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Abstract: According to power quality concerns, the 

insertion of capacitor banks into the electrical power system 

is interested in the case of power factor compensation and 

voltage support. Due to capacitor bank switching process, a 

transient overvoltage appears on the system and represents 

hazard on equipment insulations. In this paper the capacitor 

bank switching overvoltage dependent parameters are 

studied and the artificial neural network (ANN) is used to 

estimate this overvoltage. ANN is trained according to the 

factors that affect the overvoltage. ANN training data is 

provided by MATLAB/Simulink environment. The simulated 

results show that the proposed technique can estimate the 

peak values and durations of capacitor bank switching 

overvoltages with good accuracy.  

Keywords: Capacitor bank energization, switching 

overvoltages, power factor correction, artificial neural 

network. 
 

1. Introduction 

 Capacitor bank energizing transients are becoming 

increasingly more important with the growing number 

of capacitor bank installations in power systems. This 

is because capacitor bank switching is one of the most 

frequent utility operations, potentially occurring 

multiple times per day and hundreds of time per year 

throughout the system, depending on the need for 

system voltage and reactive power support from the 

banks. During the switching of shunt capacitor banks, 

high magnitude and high frequency transients can 

occur. The transient is characterized by a surge of 

current having a high magnitude and a frequency as 

high as several hundred Hertz. There is also a transient 

overvoltage on the bus, caused by the surge of inrush 

current coming from the system source [1].  

Excessive overvoltages may lead to damage of 

power system equipment so; capacitor bank energizing 

transients should be studied to achieve power quality 

concerns. The magnitude and shape of the switching 

overvoltages vary with the system parameters and 

network configuration. Even with the same system 

parameters and network configuration, the switching 

overvoltages are highly dependent on the 

characteristics of the circuit breaker operation and the 

point-on wave where the switching operation takes 

place [2],[3].  
This paper presents how to estimate the switching 

overvoltages caused due to the entering of capacitor 

bank into the service by using MATLAB/Simulink. 

Artificial neural network (ANN) will be used also, as a 

real time application method to determine the 

overvoltages due to this power factor compensation 

process. ANN will be trained by a large pattern of data 

that the capacitor bank switching overvoltage depends 

on it to achieve a high level of accuracy as well as the 

results that be obtained from the usage of any 

electrical power system simulation program as 

MATLAB/Simulink. 
This paper presents the following sections: in section 2 

a brief description of switching overvoltages during 

capacitor energization is presented. Section 3 presents 

power system modelling. Section 4 studies the effect of the 

variation of capacitor bank switching overvoltage dependent 

factors. In section 5 the ANN-based approach to estimate 

the overvoltage during capacitor energization is illustrated. 

Section 6 provides the conclusion about this paper. 
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2. Capacitor energization 

 When the capacitor in Fig. 1 is energized by 

closing of the circuit breaker the voltage and current in 

this capacitor considering a discharged capacitor are 

given by equations 1 and 2 respectively [4], [5]. 

 
Fig. 1. Capacitor energization. 

 

𝑣𝑐(𝑡)
= 𝑣 − 𝑣 sin 𝜔𝑡                                                                     (1) 

 

𝑖𝑐(𝑡)

=
𝑣

𝑧𝑜

sin 𝜔𝑡                                                                            (2) 

Where: 

υ is circuit breaker voltage at closing instant. 

ω is natural frequency = 1/√𝐿𝐶 . 

zo is surge impedance = √𝐿 𝐶⁄  . 

 At the instant of capacitor bank insertion, a capacitor is 

a sudden short circuit, because the voltage across the 

capacitor cannot change suddenly. The voltage of the bus to 

which the capacitor is connected will dip severely. This 

voltage dip and the transient step change is a function of the 

source impedance behind the bus. The voltage will then 

recover through a high frequency oscillation. In the initial 

oscillation the transient voltage can approach 2 per unit of 

the bus voltage as shown in Fig. 2 [1], [6]. 

 
Fig. 2. Overvoltage transient across the switched capacitor. 

 

3. Network modelling 

The sample system considered for explanation of the 

proposed methodology is shown in Fig. 3. The normal peak 

value of any phase voltage at bus n is 22 × √2/√3 kV and 

this value is taken as base for voltage p.u. Fig. 4 shows the 

switching transient at bus n when capacitor is energized. 

Fig. 3. Single line diagram of the studied system before the   

            insertion of the capacitor bank. 

