
 
1Abstract: This paper presents a new generalized algorithm 

of space vector pulse width modulation (SVPWM) for the three 
phases N level inverters. This algorithm is based on numerical 
analysis; it offers a great flexibility to optimize switching 
waveforms and is also adapted for digital implementation. This 
paper analyzes the voltage space vector distribution of the 
three phase inverter in (α-β) coordinates, and describes new 
methods for selecting the switching states and for calculating 
the duty cycles of adjacent vectors. Simulation and 
experimental results, in terms of harmonic analysis and THD 
responses, show the effectiveness of the generalized algorithm 
proposed.  
 

 Key words: three phase multilevel inverter, space vector 
PWM, generic algorithm. 

1. Introduction 
Multilevel converters have been mainly used in high 

power system applications, such as static reactive power 
compensation and adjustable speed drives. In these 
applications, due to the limitations of the currently 
available power semiconductor technology, a multilevel 
concept is usually a unique alternative. They have, in 
general, advantages over conventional two level inverters 
due to: [1]-[5]: 

- Their ability to handle high voltage with voltage 
limited devices; 

- Reduced harmonic distortion in the output voltage; 
- Lower electromagnetic interference and good 

electromagnetic compatibility; 
- Minimum voltage stress on the switching devices, 
- Lower dv/dt in generated voltage;  
- Reduced switching losses; 
- Increased efficiency; 
- Reduced stress on motor bearings in drive 

applications. 
Voltage-source multilevel-inverter topologies are based 

on the synthesis of a voltage waveform from several DC 
voltage levels typically obtained from several capacitors 
or DC sources [6]–[10]. As the number of levels 
increases, the synthesized output voltage gets more steps 
and produces a waveform which approaches the 
reference more accurately. There are several topologies 
of multilevel inverters, they are classified into three main 
categories: diode clamped inverters, flying capacitor 
inverters, and cascaded inverters.   

For the control of these inverters, Many PWM 
techniques have been proposed over the years; the most 
popular are those based on sinus triangular comparisons 
technique, hysteresis technique, Selective Harmonic 
 

 

Elimination Technique (SHEPWM), and Space Vector 
Pulse Width Modulation (SVPWM) which is the object 
of this work [11]–[24]. 

The SVPWM is generally adopted for driving 
multilevel inverter systems due to: 

- Its flexibility to reduce the common mode and to 
balance the voltage of the DC link capacitors; 

- Its flexibility for optimizing switching waveforms; 
- It is well suited for digital implementation. 
However, regardless of its advantages, the 

implementation of SVPWM represents a difficulty 
mainly due to the excessive computational requirements 
when applied to inverters with a higher number of levels. 
Consequently, several methods intended to reduce a 
computational time are proposed, their main contribution 
is on algorithms to select the three nearest vectors to the 
reference vector, to calculate their duty cycles and to 
organize the sequence of these three vectors in order to 
reduce the number of switching transitions and/or the 
harmonics content of the generated voltage. 

In this paper, we propose a simple systematic method 
to determine the three nearest vectors to the reference 
vector based on region (triangle) and sector (sector) 
indexation. In order to identify easily the switching states 
associated to the region and the sector selected, space 
vectors matrix is organized related to the region and 
sector indices. With this organization, it is possible to 
seek the sequence of the three vectors which ensures the 
weakest harmonic content. Moreover, a simple method of 
duty cycles computation is proposed which exploits 
directly the projection of the reference vector to the three 
closest distances.  

For this purpose, the paper is organized as follows, in 
section II, we give the general concept of SVPWM, the 
section III presents the generalized algorithm proposed, it 
describe the limiting area indexation and the process for 
the reference vector location. Also, the space voltage 
determination and their organization in matrix are given 
and the research method of the three closest space 
vectors surrounding reference vector is developed. It is 
also deduced, in this section, the duty cycle computation 
associated to these three switching states. In the Section 
IV, we give the simulation results for 3, 5, 7, 9 and 11 
level inverter controlled with the proposed algorithm. 
Finally, the section V presents an experimental result of 
implementation of this algorithm in Dspace 1103 for the 
control of a NPC three level inverter.  
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2. Principal of SVPWM for multilevel inverters 
In multilevel inverters, the number of the switching 

states Na is given by: 
3

la NN =            (1) 

