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Abstract - This paper proposes an algorithm to determine optimal repair rates of components of a phasor 

measurement unit (PMU) under the budgetary constraint. Based on optimal repair rates of components of a 

PMU; we determine the reliability of a PMU; the reliability of observability of buses falling within the scope 

of a PMU and the reliability of observability of a given power system. The repair-rate linked PMU placement 

problem has been formulated as a non-linear mathematical program. To achieve the targeted reliability of 

observability of a power system, the optimal numbers of PMUs and their candidate buses have been 

determined. Two new indices called the bus observability reliability index and the system observability 

reliability index have been introduced to determine the best solutions. The proposed algorithm and the repair-

rate linked optimal placement of PMUs have been illustrated through examples.  

Keywords - Optimal Repair Rates, Geometric Programming, Zero-One programming, Phasor Measurement 
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1. INTRODUCTION 
 

There has been a great interest in solving the PMU 

placement problem for the last two decades. The 

PMU placement problem is about determining the 

optimal number of PMUs and their candidate buses 

on a power system in such a manner that the given 

power system is fully observed. Several engineers 

from academia, research laboratories and industry 

have dealt with variants of the PMU placement 

problem. Comprehensive surveys on PMU 

placement on power systems are found in Shahraeini 

and Javidi [1], Cai and Ai [2], Almutaire and 

Milanovic [3], Reddy, Ramesh, Choudhary and 

Choudhary [4], Dongjie, Renmu, Peng and Tao [5], 

Manousakis, Korres and Georgilakis [6] and Yuill, 

Edwards, Choudhary and Choudhary [7]. What we 

perceive from existing literature on PMU placement 

on power systems is that the literature on reliability 

of a PMU and reliability-linked PMU placement is 

quite scantier. The authors in Aminifar, Bagheri-

Souraki, Fotuhi-Firuzabad and Shahidehpour [8] 

proposed the descriptive model of a PMU system 

and the authors in Khiabani, Yadav and Kavesseri 

[9] dealt with reliability-based placement of phasor 

measurement units on a power system.  

 

There is no literature on prescriptive behaviour of a 

PMU and repair-rate-linked PMU placement on 

power systems. It prompts the author to present the 

prescriptive model of a PMU and repair-rate linked 

optimal placement of PMUs on a power system. 

Higher the repair rates of components of a PMU, 

higher the reliability of the PMU and, in turn, higher 

the reliability of observability of connected buses. It 

means the reliability of observability of a complete 

power system depends on the optimal repair rates of 

components of each of the PMUs installed on a 

power system. This paper presents the prescriptive 

model of a PMU and optimal-repair-rate-linked 
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optimal placement of PMUs to achieve the targeted 

reliability of observability of a given power system.  

Section 2 presents the descriptive model of a PMU. 

Section 3 presents the prescriptive model of a PMU 

to determine optimal repair rates of the components 

of a PMU, reliability of observability of each bus in 

a power system and reliability of observability of a 

power system. Section 4 presents the repair-rate-

linked optimal placement of PMUs in a power 

system. Section 5 gives illustrative examples.  

2. DESCRIPTIVE MODEL 

A PMU consists of six major components as shown 

in Figure. 1. 

  

 

Figure 1: Block Diagram of a PMU 

 It is assumed that failure of a component means 

failure of the PMU and that a failed PMU is 

immediately sent for its repair. The state transition 

diagram of a PMU is as given in Figure 2 (Aminifar, 

Bagheri-Souraki, Fotuhi-Firuzabad and 

Shahidehpour [8]).  

 

 

Figure 2: Seven-State Markov Model of PMU 

Eqns. (1) and (2) govern the steady-state behaviour 

of a PMU.  

p0i = pii           (1< i <6) (1) 

∑        
                                                      

 
(2) 

The solution to Eqns. (1)-(2) is as follows. 

pi = p0.i / i                                                               (1< i <6)   (3) 

p0 =     ∑  
 
                                                                     (4) 

, where 

i = Failure rate of the i
th
 component of a PMU, 

i = Repair rate of the i
th
 component of a PMU, 

p0 = Probability that all components are up, 

p1 = Probability that the anti-alias filer is down, 

p2 = probability that the A/D converter is down, 

p3 = 
probability that the microprocessor  is 

down, 

 

p4 
= probability that the phase-locked oscillator 

is down, 

p5 = probability that GPS receiver is down, and 

p6 = probability that modem is down. 