 

The user friendly graphical interfaces of 

MATLAB/Simulink enable faster development for power 

system transient analysis. The modelling of studied power 

system is detailed as below: 

 

3.1.  66 kV supply network 

The system equivalent can be modeled by a three phase 

voltage source with amplitude equals to 66 × √2/√3 kV  

and internal impedance (R=0.466 Ω, L= 9.25 mH) 

calculated from the value of 1500 MVA [1]. 

 

3.2. Transmission line model  

Transmission line (OHTL or UGC) is described by PI 

cell, where the R, L and C parameters being derived from 

lumped-line models. This model is also accurate enough for 

frequency dependent parameters, because the positive 

sequence resistance and inductance are fairly constant up to 

approximately 1 kHz which covers the frequency range of 

phenomena that this paper deals with [7]. 

 

3.3. Transformer model  

The substation transformer 66/22 kV is modeled by 3-

phase, Δ-Y, with ground Y transformer where this model 

takes into account the winding resistances (R1, R2), the 

leakage inductances (L1, L2) as well as the magnetizing 

characteristics of the core, which is modeled by a resistance, 

Rm, simulating the core active losses, and a saturable 

inductance, Lsat. The saturation characteristic is specified as 

a piecewise linear characteristic [8]. 

 

3.4.  Circuit breaker model 

Circuit breaker can be modeled by a resistance Ron 

when the breaker is closed and an infinite resistance when 

the breaker is open, where the opening and closing times 

can be controlled by external control signal [9]. 

3.5.  Load and capacitor bank model  



The load is modeled as three phase Y connected 

constant impedances specified by active and reactive power 

[10]. The capacitor bank is presented as three phase Δ 

connected reactive power generation units specified by the 

required reactive power for the system. 

 
Fig. 4. Voltage response at bus n when capacitor is  

            energized. 

 

4. Capacitor bank switching overvoltage 

dependent factors 
The magnitude and frequency of the transient 

overvoltages resulting from capacitor bank insertion is a 

function of [2], [7]: 

 Voltage at capacitor bank bus before switching (VBS) 

 Capacitor bank capacity (Qc) 

 Switching angle of the circuit breaker poles (α) 

 Charge on the capacitor bank at closing instant 

This section presents the effects of these factors on the 

switching transients due to capacitor bank insertion. 

Electrical power system in Fig. 3 is simulated and run to 

record the overvoltage peak (Vnpeak) and duration (D) at 

different values of the factors that affecting on it. The 

inserted capacitor in this network has not any pre-switching 

charge due to the connection of the earthing switch to 

ground before the insertion process so; this factor is not 

considered in this work. 

Fig. 5 shows the effect of voltage at capacitor bank bus 

before switching on overvoltage. Fig. 6 shows the effect of 

capacitor bank capacity on overvoltages. Controlled 

switching of high voltage ac circuit breakers has become a 

commonly accepted means of controlling switching 

transients in power systems [11]. Fig. 7 shows effect of 

switching angle of the circuit breaker on overvoltages.  

 
            (a) 

 
            (b) 

Fig. 5. The effect of voltage at capacitor bank bus before  

            switching on overvoltage (a) peak and (b) duration. 

 

 
(a) 

 
(b) 

Fig. 6. The effect of capacitor bank capacity on    

            overvoltage (a) peak and (b) duration. 

0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

V
n
(t

) 
(p

.u
.)

0.922 0.924 0.926 0.928 0.93 0.932
1.31

1.32

1.33

1.34

1.35

1.36

1.37

V
BS

 (p.u.)

V
n

p
e
a
k
 (

p
.u

.)

0.922 0.924 0.926 0.928 0.93 0.932
0.02

0.025

0.03

0.035

V
BS

 (p.u.)

D
 (

s
e
c
)

1 1.5 2 2.5 3 3.5 4 4.5
1.26

1.28

1.3

1.32

1.34

1.36

Q
c
 (MVar)

V
n

p
e
a
k
 (

p
.u

.)

1 1.5 2 2.5 3 3.5 4 4.5
0.01

0.015

0.02

0.025

0.03

0.035

Q
c
 (MVar)

D
 (

s
e
c
)



 
        (a) 

 
    (b) 

Fig. 7. The effect of switching angle of the circuit breaker  

            on overvoltage (a) peak and (b) duration. 

 

 In fact, it is difficult to say that the overvoltage is 

increased or decreased by seeing to overvoltage peak only 

but overvoltage duration should be considered also. Where 

the overvoltage peak may be increased under certain 

conditions but in the same time the overvoltage duration is 

decreased. On the contrary, the overvoltage peak may be 

decreased under certain conditions but in the same time the 

overvoltage duration is increased such as obtained in Figs. 

