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Abstract: This paper deals with a robust control intended 
for permanent magnet synchronous motor. Two approaches 
are used: the first one a nonlinear input output state 
feedback linearizing control and second one is a proposed 
nonlinear feedback control based on Lyapunov method. 
This second solution shows good robustness with respect to 
parameter variations, measurement errors and noises. 
Finally, simulation and experimental results are given to 
demonstrate the effectiveness and the good performance of 
the proposed control. 
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1. Introduction. 
The PMSM is becoming more and more popular in 
servo systems because of its high power density, large 
torque to inertia ratio and high efficiency [1], [2].Also 
the PMSM model is nonlinear coupled and subjected to 
parameter variation. The PMSM model is described by 
a fifth-order nonlinear differential equation, where a 
part of states are not easily measurable, and often 
perturbed by an unknown load torque. Classical PI 
controller is a simple method used to control PMSM 
drives. However the main drawbacks of PI controller 
are the sensitivity of performances to the system 
parameter variations and inadequate rejection of 
external disturbances and load change.    
Recently, several nonlinear control methods have been 
applied to control PMSM considering the nonlinear 
PMSM dynamics, such as feedback linearization [3], 
back-stepping [4].  
 
This paper deals with a development of a nonlinear 
control of current based on Lyapunov Method. 
Introducing sliding mode control conducts to efficient 
robustness against parameters variations, measurements 
errors and noises. The asymptotic stability of the 
overall system is theoretically proven. 
  
2. Model machine 
    Its dynamic model expressed in the rotor reference 
frame is given by voltage equations:  
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Where the flux expression are given by    
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Considering dI and qI are stats variables (1) can be 

written as 
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The electromagnetic torque is given by 
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And the associated equation of motion is 
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Form (2), (3) and (4), the state model is rewritten as:  
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3. Input output feedback linearization control. 
The outputs to be controlled are the motor speed Ω and 
the stator currentdI , i.e. the function ( )xh  in (5) is 
defined as 
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The derivative of (7) is given by 
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The systems has relative degree 1 fordI and 2 

for Ω , )(xD  is the decoupling matrix defined by 
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and    
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Since ( ) ( ) 013132 ≠+= xaaxD qdλλ , then ( )xD is not 

singular (machine with permanents magnets) and the 
MIMO system is input-output linearizable since the 
state feedback control given by reduces Input-Output 
map to:    
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Where [ ]Tvvv 21= is the new input vector.  
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A bloc diagram of control nonlinear input-output is 
shown in fig.1  
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Fig. 1.  Bloc diagram of PMSM control (FLIOC) 
scheme 

 
The drawback of (12) is that it requires exact 
knowledge of the motor parameters and any variation 
in the parameters or the load torque will deteriorate the 
controller performances. In order to overcome this 
problem feedback nonlinear control based on 
Lyapunov theory is proposed.    
 
4. Robust nonlinear feedback control based on 

Lyapunov method  
The suggested PMSM control scheme is shown in Fig. 
2.   We can see that only one PI speed controller is 
used and the currents are feedback-controlled in 
association with a sliding mode controller. We can also 
note the placement of the estimator block which 
evaluates the feedback function 1f  and 2f given by 
(6).  
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Fig. 2. Bloc diagram of nonlinear feedback control   

based on Lyapunov method system. 
 



 

To determine the control feedback, starting with the 
equation (2) represented as follow 
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To prove the stability of system considering the 
candidate Lyapunov function [2]: 
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The time derivative is given by  
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Selecting the control law as 
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Where 1K , 2K are positive gains and inserting them 
(17), we found: 
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If 1K , 2K are chosen, the time negativity of derivative 
of Lyapunov function Vɺ is satisfied, and control system 
will be stabilized. 
  
We concluded that 
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4.1  Robust Feedback nonlinear control  
The nonlinear functionsif involved in the state-space 
model (14) are strongly affected by the conventional 
effects of PMS motors, such temperature, saturation, 
skin effects and the noise measurements. Since the 
control law developed in the preceding section is based 

on exact knowledge of these functionsif , one can 
expect that in a real situation. Our objective is to 
determine a new control law robust to parameter 
variations and measurement noise. Globally, we can 
write 
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where if̂ is the true nonlinear feedback function 

(NLFF), if is the effective NLFF and if∆ is the NLFF 

variation around if .The if∆ can be generated from all of 
the parameters and variables as indicated above. We 
assume that all of the if∆ are bounded as 

follows: iif β<∆ where the iβ are known bounds. 

