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Abstract: This paper focuses on the design of a nonlinear 

optimal excitation controller in order to improve dynamic 

stability in a Single Machine Infinite Bus (SMIB) power 

system. The affine nonlinear model of an SMIB power 

system is exactly linerized applying feedback linearization 

method where the optimal control law has been estimated 

by the Linear Quadratic Regulator (LQR) principle. The 

performance of the proposed nonlinear excitation control 

scheme is compared with the performance of the 

conventional PSS. The parameters of the conventional PSS 

are designed through a novel soft computation technique, 

Particle Swarm Optimization (PSO). The results and 

effectiveness of the design have been presented employing 

time domain analysis for a typical fault scenario of the 

study system. It has been observed that, in comparison to 

the PSO based PSS, significant improvements in dynamic 

stability of the test power system are achieved by the 

proposed nonlinear excitation control strategy. 
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1. Nomenclature 

          :  rotor angle (degree)        

 eR    :  transmission line resistance (pu) 

    0ω     :  synchronous speed (rad./s)     

 dT     :    time constant of the field winding   

          :  rotor speed (rad./s)           

 fV    :  exciter voltage output (pu)     

    σ           :    real part of eigenvalue      

 tV    :  machine terminal voltage (pu)     

   D    :  damping constant (pu)         

 V    :  infinite bus voltage    

 qE          :  voltage behind transient reactance (pu)  

 dX    :  d-axis synchronous reactance (pu)      

     H   :    inertia constant (s)        

 dX     :  d-axis transient reactance (pu)    

 mP    :  mechanical power (pu)        

  Xe    :  transmission line reactance  (pu)  

              

2. Introduction 

The enhancement of dynamic stability of a 

synchronous machine is a challenging problem in 

modern interconnected power system design. Stable 

and steady operation of a poorly damped nonlinear 

power system can be ensured by using high-

performance controllers which can regulate the 

system under diverse operating conditions. It is well 

known, that the generator excitation control plays an 

important role in achieving rotor angle stability of 

power systems [1]. Traditionally, additional damping 

through excitation control in power systems is 

introduced by the application of Power System 

Stabilizers (PSSs) [2]. Though, development of 

Flexible Alternating Current Transmission System 

(FACTS) [3] has generated much attention of the 

researchers in this issue, PSSs are still drawing 

interest because of its effective and reliable 

performance [4]. A coordinated control scheme for 

PSS and FACTS device has been proposed in [5] for 

damping of power system oscillations in a 

multimachine power system. 

The mathematical model of a power system is 

generally a high-dimensional nonlinear set of 

equations [6]. All the previous attempts in [4]-[5] for 

the design of power system controllers are based on 

the approximate linearized model of the power 

system and the analyses are based on the linear 

control theory. These linear controllers are usually 

designed to provide satisfactory performance around 

a single operating condition. However, following 
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severe contingencies and stressed operating 

conditions the nonlinear effects of power systems 

become prominent and the post-contingency system 

can be significantly different from its nominal 

operating states. Thus control strategies to be 

adopted which should reflect the nonlinearity, and be 

adaptive to uncertainty in order to ensure the 

improvement of dynamic performance in different 

operating conditions. In this context, a number of 

research works  regarding nonlinear and intelligent 

control schemes for power system stability 

improvement have been addressed in the literatures 

[7]-[8]. An exact linearization method using optimal 

parameters is proposed in [9] to nonlinear control of 

one-machine power system. Some researchers have 

proposed coordinated control scheme of generator 

excitation and FACTS controllers. A robust 

nonlinear co-ordinated generator excitation and 

TCSC controllers has been reported in [10] to 

enhance the transient stability of a power systems. A 

nonlinear control technique, based on zero dynamics 

is proposed in [11] to design the controller for 

STATCOM and excitation system co-ordinately. A 

full-order observer-based excitation controller has 

been designed in [12] where the control law is 

estimated for an exactly linearized SMIB power 

system.  