(Aminifar, Bagheri-Souraki, Fotuhi-Firuzabad and 

Shahidehpour [8]) 

 

3. PRESCRIPTIVE MODEL 

 

Let ci be the cost of repair of the i
th
 component of a 

PMU (1≤i≤6) and let c be the budget available for 

the purpose of repair of a PMU. The total cost 

incurred on repair of components of a PMU cannot 

exceed total budget (c) available for the purpose of 

repair of a PMU. Therefore, the budgetary constraint 

is as follows.  

∑    
 
                                                        (5) 

It is justified to assume that the repair rate is always 

positive i.e. i > 0 (1i6).  

Our objective is to maximize the reliability of a 

PMU under budgetary constraint and i > 0 (1i6). 

Mathematical formulation of the prescriptive model 

of a PMU is as given by program P1.  

P1: Min Z = p0
-1

 s. t. (5), i > 0                      (1< i<6) 

Let 0 > 0 be an extra variable constrained to satisfy 

0
-1

.p0
-1 

< 1. We get following complementary 

geometric program.  

P2: Min Z = 0
 
 s.t. 0

-1
 p0

-1
 ≤ 1, (5), i > 0    (1≤ i≤6) 

P2 is a complementary geometric program (Avriel 

and Williams [10], Beightler and Phillips [11]) 
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whose solution may be obtained by condensing 0
-

1
p0

-1
 to a monomial function. Given the point of 

condensation (0, 1, 2, 3, 4, 5, 6), the 

condensation of 0
-1 

p0
-1 

gives rise to the following 

geometric program with zero degree-of-difficulty 

(DoD).  

P3: Min Z = 0 s.t.  a0
-1 ∏   

   
      < 1, (5), i > 0  

(0< i<6)  

, where 

a = F ∏    
      

       

bi = -ii
-1

/F 

with 

    ∑   
 
   i 

(6) 

(7) 

(8) 

  

Applying primal-dual relationship ([10], [11]),  we 

get (0
*
 , 1

*
, 2

*
, 3

*
, 4

*
, 5

*
, 6

*
) =  

(a.∏   
   [(cj/c)( ∑   

 
   /bj)]

-bj
, (c/c1).(b1/∑   

 
   ),  

(c/c2).(b2/∑   
 
   ), (c/c3).(b3/∑   

 
   ), (c/c4). 

(b4/∑   
 
   ), (c/c5).(b5/∑   

 
   ), (c/c6).(b6/∑   

 
   )) as 

solution to P3. At this solution to P3, we get  
   

    ∑  
 
        

    . If |p – p
*
| is less than or equal 

to an infinitesimally small quantity , either (1
*
, 2

*
, 

3
*
, 4

*
, 5

*
, 6

*
) or (1, 2, 3, 4, 5, 6) may be 

considered as the optimal solution to P2. If |p – p
*
| is 

greater than , we perform i
 
i

o
 i (0≤ i ≤ 6) and 

refine solution repeatedly through condensation. For 

given values of  1, 2, 3, 4, 5, 6, 0, 1, 2, 3, 

4, 5, 6, c1, c2, c3, c4, c5, c6, c and , this process 

gives rise to the following algorithm (Figure 3) to 

deliver optimal solution (0
o
, 1

o
, 2

o
, 3

o
, 4

o
, 5

o
, 

6
o
) to P2. In the algorithm, i, i

*
, p0

o
 and p0

*
, 

respectively, are represented by oi, ni, op0 and np0. 

At optimality, we get 

  
  = (    

     
                         (1≤ i ≤ 6)   (9) 

, where 

  
       ∑  

 
        

                                (10) 

Therefore, 

   ∑   
 
      

 )/   ∑  
 
       

                     (11) 

 

A bus in an n-bus system may be observed by a 

maximum of as many PMUs as the number of 

incident links to the bus plus one. The reliability of 

observability of the i
th
 bus is given by  

         ∑         
 
                                           (12) 

, where a(i,j) = 1 if buses Bi  and Bj are connected 

,a(i,j) = 1 if i=j, a(i,j) = 0 if Bi and Bj are not 

connected  and xi (1 in) have their usual meanings 

and q
o
 is given by Eqn. (11).  

