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Abstract: In this work, an attempt has been made to find out 

the steady state solution of R-L-C circuit for sinusoidal 

input using a state-of-the-art sample shifting technique 

(SST) with lesser computational burden in discrete time 

domain. The basic integro-differential equations involved in 

different R-L-C circuits have been solved with the above 

SST. The samples of the output current waveform are 

evaluated for each of the circuits from the samples of input 

voltage and the values of the circuit parameters. The 

samples of current waveform are also evaluated using 

conventional technique for the solution of current signal 

under steady state. A pretty good matching of the samples of 

output current in MATLAB simulation for both the 

techniques justifies this proposed SST. Microcontroller-

based experimental validation of the method is also 

discussed. 
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1. Introduction 
     There are lots of age-old conventional techniques to 

solve the R-L-C circuit with sinusoidal input either in 

the continuous or in the discrete domain. Several 

mathematical models and equations are well 

established [1,2] in order to solve them. More and more 

techniques are evolved to have a better 

conceptualization, lesser computational burden within 

acceptable error limit [3-5]. Moreover approximations 

of these mathematical solutions are being made in 

order to implement them in real world situations. 

     In these methods, several real world based 

approximation, considering the computational 

complexity, iteration time as well as error, are being 

continuously evolved [6 ]. For example methods like 

RK, NR, GS, Wavelet, Fuzzy logic are the result of this 

evolution [4,5,7]. A deep insight for the 

implementation of these methods reveals different 

types of processors like DSP, PC, FPGA etc. are 

suitable to find out the ultimate solutions. But to find 

out the solution with ordinary processor or 

microcontroller has yet to be studied.   

     The authors, in this attempt, have tried to propose 
and use a new technique to find out the steady state 
solution with lesser computational burden and this 
technique is implemented with the help of an ordinary 
microcontroller. This steady state solution is essential 
for frequency domain characterization of the system to 
sinusoidal inputs. As this method deals with the 
sinusoidal steady state solution of R-L-C circuits whose 
equations are basically integro-differential in nature, it 
is required, by the proposed method, to modify them in 
an all integral form. Now the integration of a sinusoidal 
function involves the shifting of original function by a 
quarter cycle, the required integration of the system 
equations is implemented by our state-of-the-art sample 
shifting technique (SST).  The samples of the output 
current waveform are evaluated from the samples of 
input voltage and the values of the circuit parameters. 
The samples of current waveform are also evaluated 
using conventional equation for the solution of current 
signal under steady state. The proposed method is 
supported by the simulation of a numerical example 
and compared with the steady-state solution of standard 
methods. A simple experiment is also performed to 
show the validity of the proposed method. 
 

2. Materials and Methods 

2.1.  Sample Shifting Technique (SST) 

 
Shifting of any sinusoid by any angle (or equivalent 
time) only shifts the time of occurrence of 
instantaneous amplitudes of the sinusoid by that angle. 
Hence, in a digital acquisition system, a cosine wave 
data can be generated from the acquired data of sine 
wave by simply shifting the data set by 90

o
. Such 

conversion of sinusoid by shifting is much simpler than 
using sine to cosine conversion formula. For example, 
if the original sine wave is sampled at 1

o
 interval, i.e., 

if there are 361 samples over a full cycle, then its 
cosine wave data can be generated by rearranging the 
original samples as follows: 

This shifting utilizes the fundamental nature of sine 

and cosine waveforms where a zero value in a sine 

wave at 0
o
 corresponds to the zero value at 90

o
 of a 

cosine wave (for lagging type). This 90
o
 difference 



 

  

 

  

continues till 270
o
 of sine wave. But the values from 

270
o
 to 360

o
 of the sine wave correspond to the values 

from 0
o
 to 90

o
 of the cosine wave. This is illustrated in 

Table 1. 

 

Table 1 
Sample Shifting Principle 

 

As shown in the table, the 1
st
 sample i.e. (0

o
)

th
 sample is 

to be placed at 91
st
  (90

o
)

th
  position, the 2

nd
 one at 92

nd
 

position and so on upto the 271
th
 one at 361

th
 position, 

while the 271
st
 is to be placed at 1

st
 position, the 272

nd
 

one at 2
nd

 position and so on upto the 361
th
 one at 91

th
 

position.  
Pictorial presentation of this shifting is shown in fig.1 
where the portions A'-B'-C'-D'-E' on the shifted wave 
are the corresponding portions of A-B-C-D-E of the 
original wave.  That is, the segment D' to E' at the 
starting portion of the shifted waveform is an exact 
replica of the segment D to E of the original one. 
 