Each switching states, or combination of phase leg 
switch produce a defined set of three phase voltages. The 
different voltage space vectors number, Nu , is given by: 
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The space vector representations of the output voltage 
for the inverters with Nl=3, 4 and 5 levels in α-β frame 
are shown in Fig. 2. 
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(a)Three levels three phases inverter 
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(b) Four levels three phases inverter 
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(c) Five levels three phase inverter 

Fig.1. Two dimensional representation of voltage space vectors of a 
three phase 3 and 4 level inverters 

The space vector diagram can be divided into sector and 
each sector can be divided into triangular regions. The 
division of the voltage space into triangle is illustrated in 

figure 1.a and figure 1.b for three and four levels 
inverters respectively. Where, each corner of every 
triangle represents a possible voltage vector of the three-
phase inverter. 

Similar to the SVM algorithm for two-level inverters, 
the reference space vector is used to select the 
corresponding set of three nearest adjacent voltage space 
vectors. 

The adjacent three vectors selected can synthesize a 
desired reference voltage vector using averaged 
approximation. If the reference vector lies in the triangle 
connecting the tips of vectors 1V , 2V  and 3V (Fig. 2). 

 
Fig.2. Generation of the reference vector by using three vectors 

The average reference vector can be obtained with: 

332211ref  V VdVdVd +++=       (3) 

Where d1  , d2 and d3  the duty cycles of the adjacent 

voltage vectors 1V , 2V , and 3V , respectively, they must 
satisfy the condition: 

d1  + d2 +  d3 = 1         (4) 

3. The generalised SVPWM algorithm proposed 

The multilevel SVM algorithm developed in this paper 
carries out three main tasks: the selection of a set of 
voltage space surrounding the reference vector, 
computation of duty cycles corresponding and the 
generation of an optimum sequence of the voltage states. 
The diagram of the proposed algorithm is presented in 
fig.3. 

 
Fig. 3. Diagram of the proposed algorithm 

A. Reference vector location 

Process of determination of the reference voltage 
vector location in Cartesian coordinate system is 
complex. In order to overcome this complexity, 
hexagonal (g-h space) coordinate system is used. The 
location is defined in three steps: 
Step 1: Sector identification. 
Step 2: defining the equivalent projection components of 
normalized reference vector in the first sector in g-h 
coordinates system. 
Step 3: Region definition (triangle) where the reference 
vector lies.  
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B.1. Equivalent components in the 1st sector 

The projection of normalized reference vector Vrn in the 
first sector is illustrated in Figure 4, the result of 
projection is determined as follow: 
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Fig. 4.  Reference space vectors projection in the hexagonal coordinates 

system for sector-I. 

The components m1 and m2 of the equivalent vector in 
the first sector can be directly found, by the values Vg,  
Vh, in the sector where the reference vector lies. These 
relationships are illustrated in table 1: 

TABLE 1: EQUIVALENT COMPONENTS IN THE FIRST SECTOR 
gh components Sector Equivalent components 
Vg>=0 & Vh>=0   1 m1=Vg;m2=Vh; 
Vg<0 & Vh>=0 & 
(Vg+Vh)>=0   

2 m1=-Vg; m2=Vg+Vh; 

Vg<0 & Vh>=0 & 
(Vg+Vh)<0   

3 m1=Vh; 
m2=-Vg-Vh; 

Vg<0 & Vh<0 4 m1=-Vh; m2=-Vg; 
Vg>=0 & Vh<0 & 
(Vg+Vh)<0   

5 m1=-Vg-Vh; m2=Vg; 

Vg>=0 & Vh<0 & 
(Vg+Vh)>=0   

6 m1=Vg+Vh;  
m2=-Vh; 

B.2. Region definition 

In this paper, a simple technique is presented to 
determine the triangle in which the desired vector is 
located. In first step, a region number synthesis is 
required. 