 

 

Label1: 
Iter 0 

oii                                                             (0i6) 

         ∑         
 
     

    ∑      
 
     

bi - (i / oi)/F                        (0i6) 

    (
 

  
)     ∑   

 
                (1i 6) 

         ∑     
  

     

If |op0- np0| ≤  then  

{ 

     i
o

  oi                                               (1< i<6) 

     p0
o
 op0 

      print  p0
o

  and i
o
  (1< i <6) and stop 

} 

i ni                                                         (0< i<6) 

Iter++ 

Go to Label1 
 

Figure 3: Algorithm to solve P2 

 

The reliability of observability of entire n-bus power 

system is given by 

    ∏   
           

∑         
 
     

                          (13) 

The values of Bi (1<i<6) and R play important roles 

in assessing the quality of a solution to the PMU 

placement problem. We may call Bi the bus 

observability reliability index (BORI) of the i
th
 bus 

and R the system observability reliability index 

(SORI).  

An illustrative example of the prescriptive model has 

been given in Subsection 5.1.  

With the failure of a component of a PMU installed 

on a power system, the reliability of observability of 

the power system decreases. In situations when the 

reliability of observability of a power system is not 
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satisfactory, we re-solve the PMU placement 

problem to achieve a targeted level of reliability of 

observability of the given power system. For 

example; we require four PMUs to be installed at 

buses numbered B2, B6, B7 and B9 to observe the 

IEEE 14-Bus system (Mohammadi-Ivatloo [12]), 

given that no PMU ever enters the state of failure. If 

the probability of failure of a PMU (q) is non-zero, 

the PMU is only (100-100q) per cent available to 

observe the buses falling in its scope. It shows (100-

100q) percent availability of a PMU and it indicates 

a significant loss of observability of connected buses. 

This is an alarming situation as    ∏      
      

  
  ∑          

 
      

  per cent availability of observability 

of the n-bus power system indicates significant loss 

of system-wide data what could be recorded had all 

the PMUs been fully available. If the reliability of 

observability of a power system is to be raised to a 

targeted level  (say), we have to re-determine the 

optimal number of PMUs and their candidate buses. 

In Section 4, we revisit the PMU placement problem 

from viewpoint of improving reliability of 

observability of entire n-bus power system.  

4. OPTIMAL PLACEMENT OF PHASOR 

MEASUREMENT UNITS 

Assume that all PMUs are identical and let  be the 

targeted level of reliability of observability of the n-

bus power system. Then, the targeted reliability of 

observability of a bus in the power system is given 

by  = 
1/n

. The general formulation of the PMU 

placement problem is as follows.  

 

P4:       ∑   
 
      s.t. 1   ∑         

 
           

     , xi = 0/1         

, where q, a(i,j) and  have their usual meanings and  

xi is the i
th
 binary design variable such that xi = 1 if a 

PMU is placed on the i
th
 bus and xi = 0 if no PMU is 

placed on the i
th
 bus.  

P4 is a binary integer non-linear program in n 

variables xi (1in) and its solution gives us the 

optimal number of PMUs and their candidate 

locations in the n-bus power system. For a given 

power system, P4 may possess multiple solutions 

which may be ranked on the basis of the system 

observability reliability index (SORI) in order to 

select the best multiple solutions.  

4.1 A Particular Case 

The buses connected to power generation units are 

considered as critical buses. Keeping in mind the 

importance of observation data, we have to set 

relatively higher reliability of observability of these 

buses. If the r
th 

bus is the only critical bus in the 

power system, the mathematical formulation of 

repair-linked PMU placement problem is as follows. 

 

P5:         ∑   
 
       s.t.     ∑         

 
      

                ,     ∑         
 
       , xi = 0/1  

(1< i <n) 

, where  (>) is the targeted level of reliability of 

observability of the r
th
 bus (0 <,  < 1).   

 P5 is also a binary integer non-linear program 

whose solution can be obtained after converting it 

into a binary integer linear program. An example of 

the particular case has been given in Subsection 5.2.  

The PMU placement problem can be solved for 

power systems with zero injection buses by using the 

bus merging method explained in Mohammadi-

Ivatloo [12]. 

