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Abstract – Recent advances in the field of power electronics and control circuits, have 
contributed to the increasing use of induction machines in electrical systems. The use of induction 

machines is mainly due to their robustness, their power/weight ratio and their low cost of 

manufacture. Still, various defects may appear in such machines. The Power Spectral Density 

(PSD) based on the Fourier Transform (FT), is used as a method of analysis for many years for its 

simplicity and its relatively low computing time. However, it is ineffective in faults detection in the 

case of a small slip (harmonics too near to the fundamental). In addition, the fact that this method 

is based on the calculation of the FT, implicitly implies that the spectral properties of the signal 

are stationary. With the development of variable speed applications, the spectral characteristics of 

the stator current become non-stationary and the spectra are much richer in harmonics. To 

resolve these problems, we used in this paper, a time-frequency representation called Short Time 
Fourier Transform or STFT, giving therefore, additional information on changes of the 

frequencies with time in the case of a stator current signal. Several simulations are achieved in the 

aim of validating our approach. 
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I. Introduction 

These Due to its simple technology, the induction 

motor is widely used in most electric drives, especially 

for constant speed applications. Advances in power 

electronics associated with modern controls techniques 

have led to wide variable speed applications of these 

motors. Thus, growing interest is being given for fault 

detection and condition monitoring of induction 

machines. 

Fault detection in electrical machinery has been the 

subject of research and industrial achievements in recent 

years. There are several types of diagnosis techniques; 
the vibration analysis is the oldest and most used one [1], 

[2], [3], but this is mainly used for mechanical faults 

detection. Another technique based on the analysis of 

stator current; is also being used increasingly in recent 

years. This is called Motor Current Signature Analysis or 

MCSA, its particularity is that the stator current contains 

significant information on almost all the faults that can 

appear on the induction motor [4], [5], [6]. 

In most cases, induction motor operates directly from 

the mains and runs in steady state conditions with known 

loads. 

The development of technology and the advances in 

variable speed drives have given another dimension to 

various problems including non stationary condition of 

measurable signals, disruptions and distortions caused by 

power converters, etc. [7]. 

The power spectral density or PSD of the stator 

current, based on the Fourier transform (FT) is the most 
currently tool used by researchers and industrials [8]. 

This is justified by its simplicity, the low cost of current 

sensors and the rich harmonic content of stator current. 

However, this technique has several disadvantages 

which are due to the problem of frequency resolution. 

Indeed, the calculation of the FT introduces a smoothing 

effect and a side effect. These effects are reflected by the 

appearance of sideband lobes in the stator current 

spectrum and reduce the analysis efficiency [9]. 

To analyze a signal, it is interesting to have a main 

lobe as narrow as possible and sideband lobes of very 

low amplitude. Two advantages impossible to achieve 
simultaneously. However, it is possible to reduce the 

amplitudes of sideband lobes by replacing the rectangular 

window by a smoother and seamless window. 

The PSD finds difficulties in detecting faults with a 

small motor slip (harmonics close to the fundamental). 

Since it is based on the FT, implicitly implies that the 

spectral properties of the signal are stationary. In 

addition, the modulus of the FT of a signal provides only 

a time average of the spectral content of the signal 

without giving details on possible changes in frequency 



with time. Therefore, information regarding the location 

of the frequencies with time can not be determined from 

the Fourier transform. To overcome these constraints, we 

use a time-frequency representation. Indeed, the Gabor 

works in the 40s have conducted to the foundations of a 

new type of analysis called Short Time Fourier 

Transform or STFT. 

He was the first to imagine a local Fourier transform 
based on a windowing signal analysis to observe changes 

in frequency with time. This transformation requires the 

division of the signal in consecutive short segments and 

then calculates the Fourier transform of each segment.  

The idea is to introduce the local frequency parameter 

so that the Fourier transform is applied to the signal 

through a sliding window on which the signal is 

approximately stationary. This method represents the 

results into three dimensions; the description of the 

signal is carried out in the time-frequency plan composed 

of spectral characteristics as a function of time [10]. 

In this context, this paper focuses on the application of 

the Short Time Fourier Transform in detecting and 

locating induction motor faults. To this end, the STFT is 

evaluated and used for the analysis of stator current in the 

presence of faults close to the fundamental. The results of 

simulations will illustrate the merits of the technique and 

its validation. 

II. Stator current signature analysis 

The stator current spectral analysis is the most 

commonly method used in recent years, because the 

resulting spectrum contains a source of information on 

most faults that may appear on an induction machine. 

Induction motor broken rotor bars is considered among 

the most common fault studied because of its simplicity 

of implementation. This fault induced changes in the 

stator current spectral component and thus the 

appearance of sideband frequencies in the current 

spectrum produced by the magnetic field anomaly of the 
broken rotor bars [7]. 

Indeed, broken rotor bars give rise to a sequence of 

sidebands given by: 

  sc fksf 21  (01) 

Where: fs is the supply frequency and fc the sideband 

frequencies associated with the broken rotor bars, s is the 

motor slip and k = 1, 2, 3… 

III. Time-frequency analysis 

The Fourier transform is expressed by the following 

equation [11]: 
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We define the power spectral density or PSD as the 

square modulus of the Fourier transform, which is thus 

independent of the signal phase. Therefore, any 

information on the frequency changes with time variation 

is lost in the PSD [8], [10], [13]. 

The time-frequency distribution, known as Short Time 

Fourier Transform or STFT is defined by [11]: 
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The second expression of the STFTx is obtained from 

the classical properties of the FT: conservation of the 

scalar product, shift properties and transformation of a 

normal product into a convolution one. 

The STFT is constituted by the FT of    thx    

obtained by weighting  x  by the window  th    

which is a short time analysis window localized around t 

and that shifts by varying the parameter t. 