5, 6 and 7. Now can be said that due to overvoltage 

dependent factors variation not only overvoltage peak is 

varied but overvoltage duration is varied also. 

In the next section for real time applications an artificial 

neural network (ANN) based approach to estimate capacitor 

bank switching overvoltage is presented. 

5. Artificial neural network scenario 
Fig. 8 shows the structure of the radial basis function 

neural network (RBFNN), which comprises of three layers. 

The hidden layer possesses an array of neurons, referred to 

as the computing units. The number of such units can be 

varied depending on user’s requirement [12], [13]. Different 

basis functions like spline, multi-quadratic, and Gaussian 

functions have been studied, but the most widely used one is 

the Gaussian type. In comparison to the other types of 

neural network used for pattern classification like back 

propagation feed forward networks, the RBF network 

requires less computation time for learning and has a more 

compact topology. The Gaussian RBF is found not only 

suitable in generalizing a global mapping but also in 

refining local features without altering the already learned 

mapping [14]. Each hidden unit in the network has two 

parameters called a center (ω) and a width (q) associated 

with it [14]. The response of one such hidden unit to the 

network input is expressed as 

 

ɸ𝑑(𝑥𝑛) = EXP (−[
1

𝑞𝑑

‖𝑥𝑛

− 𝜔𝑑‖]2)                                                   (3) 

 
Fig. 8. Structure of RBF neural network. 

 

where ωd is the center vector for d
th

 hidden unit, qd is the 

width of the Gaussian function, and ||   || denotes the 

Euclidean norm. The output layer comprises a number of 

nodes depending on the number of input factors to be 

classified which perform simple summation. The response 

of each hidden unit (1) is scaled by its connecting weights 

(y’s) to the output nodes and then summed to produce the 

overall network output [14]. The overall network output is 

expressed as 

𝑓𝑚(𝑥𝑛)

= 𝑦𝑚𝑜 + ∑ 𝑦𝑚𝑑ɸ𝑑(𝑥𝑛)                                                            (4)

𝑁

𝑘=1

 

where d indicates the total number of hidden neurons in the 

network, ymd is the connecting weight of the d
th

 hidden unit 

to m
th

 output node, and ymo is the bias term for the 

corresponding m
th

 output neuron. The learning process of 

the RBFNN involves with the allocation of new hidden units 

and tuning of network parameters. The learning process is 

terminated when the output error goes under the defined 

threshold [15]. 

MATLAB/ Simulink simulation tool is used to train the 

artificial neural network by the capacitor bank switching 

overvoltage dependent factors as input pattern matrix. 
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Where these factors are varied and record the each case 

corresponding result of the capacitor bank switching 

overvoltage peak and duration obtained from MATLAB/ 

Simulink simulation tool as output pattern matrix as shown 

in Fig. 9. 

All experiments have been repeated for different system 

parameters. After learning, all parameters of the trained 

networks have been frozen and then used in the retrieval 

mode for testing the capabilities of the system on the data 

not used in learning. The testing data samples have been 

generated by placing the parameter values that are not used 

in learning, by applying different parameters. A large 

number of testing data have been used to check the 

presented solution in the most objective way at practically 

all possible parameters variation. Results for a sample test 

data are presented in Table 1, where the percentage error 

(%E) is calculated as shown in Fig. 10 and in equation (5). 

 

%𝐸 =
𝑟𝑒𝑠𝑢𝑙𝑡𝐴𝑁𝑁 − 𝑟𝑒𝑠𝑢𝑙𝑡𝑀𝐴𝑇𝐿𝐴𝐵

𝑟𝑒𝑠𝑢𝑙𝑡𝐴𝑁𝑁

∗ 100                                 (5) 

 

 
Fig. 9. Structure of neural network for capacitor bank  

            switching overvoltage determination. 

 

 
Fig. 10. Supervised learning of ANN [2]. 