5. ILLUSTRATIVE EXAMPLES 

Consider the standard IEEE 14-Bus system as shown 

in Figure 4.  

 

Figure 4: IEEE 14-Bus System 

5.1. Prescriptive Model Example 

Let 1 = 2.3, 2 = 3.4, 3 = 9, 4 = 2.4, 5 = 5.0, 6 = 

8.0, c1 = 10.0, c2 = 13.0, c3 = 8.0, c4 = 20.0, c5 = 9.0, 

c6 = 10.0 and c = 200000.0. Let ( 0,  1,  2,  3,  4,  

5,  6 ) = (1, 1, 1, 1, 1, 1, 1) be the starting point of 
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condensation. The optimal repair rates of six 

components of a PMU are obtained by solving the 

geometric program Q1. 

Q1: Min Z = 0  s.t.  0
-1

 (1.0 + 2.3/1 + 3.4/2 + 

9.0/3 + 2.4/4 + 5.0/5 + 8.0/6) ≤ 1, 101 + 132 + 

83 + 204 + 95 + 106 < 200000, I > 0 (0<i<6) 

Geometric program Q1 is solved by the algorithm 

proposed in Section 3. For this example, the 

proposed algorithm has been implemented in 

programming language C (Figure 5a) in Quincy 

IDE [13]. In the C program,  is represented by mu. 

 
 

Figure 5a: C Program and Solution to Q1 

 

Execution of the C program (Figure 5b) delivers 

following results at successive iterations.  

Iter  =  0, op0 = 3.321156e-004, f = 3.011000e+003, 

b1 =  - 7.395498e-002,  b2 =  - 1.093248e-001, b3 =  - 

2.893891e-001, b4 =  - 7.717042e-002, b5 =  - 

1.607717e-001, b6 =  - 2.572347e-001, n6 = 

5.315615e+003, i = 1 (0< i< 6), oi = 1 (0< i< 6), 

np0 = 9.895748e-001, n0 = 3.110000e+001, n1 = 

1.528239e+003, n2 = 1.737797e+003, n3 = 

7.475083e+003, n4 = 7.973422e+002, n5 = 

3.691399e+003. 

  As |op0 – np0| >, we perform oi ni (1i6) 

and Iter  Iter + 1 and go to Label1. At Iter = 1, we 

get o0 = 3.020224e-00, o1 = 1.528239e+003, o2 = 

1.737797e+003, o3 = 7.475083e+003, o4 = 

7.973422e+002, o5 = 3.691399e+003, o6 = 

5.315615e+003, F = 1.010535e+000, op0 = 

9.895748e-001, a = 1.094346e+000, b1 =  -

1.489310e-003, b2 =  -1.936103e-003,  b3 =  -

1.191448e-003, b4 =  -2.978620e-003, b5 =  -

1.340379e-003, b6 =  -1.489310e-003, np0  =  

9.895748e-001, n1 = 2.857143e+003, n2 = 

2.857143e+003, n3 = 2.857143e+003, n0 = 

1.185108e+000, n4 = 2.857143e+003, n5 = 

2.857143e+003 and n6 = 2.857143e+003. 

 Since |op0 – np0| = 0, therefore, i
o 
 oi                                                 

(0<i<6), p0
o
  op0 and stop. Thus, the proposed 

algorithm delivers 0
o 

=3.020224e - 001, 1
o
 = 

1.528239e+003, 2
o 

= 1.737797e+003, 3
o
 = 

7.475083e+003,  4
o 

= 7.973422e+002, 5
o
 = 

3.691399e+003 and 6
o 

= 5.315615e+003 as the 

following optimal solution to Q1. 

 

Figure 5b: Solution to Q1 

The state probabilities at (0
o
, 1

o
, 2

o
, 3

o
, 4

o
, 5

o
, 

6
o
) are given by (p0

o
, p1

o
, p2

o
, p3

o
, p4

o
, p5

o
, p6

o
) = 

(9.895748e-001, 7.966077e-004, 1.177594e-003, 

3.117161e-003, 8.312429e-004, 1.731756e-003, 

2.770810e-003). The state probabilities at optimality 

imply that the reliability a bus is observed by one 

PMU, two PMUs, three PMUs and more than three 

PMUs, respectively, are 9.895748e-001, 9.998913e-

001, 9.999989e-001 and 1.  