Join to  h , the family of functions depending on two 

parameters t and f, defined by [14]: 
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The numbers  ftSTFTx , are commonly called 

projections of  x  on the function’s system ht,f. If h is 

the rectangle window of T support, the STFT consists in 

taking the FT of a sequence of signals equal to x on the 

support and zero elsewhere. 

We begin by the discrete-time signal [xn = x(nT)], T>0. 

Let hn = h(nT) and N the number of samples in the 

analysis window. Finally, we introduce a discretization 
of the frequency variable f. 

The STFT is then defined by the entire numbers Xk,n 

calculated as follows [15]: 
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As for the FT, the zero-padding technique allows the 

improvement of the frequency resolution. The principle 
of this method is to complete by M zeros a set of N 

samples so that M + N is a power of 2 and thereafter can 

perform calculations using the Fast FT algorithm using 

the N + M points.  

 

When M = N, the method use the Discrete FT 

algorithms that are being made to calculate 2N points 

from the spectrum, from only N points of the signal [15].  



IV. Heisenberg-gabor uncertainty 

principle 

The uncertainty principle, also called time-frequency 

inequality, is based on the uncertainty relationships 

established by Werner Heisenberg in quantum 

mechanics. The analogy with the work of Heisenberg for 

the Fourier transform was made by Dennis Gabor in 

1946. 

Let us consider the finite energy signal x(t), centered 

in time and frequency around zero. Gabor defines the 
duration Δt and the spectral band Δf as follows [14]: 
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Where Ex is the energy of the signal given by the 
Parceval relationship: 
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Therefore, the time-frequency inequality is defined by 

[12]: 

4

1
 ft  (10) 

It expresses the fact that the duration-band product of a 

signal is lower bounded for a t duration and a f  

spectral band. The STFT is subject to the uncertainty 

principle due to the use of Fourier transform.  

This issue requires the search for the right time-

frequency compromise suitable to the case considered in 

determining the correct window width.  

Gaussian window has the best time-frequency 
localization. Indeed, it verifies the following equality 

[14]: 

4

1
 ft  (11) 

Finally, the choice of the window is important because 

it represents another compromise (comparable to the 

time-frequency compromise) between the main lobe 
width and the amplitude of the sideband in the frequency 

domain. 

V. Simulation results and discussion 

To simulate the presence of a rotor fault in a squirrel 

cage induction machine with a motor slip s = 5%, we 

construct the signal of stator current as follows: 
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With: b(t) a signal that represents the white noise 

introduced by using the concept of the SNR. The SNR 

being the Signal to Noise Ratio given by the following 

equation: 

b

s

P

P
SNR 10log10  (13) 

Where Ps and Pb are, respectively, the signal and noise 

powers. The supply frequency used is equal to fs = 50Hz. 

The sideband frequencies of broken rotor bars are 

calculated by equation (1). 

Therefore, the sideband frequencies of one broken bar 
are given by: 

fc1 = 45Hz  and  fc2 = 55Hz. 

Fig. 1 shows the signal of stator current in time 

domain simulated with and without broken bars. We can 

observe the change in the form of the stator current after 

the introduction of the broken rotor bar fault. 

In Fig. 2, the STFT of the stator current is used for the 

detection of harmonics corresponding to one broken bar. 

This simulation is done with a motor slip of 5% and SNR 

= 50 dB corresponding to a moderately noisy signal. The 

sideband frequencies of the faults are highlighted in the 
STFT using the three dimensional grid technique. 

Fig. 3 represents the of stator current signal analysis 

simulation achieved by the STFT algorithm. The 

simulation parameters used correspond to one broken 

rotor bar with a motor slip of 5% and a SNR of 10 dB. 

The sideband frequencies corresponding to the 

simulated fault are easily located for this value of the 

SNR which corresponds to a highly noisy signal. This 

verifies the robustness of the STFT against noise. 

VI. Conclusion 

Through this paper, accent is made on the presentation 

of an effective diagnostic method capable of detecting 

and locating the sideband frequencies of rotor faults 

particularly near the fundamental. 

Indeed, it was used in this paper, a signal 

corresponding to the stator current signal in the case of a 

squirrel cage induction motor with one and two broken 

rotor bars. Therefore, an algorithm based on Short Time 
Fourier Transform is proposed and developed to perform 

a correct diagnosis and relatively precise location of the 

sideband frequencies of the considered fault. Several 

tests have been established to verify and to validate the 

robustness and effectiveness of our approach. 

Indeed, The STFT is robust to variations of the noise 

and allows a clear and easy location of the faults 

frequencies for even low values of motor slip. 

However, the STFT is limited regarding the time-

frequency resolution compromise. 
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Fig. 1. Stator current signal in time-domain for healthy and faulty cases 
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Fig. 2. Stator current analysis by STFT for one broken bar, a motor slip of 5 % and an SNR=50 dB: (a): without zoom (b): with zoom 
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Fig. 3. Time-domain representation and STFT analysis of a stator current for one broken bar, a motor slip of 5 % and an SNR=10 dB. 
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Indeed, since the STFT is based on the calculation of 

the FT, it is subject to the Heisenberg-Gabor uncertainty 

principle, which notices the impossibility of obtaining a 

good resolution in both time and frequency planes.  

Finally, it should be noted that this work constitutes a 

first step in analyzing non-stationary signals, through 

which, we have validated the effectiveness of our 

approach in the case of stationary signals. 

In this context, two perspectives should be considered 

for this work: extending the diagnosis to the transient 

state (case of load changes) to solve the non-stationary 

problem observed in the variation of load of the 

induction machine and the experimental validation of this 

approach. 
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