 

 

VBS α Qc VM VANN Ev% DM DANN ED% 

0.9291 45 3.0 1.349 
1.378 

2.104 
0.0129 

0.0133 3.008 

0.9325 45 3.6 1.362 
1.379 

1.233 
0.0315 

0.0320 1.563 

0.9370 30 4.0 1.272 
1.319 

3.563 
0.0324 

0.0335 3.284 

0.9361 65 2.2 1.411 
1.450 

2.690 
0.0310 

0.0316 1.899 

0.9291 50 3.6 1.365 
1.378 

0.943 
0.0323 

0.0327 1.223 

0.9308 45 3.6 1.356 
1.376 

1.453 
0.0317 

0.0323 1.858 

0.9352 90 1.4 1.324 
1.348 

1.780 
0.0289 

0.0292 1.027 

0.9343 17 2.8 1.123 
1.138 

1.318 
0.0127 

0.0130 2.308 

0.9281 75 4.1 1.360 
1.409 

3.478 
0.0296 

0.0302 1.987 

0.9291 45 0.7 1.270 
1.290 

1.550 
0.0117 

0.0120 2.500 

0.9291 80 3.6 1.374 
1.395 

1.505 
0.0230 

0.0234 1.709 

0.9274 45 3.6 1.343 
1.360 

1.250 
0.0319 

0.0332 3.916 

0.9266 15 4.2 1.143 
1.152 

0.781 
0.0232 

0.0237 2.110 

0.9334 0 3.0 1.096 
1.114 

1.616 
0.0139 

0.0140 0.714 

0.9235 82 2.6 1.281 
1.290 

0.698 
0.0187 

0.0190 1.579 

0.9291 45 1.0 1.324 
1.329 

0.376 
0.0109 

0.0110 0.909 

0.9316 37 4.5 1.311 
1.325 

1.057 
0.0228 

0.0229 0.437 

0.9299 71 2.3 1.380 
1.397 

1.217 
0.0295 

0.0300 1.667 

0.9250 71 2.3 1.364 
1.372 

0.583 
0.0302 

0.0306 1.307 

0.9220 60 1.5 1.359 
1.374 

1.092 
0.0210 

0.0212 0.943 

0.9205 80 4.0 1.323 
1.331 

0.601 
0.0301 

0.0305 1.311 

0.9198 50 3.0 1.330 
1.373 

3.132 
0.0200 

0.0203 1.478 

0.9352 50 3.0 1.381 
1.419 

2.678 
0.0318 

0.0323 1.548 

0.9291 45 1.5 1.324 
1.338 

1.046 
0.0125 

0.0126 0.794 

0.9370 50 0.7 1.327 
1.328 

0.075 
0.0210 

0.0212 0.943 

0.9361 5 3.0 1.083 
1.131 

4.244 
0.0135 

0.0136 0.735 

0.9352 10 3.2 1.097 
1.108 

0.993 
0.0136 

0.0138 1.449 

0.9291 45 2.0 1.350 
1.357 

0.516 
0.0111 

0.0112 0.893 

0.9343 15 1.4 1.024 
1.031 

0.679 
0.0055 

0.0056 1.786 

Table 1. Some sample testing data and output. 

 

Where VM and DM are the overvoltage peak and 

duration at bus n obtained from MATLAB/ Simulink 

program respectively. VANN and DANN are the overvoltage 

peak and duration at bus n obtained from ANN respectively. 

Ev% is the percentage error between VANN and VM. ED% is 

the percentage error between DANN and DM. 

 



6. Case study 
The trained ANN can be used to predict the switching 

overvoltage due to capacitor bank energization for any 

practical system. That is by the knowing of its overvoltage 

dependent parameters as discussed in section 4. Fig. 11 

shows alobour industrial substation. When the capacitor 

bank of 5.4 MVar is inserted, at pre-switching voltage 0.961 

p.u. and zero switching angle, a switching overvoltage 

occurs. This overvoltage can be predicted by ANN and 

compared with the field measured data. Table 2 presents the 

switching overvoltage due to capacitor bank insertion. 

 
Fig. 11. Alobour industrial substation before the capacitor         

             bank insertion. 

Item Measured 

value 

ANN value Error % 

Overvoltage 

peak 

1.25 p.u. 1.236 p.u. 1.133% 

Overvoltage 

duration 

12 msec. 0.0122 sec. 1.64% 

Table 2. Switching overvoltage due to capacitor bank  

       insertion at the switched bus. 

7. Conclusion 
In this paper the capacitor bank switching overvoltage 

dependent factors are studied and presented. The variation 

of these factors effect on both overvoltage peak and 

duration. ANN has been used to estimate the peak and 

duration of overvoltages due to capacitor bank insertion. 

Levenberg–Marquardt second order training method has 

been suggested for obtaining small error without the losing 

of results accuracy. The results obtained from ANN are 

close to results obtained from MATLAB/ Simulink 

simulation tool. The presented ANN can be used to predict 

the capacitor bank energization overvoltage of other 

networks with acceptable accuracy. ANN predicts the 

switching overvoltage due to capacitor bank insertion of 

alobour industrial substation, where the predicted data is as 

closely as the field measured data.  
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