At optimality, we get BORI1 = BORI2 = BORI3 = 

BORI6 = BORI8 = BORI10 = BORI11 = BORI12 = 

BORI13 = BORI14 = 0.98957483, BORI5 = BORI7 = 

BORI9 = 0.999891315830471, BORI4 = 

0.999998866949056 and SORI = 

0.900210971146585.  

5.2.  PMU Placement Examples 
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Example1: Given that 0
o 

= 0.989575 and i
o
 

(1i6) = 2.857143e+003, it is targeted to raise the 

reliability of observability of complete system to 

0.99 at least. So,  = 0.99
1/14

 or 0.999282376486922. 

Then, the mathematical formulation of the PMU 

placement problem for the standard IEEE 14-Bus 

system is as follows.  

Q2:          ∑   
  
       s.t.                

                          ,xi=0/1 (1≤i≤14) 

, where  

f1 = x1 + x2 + x5,  

f2 = x2 + x1 + x3 + x4 + x5,  

f3 = x3 + x2 + x4,  

f4 = x4 + x3 + x2 + x5 + x7 + x9,  

f5 = x5 + x2 + x4 + x1 + x6,  

f6 = x6 + x11 + x12 + x13 + x5,  

f7 = x7 + x4 + x8 + x9,  

f8 = x8 + x7,  

f9 = x9 + x7 + x4 + x10 + x14,  

f10 = x10 + x9 + x11,  

f11 =  x11 + x10 + x6,  

f12 = x12 + x6 + x13,  

f13 = x13 + x12 + x6 + x14  

and  

f14 = x14 + x13 + x9. 

 Program Q2 can be solved by using ILP Solver 

[14] after converting Q2 into a binary integer linear 

program (Figure 6).  

 The ILP Solver [14] delivers (x1
o
, x2

o
, x3

o
, x4

o
, 

x5
o
, x6

 o
, x7

o
, x8

 o
, x9

o
, x10

o
, x11

o
, x12

o
, x13

o
, x14

o
, Z

 o
) 

=(1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 9) as solution to 

Q2 (Figure 7).  

 Add the constraint x1 + x2 + x4 + x6 + x7 + x8 + x9 

+ x11+ x13+ x14 ≤  8 to obtain (x1
o
, x2

o
, x3

o
, x4

o
, x5

o
, x6

 

o
, x7

o
, x8

 o
, x9

o
, x10

o
, x11

o
, x12

o
, x13

o
, x14

o
, Z

 o
) = (1, 1, 0, 

1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 9) as another solution to 

Q2. Continuing in this fashion, we obtain all the 

eight solutions to Q2 given by (x1
o
, x2

o
, x3

o
, x4

o
, x5

o
, 

x6
 o
, x7

o
, x8

 o
, x9

o
, x10

o
, x11

o
, x12

o
, x13

o
, x14

o
, Z

 o
)  { (1, 

1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 9), (1, 1, 1, 0, 0, 1, 

1, 1, 1, 1, 0, 0, 1, 0, 9),  (0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 

0, 1, 0, 9), (0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 9), (1, 

1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 9), (1, 1, 0, 1, 0, 1, 

1, 1, 1, 0, 1, 0, 1, 0, 9), (0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 

0, 1, 0, 9), (0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 9) }.  

The boldfaced solutions correspond to the best SORI 

value i.e. 0.999128557654907. 

 

Figure 6: Binary Integer Linear Program from Q2 

  At the first boldfaced solution, the values of 

BORIi (1i14) are BORIi = 0.999998866949056 (i 

= 2, 6), BORI4 = 0.999999999876855, BORIj = 

0.999999988187751(j = 5, 7, 9) and BORIk = 

0.999891315830471 (k = 1, 3, 8, 10-14).  At the next 

boldfaced solution, the values of BORIi (1i14) are 

BORIi = 0.999998866949056 (i = 2, 9), BORI4 = 

0.999999999876855 and BORIj = 

0.999891315830471 (j = 1, 3, 5-8, 10-14). 