Regarding conventional control scheme, it is well 

known fact that the design of conventional 

controllers relies on the availability of accurately 

tuned parameters and knowledge of the operating 

condition of the system. Attempts have been made in 

[13]-[14] to design and application of a conventional 

PSS based on the robust control theory. Many 

stochastic search methods such as Genetic Algorithm 

(GA), Artificial Neural Network (ANN) and 

Evolutionary Programming (EP) [15]-[16] etc. have 

been utilized for global optimization problems in 

power systems. These methods have their individual 

advantages and drawbacks. Recently, Particle Swarm 

Optimization (PSO) method [17]-[18] has appeared 

as a promising algorithm for handling the power 

system optimization problems. PSO can generate 

high-quality reliable solutions and has more stable 

convergence characteristics than other stochastic 

search methods. The major advantage of PSO is that 

it has no complex evolution operators such as 

crossover and mutation like GA. 

In this paper first the design of a nonlinear 

excitation controller has been proposed and then its 

performance has been compared with the 

conventional PSS whose parameters are determined 

by the PSO based technique. To the best of author’s 

knowledge the proposed work has not been explored 

in details in the existing literatures. 

The paper is organized as follows: Section 3 

describes the nonlinear model of a SMIB power 

system and established the nonlinear control law for 

excitation control via exact linearization method and 

LQR principle. The design of a conventional PSS 

and its parameter optimization algorithm based on 

PSO has been described in Section 4. The 

performance and effectiveness of the proposed 

nonlinear excitation control and its comparison with 

the conventional PSO based PSS has been examined 

in Section 5. 

3. Design of a Nonlinear Excitation Controller  

3.1. Affine Nonlinear Model of a SMIB Power 

System 

To develop the nonlinear excitation control 

scheme, a simple power system model based on 

Single Machine Infinite Bus (SMIB) system is 

adopted in Fig. 1. The equation of motion of a SMIB 

power system can be described as [19]  
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 Fig. 1. Single Machine Infinite Bus (SMIB) system 

 

The equations (1)-(3) can be written in an affine 

nonlinear form  
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and h(x) is the vector of the output function. The 

excitation control input 
f

Vu  . Since only the 

excitation control is considered, assumed 

here 0mm PP   where 0mP  is the initial steady state 

mechanical power. In the following section the 

nonlinear excitation control law ‘u’ has been 

designed with the help of exact linearization of the 

affine nonlinear model of the power system 

represented by (4)-(5). 

3.2 Exact Linearization and Nonlinear Control 

Law 

The necessary and sufficient condition for exact 

linerization of an affine nonlinear system is based on 

the Frobenious theorem [20].  

Theorem: Given the system u)x(g)x(fx  , 

whose relative degree r is equal to the system’s order 

n at 0xx  , where nRx  is the state vector, Ru  

the control variable,  f  and g are both n-dimensional 

vector fields. The system can be exactly transformed 

into a completely controllable linear system- a 

Brunovsky normal form in an open neighbourhood 

of 0xx  , if and only if, 

(i) The matrix C is non-singular or the rank of the 

matrix C does not change and equals n around the 

neighbourhood of initial value 0xx  , where  
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then there exist an “output” function ‘w(x)’ whose 

relative degree r is equal to the system’s order n at 

0xx  , which can transform the nonlinear system 

(4)-(5) into a ‘Brunovsky normal form’ via exact 

linearization, and from which one can get the state 

feedback control law. 
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The determinant of the matrix C is then given by  
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for all x  in the region,   
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excitation system can be exactly lineraized using 

state feedback. 