The total number of region in one sector is the sum of 
sequence with the first term is 1 and general term 
defining as: 
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The total number of region for Nl levels is  
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One sector is divided on layer, the number of layer 
increase with the number of level, one layer represent 
another extern hexagon when the level increase. 
Consequently, the number of region in one layer is 
defined by the relation: 

32 −= CrlN         (8) 

C is the number of layer and it corresponds on number 
of level if the last layer is considered. Their domain of 
variation is from 2 to Nl . 

The indices of regions in one sector are defined as: 
- the indices is identical to region indices in last 

layer C=Nl ,  
- the region indices is defined by addition with 

the indices of region in the highest order 
hexagon, it can be formulated by: 
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For identification of the region where the reference 
vector lies, the indexation of region in one layer is 
divided into odd and even number. Figure 5 show how 
the regions is numerated. 

 
Fig. 5.  Region indexes in sector I. 

The criteria for defining the region indexes are 
summarized in the table 2: 

TABLE 2: REGION DEFINITION 
Region 
in layer 

Conditions for :  
2≤C≤Nl & 1≤k≤Nl-1 
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C. Space vectors matrix organization 

The sets of space vector with a zero argument value are 
ordered in increasing magnitude; the number of these sets 
is equal to level number of the inverter. The rest of sets 
are ordered in decreasing magnitude and increasing 
argument, these sets are numbered from (N+1) to (2N-1) 
the number of total sets of space vectors. 

  D. Nearest vectors definition and Switching Sequence 
Arrangement 

D.1.Vector sequence selection 

The order of applied nearest vectors is function of the 
number of region in sector (even or odd). The order is 
showed by the row in the figure 6. 
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Fig. 6. Three vectors sequence arrangement 

 

D.2. Algorithm for optimal sequence switching 

It was remarked, the voltage space are represented by 
multiple redundant voltage states. There are several 
options to determine the switching sequence. Switching 
sequence can be arranged according to certain optimal 
objective, for example, minimum switching loss or 
minimum total harmonic distortion (THD). In this paper, 
in order to achieve low number of switches for a given 
space voltage Vref, all relevant switching states are 
arranged to form the switching sequences.  

This algorithm is based on choice in redundant vectors 
of the next adjacent vector in sequence the suitable for 
minimum number of switch (one transition switch). 

After the location of the reference vector by a region 
index, as shown in Figure 3. The three nearest inverter 
space voltage for all regions can be determined by 
applying the following algorithm: 
Step1: Define the nearest vectors for region 1 in the outer 
hexagon with respect of sequence arrangement as: 
V1(1,:,C)=S(1,:,C); 
V2(1,:,C)=S(1,:,Nl+k+1); 
V3(1,:,C)=S(1,:,C-1); 
With: k=0, C=Nl, S is the states matrix. 
Step 2: decrease C for Nl to 3 and increase the sector 
number for 1 to 6. 
If C is even increase k with : k=k+(C-2)/2. 
If C is odd increase k with : k=k+(C-1)/2. 
Step 3: define the nearest vectors for all regions with 
respect of the criteria shown in the tables (3, 4, 5 and 6) 

TABLE 3: FIRST VECTOR V1(R,:,C) DEFINITION 
C * * 
Rls Odd even 
Rl 1 Other * 

V1(R,:,C) S(i,:,C
) 

V1(R-
1,:,C) 

V2(R-
1,:,C) 

TABLE 4.A: SECOND VECTOR V2(R,:,C) DEFINITION 

C * Odd even 
Rls odd Odd odd 
Rl NRC <(NRC-1)/2 (NRC-1)/2 other NRC ≤(NRC-2)/2 other 

V2(R,:,C) S(i,:,C
) 

S(i,:,Nl+k+i1
) 

S(i,:,Nl+k+i1)
; 

S(i,:,Nl+k+j1
) 

S(i,:,C
) 

S(i,:,Nl+k+i6
) 

S(i,:,Nl+k+j6
) 

TABLE 4.B: SECOND VECTOR V2(R,:,C) DEFINITION 

C * odd even 
Rls even even even 
Rl NRC-1 <=(NRC-1)/2 other <(NRC-1)/2 (NRC-1)/2 other 