Knowledge of  the iβ  is not difficulties obtain, since 
one can use a sufficiently large number to satisfy the 
constraint iif β<∆ .  

The if∆ can be generated from the all of the parameters 
and variations as indicated above. 
   
Substitution of (21) into (14) yields: 
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Select the control law as 
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Where    

iiiK β≥ , 0>iK  and   2,1=i . 
 
The Lyapunov function relativity to (22) is defined by 
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Where Vɺ is given by (17). Hence the if∆  variations 
can be absorbed if we take  
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These inequalities are satisfied since 0>iK and 

iiii Kf <<∆ β . Finally, we can write  
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Insuring the negativity of Lyapunov function. Hence, 
using Lyapunov theorem [2], we conclude that 
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The design of these robust controllers, resulting from 
(27), is given in Fig.3.    
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Fig. 3.  Design of a robust controller. 

 
 
5. Simulation results  
Two schemes have been implemented: 1) a feedback 
linearizing input output Control (FLIOC) and 2) the 
proposed nonlinear feedback control based on 
Lyapunov Method scheme (NLFC). To the end of more 
significant comparison between the two schemes, the 
tests have been conduced to analyze and compare the 
performance of the PMSM in terms of accuracy, 
dynamic performance and load disturbance rejection.  
The parameters of the PMSM used in the simulation 
are given as: rated voltage V=511 V, number of poles 
p=3, armature resistance Rs=1.4Ω, Stator inductances 
Ld= 0.0066H, Lq=0.0058H, viscous damping 
fm=0.00038N.m.s/rad, moment of inertia Jm=0.0016 
kg.m2, rotor flux Φf =0.1546 wb, rated torque Tn =10 
N.m.        
Figs. 4 and 5 shows the PMSM response to square-
wave speed reference 200 rad/s, using the FLIOC and 
NLFC. The NLFC PMSM drive speed trajectory is 
characterized by zero steady-state error and very fast 
dynamic response. The comparison between the 
FLIOC and NLFC speed transients, reported in Figs. 6 
and 7, highlights the better performance of the 
proposed control. The considerations indicated above 
are confirmed by the following test imposing a 5-Hz 
sinusoidal reference speed of 10rad/s peak value. The 
comparison between the actuel speed profiles, Fig. 8 
shows a better dynamic response of FLL scheme. 

0 0.2 0.4 0.6 0.8 111
-40

-20

0  

20 

40 

60 

(b)                            Time (s)

M
ot

or
 t

or
qu

e 
 (

N
m

) 

0 0.2 0.4 0.6 0.8 1
-60

-40

-20

0

20

 (c)                             Time (s)

S
ta

to
r 

cu
rr

en
t 

Id
 (

A
)

0 0.2 0.4 0.6 0.8 11
-60

-40

-20

0

20

40

60

  (d)                          Time (s)

S
ta

to
r 

cu
rr

en
t 

Ia
 (

A
)

0 0.2 0.4 0.6 0.8 11
-100

-50

0

50

100

150

200

250250

(a)                              Time (s)

M
ot

or
 s

pe
ed

 (
ra

d/
s)

 

 
Fig.4.   Simulation results of feedback linearizing 

control : a)  motor speed    b) motor torque c) 
stator current  Id d) stator current  Ia (A) 

0 0.2 0.4 0.6 0.8 11
-40

-20

0

20

40

(b)                         Time (s)
M

ot
or

 t
or

qu
e 

(N
m

)

0 0.2 0.4 0.6 0.8 11
-10

-5

0

5

(c)                         Time (s)

S
ta

to
r 

cu
rr

en
t 

Id
  

 (
A

)

0 0.2 0.4 0.6 0.8 11
-40

-20

0

20

40
 

(d)                         Time (s)

S
ta

to
r 

cu
rr

en
t 

Ia
 (

A
)

0 0.2 0.4 0.6 0.8 11
-100

0

100

200

 

(a)                            Time (s)

M
ot

or
 s

pe
ed

 (
ra

d/
s)

 

 
Fig.5.   Simulation results of Nonlinear feedback 

Control Based on Lyapunov Method : a)  
motor speed  b) motor torque c) stator 
current  Id d) stator current  Ia (A) 
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Fig. 6.  Comparison between FLIOC (tr.2) and 