Therefore, based on the exact linearization 

approach presented in [21], the nonlinear system (4)-

(5) can be transformed into a linear and controllable 

system by means of composite coordinate 

transformation (Fig. 2) and the state feedback, which 

transformed the original vector fields f(x) and g(x) of 

the nonlinear system into a transformed vector fields;  
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where )(JT x is the Jacobian matrix of the composite 
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terms of the following formulae 
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Based on the above transformation T, the following 

transformations can be obtained easily from equation 

(6)-(7) as: 
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w and z spaces 
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and the nonlinear state feedback control law of the 

original system can be achieved as: 

   
)(~

)(
~

1

1

xg

xf
u


                    (13) 

Such that the system (4)-(5) will be transformed into 

an exactly linear controllable system in Brunovsky 

normal form, 
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where the state weighting matrix Q and the control-

weighting matrix R are chosen as )0,1,1(diagQ  and 

R = 1. The system matrix and the input matrix of the 

exactly linear system are given by A = [0 1 0; 0 0 1; 

0 0 0], B = [0; 0; 1] respectively. The optimal 

constant gain matrix of the controller 

][ 321 kkkk   is obtained as ]144.2299.2000.1[k .  

Replacing )(
~
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1 xg from (8)-(9) and 

 for , the nonlinear excitation control law given 
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 This nonlinear control law (18) has been 

simulated in MATLAB in section 5 in order to 

investigate the dynamic stability of the test power 

system. The above nonlinear control scheme can be 

illustrated through a block diagram as shown in Fig. 

3.   
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Fig. 3. The block diagram of nonlinear excitation control 

scheme 

4. Design of a Conventional Power System 

Stabilizer (PSS) 

4.1 Model of Power System Stabilizer 

The most common configuration of conventional 

type PSS damping controller is depicted in Fig 4 

[22]. The basic function of a PSS is to add damping 

to the generator rotor oscillations by controlling its 

excitation using auxiliary stabilizing signal such as 

machine speed, terminal frequency or power as input. 

To mitigate rotor angle oscillations, the PSS must 

produce a component of damping torque in phase 

with the rotor speed variations. The controller 

comprises of a gain block, a signal washout block 

and a phase compensator block. The signal washout 

stage ( 10WT ) is not important for stability 

analysis and may be included to prevent steady state 

voltage offset as system frequency changes. The 

auxiliary control input is the generator speed (ω), 

and the controlled output is the stabilizing signal 

(Vs).  

The objective is to control the excitation in 

response to variation of the control input (ω), derived 

from local measurements. The time constants T1, T2, 

T3 and T4 should be set to provide damping over the 

range of frequencies at which oscillations are likely 

to occur. The transfer function of the PSS given in 

Fig. 4 can be represented by the following state space 

equations; 
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Fig. 4. The transfer function model of a conventional PSS 

Therefore, equations (1)-(3) and (19)-(21) 

together describe the combined state-space model of 

a SMIB system with PSS. The system matrix 

(Appendix A.2) and eigenvalues of this system can 

be determined easily from the approximate linearized 

model of the combined state-space system. The 

variableω in (19)-(21) can be eliminated using 

machine dynamic equation (2) given in section 3. 

There are five tuning parameters of the PSS, the 

controller gain (KPSS), lead-block time constants (T1, 

T2) and the lag-block time constants (T3, T4). In the 



 

  

following section these parameters are optimized 

employing PSO based method via minimization of a 

desired objective function. The solution of this 

problem is difficult to get analytically but the present 

optimization method solves it avoiding 

computational complexity. 

4.2 Optimization Problem  

The optimization problem presented here is to 

search the optimal parameter set of the PSS 

employing PSO. It is worth mentioning that the 

purpose of design of the PSS is to minimize the rotor 

angle oscillations after a disturbance so as to improve 

the dynamic stability of the power system. Therefore, 

this problem can be formulated as a minimization of 

a desired objective function, critical damping index 

(CDI), which is given by: 

   μ)1(  JCDI                       (22) 

where, 22/ ωσσ  is the damping ratio of 

the critical swing mode. The maximization of the 

damping ratio ‘μ’ results in minimization of ‘J’.  The 

value of μ and hence J are determined from the 

eigenvalue analysis of the system matrix of the 

combined state space model of the SMIB system 

with PSS.  

The objective of the optimization problem is to 

maximize the damping ratio )( as much as possible. 