V2(R,:,C) S(i,:,C-
1) 

S(i,:,Nl+k+(C-
1)/2+i4) 

S(i,:,Nl+k+(C-
1)/2+j4) 

S(i,:,Nl+k+(C-
2)/2+i5) 

S(i,:,Nl+k+(C-
2)/2+i5) 

S(i,:,Nl+k+(C-
2)/2+j5) 

TABLE 5: THIRD VECTOR V3(R,:,C) DEFINITION 

C * * odd even 
Rls Odd even even even 
Rl 1 other 2 ≤(NRC+1)/2 other <(NRC+3)/2 (NRC+3)/2 other 

V3(R,:,C) S(i,:,C-1); V2(R-1,:,C); S(i,:,C-1) S(i,:,Nl+k+i2) S(i,:,Nl+k+j2) S(i,:,Nl+k+i3) S(i,:,Nl+k+i3) S(i,:,Nl+k+j3) 

With: 

TABLE 6: INITIAL PARAMETERS DEFINITION 
increased variables Decreased variables 

i1=1For the sector n=1; 
i1=0 For the others sectors; 
i2=(C-1)/2; 
i3=0; 
i4=0; 
i5=0; 
i6=0; 

j1=(C-1)/2; 
j2=(C-1)/2+(C-3)/2+1; 
j3=(C-2)/2; 
j4=(C-3)/2+1; 
j5=(C-2)/2; 
j6=(C-2)/2+1; 
 

 
R is the region number in the total space. 
Rl is the region number in one layer for total space. 
Rls is the region number in one layer and one sector. 
NRC is the number of regions in the layer C for one sector. 

 

 

 

 

E. sequence organization 

A Sequence organisation is similar to the case of a two-
level inverter; the order of the elements in the sequence is 
reversed in the next half of the modulation period. 

4. Simulation results 
The proposed algorithm is implemented using Matlab 

program. An examples to indicate the simplicity of the 
algorithm for any number of levels is shown in figure 11, it 
represents the line-to-line voltage and its spectrum for a 3, 
5, 7, 9, and 11 levels inverters with a modulation index of 
0.95. Simulate higher levels of SVM Will be with the same 
simplicity.  

A deeper analysis of the resulting PWM voltage 
harmonics spectrum shows that the low order harmonics 
remain relatively weak and the increasing of the level 
number has an effect on the reduction of the harmonics 
content. 
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Figure. 7. Line to line voltage and their spectrum with modulation index r=0.95, for different levels Nl=3, 5, 7 , 9 and 11. 

The performances of the output voltage are 
represented by the variation of the THD and the 
Weighted THD according to the modulation index r 
for several levels (Figure 8).  
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Figure 8. Values of THD and WTHD according to the index modulation for 
different levels Nl=3, 5, 7 , 9 and 11. 



 
A comparison of these performances according to Nl 
shows that there is a significant reduction in the THD 
and WTHD for Nl passing from 3 to 5 and 7 to 9. For 
Nl=5, 7 and Nl=9, 11, the inverter performances are 
almost identical. 

5. Experimental results 

This algorithm is implemented in DSpace 1103 and tested 
for a NPC three level inverter. The test bench used to 
valdate the proposed strategie is illustrated in the figure 9. 

 
Fig.9. The experimental setup. 

 

The simple voltage of three phase resistive load is shown in 
figure 10. It shows the effectiveness of the proposed 
algorithm. 

 
Fig.10. simple voltage of resistive load fed with NPC three level inverter 

controlled with SVPWM strategy proposed. 
 

6. Conclusion 

This paper has presented a new generalized algorithm for 
generating a SVM for N level inverters. This algorithm 
allows a reduction in switching numbers with fewer 
harmonics by an optimal utilisation of redundant vectors 
and classification of adjacent vectors. It has the flexibility of 
being adapted for a required application in order to achieve 
less delayed response time. 

To confirm the validity of the proposed algorithm, 
various simulation tests were performed for 3, 5, 7, 9 and 11 
levels inverters and experimental test for a NPC three level 
inverter. The results confirm that the proposed algorithm is 
effective. 
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