 

Figure 7: Solution to Q2 

It suggests us to place only nine PMUs either on the 

set of buses numbered 2, 4-10 and 13 or on the set of 

buses numbered 2, 4-9, 11 and 13, given that the 

optimal repair rates of PMU components are i
o
 

(1i6) = 2.857143e+003 and the targeted reliability 

of observability of the system is 0.99. It may be 

interesting to note that the SORI value has 

improved from 0.900210971146585 to 



7 
 

0.999128557654907. This improvement is 

significant. 

Example 2: We now give an example covering 

critical buses. Buses numbered 4-7 and 9 connected 

to power generation units in the IEEE 14-Bus system 

have been considered as critical buses. Suppose that 

the reliability of observability of every critical bus is 

required to be 0.999999 at least and that the 

reliability of every other bus is required to be 

0.989575 at least. The mathematical formulation of 

the PMU placement problem is as follows.  

Q3:          ∑   
 
       s.t.                  

                          ,               

                          ,                
        ,                           
                                 , xi = 

0/1  (1 i 14) 

, where fi  (1 i 14) have their usual meanings.  

Q3 is converted into a binary integer linear program  

(Figure 8) to obtain its solution. 

 

Figure 8: Binary Integer Program from Q3 

The ILP Solver [14] delivers (x1
o
, x2

o
, x3

o
, x4

o
, x5

o
, x6

 

o
, x7

o
, x8

 o
, x9

o
, x10

o
, x11

o
, x12

o
, x13

o
, x14

o
, Z

o
) = (0, 1, 0, 

1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 10) (Figure 9). 

Remaining solutions to Q3 have been found in usual 

way. All the solutions to Q3 are given by (x1
o
, x2

o
, 

x3
o
,x4

o
, x5

o
, x6

 o
, x7

o
, x8

 o
, x9

o
, x10

o
, x11

o
, x12

o
, x13

o
, x14

o
, 

Z
o
)  { ( 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 10) , (0, 

1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 10), ( 0, 1, 0, 1, 1, 1, 

1, 1, 1, 1, 0, 1, 1, 0, 10) }. The boldfaced solutions 

correspond to the highest SORI value. The reliability 

of observability of complete power system is 

0.999344627866809. At optimality, the values of 

BORI1, BORI2, BORI3, BORI4, BORI5, BORI6, 

BORI7, BORI8, BORI9, BORI10, BORI11, BORI12, 

BORI13, BORI14, respectively, are 

0.999891315830471, 0.999998866949056, 

0.999891315830471, 0.999999999876855, 

0.999999988187751, 0.999999988187751, 

0.999999988187751, 0.999891315830471, 

0.999999988187751, 0.999891315830471, 

0.999891315830471, 0.999891315830471, 

0.999998866949056 and 0.999998866949056. 

 

Figure 9: A Solution to Q3 

 

6. CONCLUSIONS 

1. This paper advances the state-of-the-art of 

optimal placement of PMUs on power systems.  

2. The reliability of observability of a power 

system depends on the reliability of observability of 

each bus in the power system. Further, the reliability 

of observability of a bus depends on the reliability of 

PMUs observing the bus. It incurs a fixed cost to 

repair a component of PMU and the reliability of 

observability of a bus depends on repair rates of 

components of PMUs observing it. It concludes that 

the reliability of observability of a complete power 

system depends on repair rates of various 

components of each of the PMUs installed on a 

given power system.  

3. To the best of the author’s knowledge, this 

paper stands first to have presented the prescriptive 
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model of a PMU and to have dealt with the repair-

rate-linked PMU placement. A prescriptive model of 

a PMU system has been introduced. An algorithm to 

determine the optimal repair rates of various 

components of a PMU has been developed.  

4. Prescribed optimal repair rates of the 

components of a PMU may not necessarily give a 

satisfactory level of reliability of observability of a 

given power system. This paper determines repair-

rate linked optimal number of PMUs and their 

candidate locations to attain a targeted level of 

reliability of observability of a complete power 

system.  

5. To find the best of multiple solutions to the 

PMU placement problem, we have introduced two 

new indices that are altogether different from those 

used when failure and repair of components of a 

PMU are not modelled.  

6. The work embodied in this paper has been 

enriched by giving illustrative examples.  

Acknowledgement:  The author is thankful to the 

reviewers and editorial board for their fruitful 

comments.  
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