With the change of parameters of the PSS the 

damping ratio )(  as well as J varies. The 

constraints of optimization are set with the possible 

range of the controller parameters. Therefore, the 

optimization problem can be stated as: 

Minimize   J                     (23)                 

Subject to  

 max
PSSPSS

min
PSS

KKK  ;  
maxmin

TTT 111  ;

 
maxmin

TTT 222   ; 
maxmin

TTT 333   

   
maxmin

TTT 444   

4.3 Algorithm for Implemented PSO  

 The application of Particle Swarm Optimization 

method was started around in 1995 [23]. The PSO 

toolbox available in MATLAB [24] has been used to 

solve the present optimization problem. The PSO 

toolbox consists of a main program associated with a 

bunch of sub-programs and routines which are 

utilized as per requirements of the problem. The 

main program ‘pso_Trelea_vectorized.m’ has been 

implemented here for ‘Common’ type PSO as a 

generic particle swarm optimizer. To find the optimal 

value of the controller parameters and the objective 

function (J), this main program runs the user defined 

eigenvalue computation program. A default plotting 

routine ‘goplotpso.m’ is used by the PSO to plot the 

best value of the objective function ‘gbest’ for the 

specified generation (epochs) limit. 

The ‘particle’ can be defined as a vector which 

contains parameters of the power system stabilizer; 

KPSS, T1, T2, T3, T4. The initial population is generated 

randomly for each particle and is kept within a 

typical range given in second column of Table 2 [19]. 

The values of these parameters are updated by PSO 

in each generation within this specified range. The 

particle configuration for entire population of size N 

is created repeating it N times as shown in Fig. 5. 

The objective function corresponding to each particle 

is evaluated by the eigenvalue analysis program of 

the test system (Fig. 1).  

The algorithms of the implemented PSO have 

been described here in following steps; 

Step 1: Indicate parameters for PSO, population size, 

generation limit, dimension of input variables, PSO 

type etc. 

Step 2: Generate initial population for the PSS 

parameters: KPSS, T1, T2, T3, and T4. 

Step 3: Run MATLAB program for computation of 

the system matrix, eigenvalue and the corresponding 

damping ratio )( of the critical swing mode of the 

proposed test system. 

Step 4: Execute objective function (J) for the each 

‘particle’ in a current population. 

Step 5: Determine and store best value of the particle 

which minimizes the objective function. 

Step 6: Check whether the generation exceeds 

maximum limit. 

Step 7: If generation < max. limit, update population 

for next generation and repeat from step 3. 

Step 8: If generation > max. limit, stop program and 

produce output. 

The program parameters for PSO to be set in PSO 

algorithm are given in Table 1. Choice of these 

parameters affects the performance and speed of 

convergence of the algorithm. The rate of 

convergence of the objective function ‘J’ towards the 

best feasible solutions with particle size 10 and 

number of generations 150 has been shown in Fig. 6. 

The final convergence is guaranteed by observing the 

value of J, which remains unchanged up to 8 decimal 



 

  

places. The PSO generates optimal values of the 

controller parameters which are presented in third 

column of Table 2. The performance of this PSO 

based PSS respect to the nonlinear excitation 

controller has been investigated in the following 

section. 

Table 1  

Parameter set to implement PSO algorithm 

 
0.32  0.8 

0.01 0.08 

0.01 

1.5 0.2 1.32 

KPSS 

T1 

T2 

T3 

0.03 

Minimum Maximum 

•  •  •  • •  •  •  • 

0.13 0.25 

•  •   •  • 

T4 

1.0 2.0 4.76 15.0 

0.65 

0.5 

0.1  0.8 

0.01 0.08 

0.01 

0.2 1.5 1.44 

KPSS 

T1 

T2 

0.53 

0.33 0.29 

•  •   •  • 1.0 1.22 7.42 15.0 

0.4 

0.5 

T4 

T3 

0.1 0.69 

0.04 

0.09 

0.06 0.029 N 

 
Fig. 5. Particle configuration for entire population 

 

5. Nonlinear Simulation 

In order to quantitatively investigate the 

performance of the proposed nonlinear control 

scheme, the test system (Fig. 1) was simulated for a 

given fault scenario. A three-phase-to-earth fault is 

applied near the generator bus bar at t = 1.0 sec and it 

clears successfully within 20 ms. It can be seen that 

the rotor angle of the generator increases drastically 

following the predefined fault and the system 

become unstable during first swing. The post fault 

system returns to stable operation after clearance of 

the fault. It has been observed from the Fig. 7(a) that 

the oscillations of generator rotor angle (δ) and its 

settling time is successfully improved when equipped 

with the proposed nonlinear excitation control in 

contrast to the PSO based conventional PSS control. 

