(5θ e) and sin(7θ e), cos(7θ e), respectively  (θ e is 

the estimation of rotor position from the PLL output) 

are used for producing the AF harmonic references. 

wji(n) and kji(n) are coefficients and gains of the filter. 

The coefficients of filter can be adjusted by the RLS 

algorithm in a way that the fifth and seventh 

harmonic estimations converge to their actual values. 

The desirable fundamental components of the 

normalized back EMF is obtained as fallow: 




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where, rji(n) imposes the harmonic reference signals 

and is given by the below matrix: 
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The meanings of wji(n) is the estimation of the 

corresponding harmonic component magnitude, and 

it can be adjusted online according to the 

specification of the harmonic reference by the 

equations as follows: 


       ˆ1

& 1,2

ji ji ji afw n w n k n e n

j i

  





       ˆ1

1,2 & 3,4

ji ji ji afw n w n k n e n

j i

  

 


The gain vector kji(n) can be calculated as follows: 
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where, (0,1) is the forgetting factor. With λ = 1, 

the conventional method of least squares can be 

achieved. The presence of λ is to guarantee that the 

data in the far apart past have less effect on the 

convergence. Φji(n) is the intermediate variables that 

is obtained as follows: 
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The inverse of the autocorrelation matrix Pji(n) can be 

achieved as: 
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The initial values of wji(n) and Pji(n) are selected as: 

   0 , 0 0 1,2 & 1,2,3,4ji jiP w j i    
It should be noticed that a smaller value of λ 

improves the tracking capability, but the stability of 

the RLS algorithm can be influenced. In this 

application, λ is set at 0.99995 and σ is chosen 0.001. 
 

3. SIMULATION RESULTS 

In order to validate the proposed method to control of 

PMA-SynRM based EKF and AF, some simulations 

are done using Matlab¥Simulink software. Fig. 3 

shows the predictive torque control scheme of the 

sensorless PMA-SynRM drive based on an EKF and 

AF with PLL. The parameters of the PMA-SynRM 

used in this paper are shown in TABLE 1. The 

sampling time of simulation is 50 μs. 
 

TABLE I: Motor Parameters 

Parameter Value 

P 4 

RS 1.25[Ω] 

Ld 49.801[mH] 

Lq 17.901[mH] 

ψr 0.48[wb] 

Jm 0.0012[kg.m
2
] 

B 0.0006[N.m.s] 

ωn 6000[rpm] 

Tn 3.7[N.m] 
 

Fig. 6 shows the actual and estimated d-axes and 

q-axes air gap flux linkage rotor. The motor rotates at 

6000 rpm with rated load. The dotted lines shown in 

all Figurers express estimated results. At steady state, 

the mean value of the flux linkage estimation error at 

the d-axes and q-axes are 0.0308% and 0.0463%, 

respectively. From the presented result of EKF can be 

seen that the EKF showed the reliable and accurate 

performance. 

Fig. 7 and 8 show the performance of AF in the 

α-axes and β-axes back EMF estimation with AF 

based on RLS at 6000 rpm with rated load. As can be 

seen in Fig. 5, back EMF estimates  nα directly 

obtained from the EKF. AF detected the fifth and 

seventh following by compensation of harmonic  5α, 

 7α and leaded to estimate  afα. The same situation is 

true for the β-axes (Fig.8).  
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 Fig. 6. Actual and estimated d-axes and q-axes flux 

linkage rotor. 
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 Fig. 7. The α-axes detection and compensation of 

normalized back EMF estimation. 

The results of back EMF estimation become more 

sinusoidal with the proposed AF using the RLS 

algorithm, and the fifth and seventh harmonic 

distortions are effectively eliminated. 
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 Fig. 8. The α-axes normalized back EMF estimation a) 

without AF and with AF. The β-axes normalized back 

EMF estimation c) without AF and with AF. b) and d) 

zoom of (a) and (c) respectively. 



Fig. 9 shows the comparison of the estimated rotor 

position with arc tangent function and with the AF at 

6000 rpm with rated load. It can be seen from Fig. 