NLFC (tr.3) speed transient evolutions  
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Fig. 7.  Zoom of FLIOC (tr.2) and NLFC (tr.3) speed 
            transient. (tr.1 reference speed).  
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Fig. 8.  Comparison between FLIOC (tr.2) and  NLFC 
(tr.3) speed evolutions to the application of the same 
sinusoidal reference speed. (Crest value 10 rad/s, 
frequency 5Hz  
 
To test robustness of feedback control. The simulation 
involves the following operating sequences:  
The PMSM started with a constant acceleration after 
0.1s, the speed was maintained to10 rad/s, while the 
motor is loaded with a constant torque of 5 Nm at 
starting.  Then the motor is loaded with a constant 
torque of 10 Nm at t=0.4s. at t=0.7s,  the speed change 
form 10 rad/s to 0  rad/s with same constant load  
torque. Maintaining a reference current Id to zero. Tow 
sets of simulation tests are carried out. 
The first set is carried out with stator resistance having 
a mismatch of 100% at t=0.5s using the control law 
given by (12) the results of this test set are shown in 
Fig. 9 (tr.2). It is clear that when considering stator 
resistance uncertainty, a very large steady state error 
occurred in motor speed.   
Finally the motor having a if (NLFF) mismatch of 
300% at t=0.5s and in the presence of noise is 
simulated using the proposed control (23). The results 
are shown in Fig. 9 (tr.3). The control shows better 
speed response even in the presence of parameter 
uncertainty and measurement noises.  
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Fig. 9.  Comparison between FLIOC (tr.2) and   

NLFC (tr.3) speed transient evolutions with 
parameter uncertainty and measurement 
noises. 

 
6. Experimental the al system 
The basic structure of the laboratory setup is depicted 
in Fig. 10. The DC motor is used as a load. The PMSM 
stator is fed by a converter controlled directly by the 
DS1103 board. The dSPACE DS1103 PPC is plugged 
in the host PC. The encoder is used for the measure 
mechanical speed. The sensors used for the currents 
and voltages measure are respectively LA-25NP and 
LV-25P. The Interface to provide galvanic isolation to 
all signals connected to the DS1103 PPC controller. 
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Fig.10 Structure of the laboratory setup 
 
6.1  Reference profiles and machine parameters 
To test the speed tracking, we applied two kinds of 
speed references. In the first, the PMSM is started with 
a constant acceleration 33.33 (rd/s²), after 3 s, the 
speed was maintained to 100(rd/s). After that, a 
reversal speed test was applied to the loaded machine 
at 21 s, where the speed changed to -100 (rd/s), Fig. 
11. The load is 1 mN.  In the second, a sinusoidal 
speed reference of magnitude 100 rad/s with frequency 
0.05 Hz. The machine was loaded at 1 mN. (see Figs. 
11a and 11b).  
The machine parameters are given as follows:  
Rs=11Ω; Ld=0.995 H; Lq=0.885H; p=2;J=0.025SI; 
f=0.0001SI; Φf=0.15wb 
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Fig. 11 Speed references versus time 

 

6.2  Experimental results 
Fig. 12 and 14 present the speed response versus time 
according to the profiles described above.  
The actual speed converges to the reference speed very 
quickly with zero steady-state error and almost without 
any overshoot/undershoot in real-time. 
Figs. 13 and 15 show, respectively, the stator phase 
current and the quadratic current Iq versus time during 
the test.  
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Fig. 12  Speed response versus time and speed error  

 versus time 
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Fig. 13 Stator phase current versus time and Iq 

current versus time 
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Fig. 14 Speed response versus time and speed error  
versus time 
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Fig. 15 Stator phase current versus time and Iq 

current versus time 
 
Figs. 10 and 12 show speed and stator current 
response versus time; we observe that with the 
proposed control a good tracking speed end 
currents were achieved. 
 
7. Conclusion 
   This paper present tow control schemes for the 
PMS motor. Firstly an input-output linearizing 
control is developed. Secondly a feedback 
nonlinear control based on Lyapunov method is 
proposed in order to reduce the effects of the 
parametric variations and measurement noise.       
   The theoretical study of the proposed control 
technique (NLFC) has been discussed, and the 
simulation results of the overall system have been 
presented to prove the effectiveness of this control 
strategy. Control robustness is achieved by a 
sliding-mode controller in order to reduce the 
effects of parametric variations, uncertainties and 
measurement noise.   
    The control stability is verified via Lyapunov 
stability analysis. From the simulation and 
experimental results for the proposed scheme, 
very well performances for both high and low 
speed are achieved. The proposed control is robust 
to parameter changes. 
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