Table 2  

Range of PSS parameters and its PSO based value 

Controller 

parameters 

Typical range 

(Min,  Max) 

PSO based 

value 

KPSS 1.0,   15.0 7.937 

T1 0.20,  1.50 0.210 

T2 0.01,  0.50 0.041 

T3 0.01,  0.08 0.080 

T4 0.10,   0.80 0.10 

 

 

Fig. 6. Convergence of the objective function (J) with PSO 

The generator speed response of the post-fault 

system is also calculated for a simulation time 10 

sec. The plot in Fig. 7(b) demonstrates the variation 

of generator speed with conventional as well as 

nonlinear excitation controller. It is clear that the 

system without control losses transient stability with 

a three-phase-to-earth fault and after clearance of the 

fault it achieves steady state with application of both 

PSS and the nonlinear excitation control but the 

damping and settling time is found to be much 

satisfactory for the application of later.  

The active power response of the system is also 

studied for similar disturbance. The plot of active 

PSO 

Parameters 
Value PSO Parameters Value 

Swarm 

Size 
10 

Epochs before error 

gradient criterion 

terminates run 

100 

Dimension 

of inputs 
5 acc1,  acc2 2, 2 

Maximum 

generation 

(epoch)  

150 wstart,  wend 0.9, 0.4 

Number of 

Particles 
5 rand1, rand2 (0, 1) 

Minimum 

error 

gradient 

terminates 

run 

1× e-8 PSO Type 
Common 

‘0’ 



 

  

power response is presented in Fig. 7(c).  This result 

also indicates that the dynamic performance, the 

lasting time of transient response and the number of 

oscillations have been improved significantly if the 

nonlinear control strategy is adopted. 

Based on the above results it is possible to 

conclude that the nonlinear excitation controller is 

more effective and can improve more rapidly 

dynamic stability of the power system compared with 

the PSS, even under large disturbances.  

  

          Fig. 7 (a)  

 

          Fig. 7(b)  

 

 

 

 

         Fig. 7(c) 

Fig. 7.  Simulation results for improving transient stability 

with different operating scenarios; 

(a) Rotor angle response (b) Generator speed response 

(c) Active power response 

 

6. Conclusions 

In this paper a nonlinear control strategy for 

excitation control has been proposed in order to 

improve dynamic stability in a SMIB power system. 

The nonlinear control law has been designed with the 

help of exact feedback linearization. The optimal 

gain parameter of the feedback controller has been 

estimated through LQR principle. The performance 

of the proposed nonlinear excitation controller has 

been compared with the conventional PSS. A novel 

stochastic search method, PSO has been 

implemented for optimal parameter setting of the 

conventional PSS via minimization of a desired 

objective function which is formulated based on the 

eigenvalue analysis of the test power system. It has 

been revealed that the nonlinear excitation control 

scheme is more effective and superior to the 

conventional PSS in mitigating dynamic instability of 

SMIB power system. The proposed nonlinear and the 

conventional control schemes can also be 

implemented for other power system controllers and 

for the multimachine power system as a future scope 

of the work. 

 

 

 

 



 

  

Appendix A 

A.1 Proposed study system 

H = 2.37sec; D = 0.0;  Rs = 0.0 pu ; Re = 0.02 pu; Td = 

5.90 sec; ωs = 314 rad/sec;  Xd  = 1.70 pu;  X'd  = 

0.245 pu;  Xe = 0.7 pu;  Xq = 1.64 pu; Vinf = 1.00 0  

pu; Vt = 1.72 31.19 pu. 

 

 

 

 

  

A.2 System matrix of the approximately linearized system  
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