9(a), the estimated rotor position includes the sixth 

harmonic component, obviously. Notably in Fig. 9 (b), 

by utilizing the combination AF and PLL, the sixth 

harmonic component gets completely smooth and 

eliminated. Besides, the rotor position is accurately 

estimated and subsequently the mean value of the 

position estimation error is less than 1%, at the steady 

state. 
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 Fig. 9. Comparison of the actual and estimated position at 

6000 rpm. a) with arc tangent function. b) with the AF. 

Fig. 10 shows the actual and estimated speed of 

rotor using AF with PLL. The mean value of the 

speed estimation error is less than 0.51%, at the 

steady state. 
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Fig. 10. Actual and estimated speed at 6000 rpm with rated 

load. 

Fig. 11 and 12 demonstrate stator current and 

torque responses of the proposed conventional 

FCS-PTC and FCS-PTC method with improved 

DMTC, respectively. The conventional FCS-PTC 

method is modified by the proposed method in the 

view of torque ripple and total harmonic distortion 

(THD), for steady state. 
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 Fig. 11. Nominal torque step response of conventional 

FCS-PTC simulation result at 6000 rpm. 
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Fig. 12. Nominal torque step response of the conventional 

FCS-PTC with improved DMTC simulation result at 6000 

rpm. 

The torque ripple of conventional FCS-PTC and 

the THD of the stator current are 15.91 and 12.84%, 



respectively, in switching frequency 4.804 KHZ. 

With regard to the proposed method  the torque 

ripple and the THD of the stator current are 8.2 and 

4.3%, respectively, in switching frequency 8.420 

KHZ. As expected, torque ripple and the THD of the 

stator current will be reduced predominantly if the 

proposed method is utilized. It is should be 

mentioned that the speed of rotor is tracking the 

reference speed. 
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Fig. 13. A) actual and estimated speed, and b) actual and 

estimated position of the rotor at 300 rpm. 
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Fig. 14. Nominal torque step response of conventional 

FCS-PTC simulation result at 300 rpm. 

Fig. 13(a) and (b) display actual and estimated 

speed and position of the rotor, respectively, at 300 

rpm. As can be seen, the estimated rotor position is 

accurate and subsequently the mean value of the 

position estimation error is 0.91%, at the steady state. 

The mean value of the speed estimation error is 

1.32%, at the steady state. 
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Fig. 15. Nominal torque step response of the conventional 

FCS-PTC with improved DMTC simulation result at 300 

rpm. 

Fig. 14 and 15 reveal stator current and torque 

responses of the proposed conventional FCS-PTC 

and FCS-PTC method with improved DMTC, 

respectively with rated load at 300 rpm. The torque 

ripple of conventional FCS-PTC and the THD of the 

stator current are 29.1 and 25.27%, respectively. With 

regard to the proposed method the torque ripple and 

the THD of the stator current are 2.31 and 20.17%, 

respectively. As expected, it is worth of mentioning 

that in this situation again the torque ripple and the 

THD of the stator current will be decreased 

effectively if the proposed method is used. 
 

G. CONCLUSIONS 

The presence of the harmonic components in air 

gap flux is the main source of the existence of torque 

ripple. The accurate performance of the machine is 

dependent on the variable parameters of the machine. 

Due to introducing the sensorlees control, the demand 



of using observer is essential. Herein, a sensorless 

predictive torque control of PMA-SynRM with 

non-sinusoidal back EMF based on EKF and the 

combination of AF and PLL have been proposed.  

The effectiveness of the proposed method has been 

verified accurately at a 2.3 kW PMA-SynRM 

sensorless drive. The simulation results demonstrate 

that the observer scheme including EKF, AF and PLL 

make an effective estimation of back EMF, the speed 

and position of the rotor. In both of nominal and low 

speed, the proposed method proved the promising 

results in the point of view of precise torque and 

speed control as well as the excellent dynamic 

response of the electromagnetic torque. 
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