2.2. Integration Evaluation by Sample Shifting          

       Technique 

     In general, let a sinusoidal function ƒ(t) = sina ωt  is 

sampled by 4n number of times over a full cycle period 

[ 0, 2π ] starting from its zero crossing instant. In order 

to represent the function ƒ(t) in digital domain, these 4n 

samples can be designated, as 

  

[ƒ(t)]Samples= [a0, a1, a2, ... , an-1, an, an+1,…, a2n-1, a2n, 

a2n+1,…,a3n-1, a3n, a3n+1,…, a4n-1]                  (1) 
                                                                                    

where n is the number of samples per quarter cycle. 
 

 
Fig. 1. Illustration of Sample Shifting Technique. 
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Fig. 2. A sinusoidal function and its first integrated 
form. 

The first integration of the function is 

   

( )d sin( )
2

π
=∫

a
f t t ωt -

ω
          

 

It is seen from above equation that the integrated 

function is simply a phase shift of the original function 

by 

/ 2π   with its modified amplitude1 ω/ . The graphical 

representation of the original function and its 

integrated form are shown in fig. 2. As the point of 

interest is to be within [ ]0, 2π  i.e. a full cycle, a deep 

insight of fig. 2 reveals that the samples from 3 / 2π  to 

2π  of original function, surpass the limit of interest in 

the integrated function. Hence, to have a feel of the 

samples of the integrated function within the limit, the 

samples of surpassed zone be brought back and fit into 

the zone from 0 to / 2π . This is nothing but the basis of 

the sample shifting principle which is to be adopted 

here for its practical realization. 

     

Hence, after rearranging, the samples of the 

integrated function take the form like, 

Original Wave Converted  Wave 

Type 
sample 

numbers 
Type Shifted sample numbers 

1 91 (N-1)/4 +1 

2 92 (N-1)/4 +2 

3 93 (N-1)/4 +3 

…. … ….. 

270 360 (N-1)/4 +270 

271 361 (N-1)/4 +271 

271 1 271-3(N-1)/4 

….. …. …. 

Sine 

361 

Cosine 

91 361-3(N-1)/4 



 

[ ]
( )1 3 3 +1 4 -1 4 0 1 -1

( )d

+1 2 -1 2 2 +1 3 -1

a , a , ..., a , a = a , a , ..., a , a ,nn n n n n
f t t

a , ..., a , a , a , ..., an n n n nω
=∫

 
 
 

    

                                                                         (3)         

Similarly, a double integration of the function ƒ(t) 

introduces a phase shift by π  to the original function 

with modified magnitudes which is shown in fig. 3. 

Here the surpassed zone is from π  to 2π  and this has 

to be brought back and fit into the segments between 0 

to π . 

     Hence, the samples of the doubly integrated 

function, with the same argument, are generated as, 

[ ]
2 2 +1 3 -1 3 3 +1

1
( )d ( )4 -1 4 0 1 22Samples

-1 +1 2 -1

a ,a ,...,a ,a ,a ,n n n n n

f t t ...,a ,...,a =a ,a ,a ,n n
ω

...,a ,a ,a ,...,ann n n

=∫∫

 
 
 
  

        

                                                                           (4) 
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Fig. 3. A sinusoidal function and its second integrated 

form. 

In fact, proceeding in this way, it is possible to derive 

the samples of any order of integration of a sinusoidal 

function from the original set of samples. 
 

3. Case Studies  

3.1.     R-L-C Series Circuit 

 

 
Fig. 4. Typical RLC series circuit fed from sinusoidal 

source 

 

The basic differential equation describing a R-L-C 

circuit is given by, 

 

 

 or, 1
( ) d ( ) d ( ) ( )dν t  t = R  i t  t + L i t  + i t t

C
∫ ∫ ∫∫                    (5) 

  

Let the voltage and current samples are given by, 

 

( ) ( )
0 1 2 3 4 0

and

( ) , ( )
0 1 2 3 4 0

ν t = ν ,ν ,...,ν ,...,ν ,...,ν ,...,ν =νn n n n

    

i t = i i ,...,i ,...,i ,...,i ,...,i =in n n n

  

    

                  (6) 

 

Now by employing the proposed sample shifting 

technique for integration, in the sample domain, 

equation (5) can be rewritten with the zero initial 

condition as,                                                                    

                                 

2

2 2

1 1
( ) ( ) ( ) ( )

R
t i t Li t i t

ω ω ω C
−π −π −πν = + +  

or,

2 2

1
( ) ( ) ( ) ( )t Ri t ωLi t i t

ωC
−π −π −πν = + +                     (7) 

 

Thus with equation (3), (4), and (6), equation (7) can 

be written as,    
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 (8)  

 

The above equation can be simplified and arranged in a 

matrix form as, 

 

0 1 1

1 2 1

2 2 1 3 1

3 3 1 4 1

0 1 11

1 1 2 1

1
2 2 1 3 1

1
3 3 1 4 1

ν ν .. ν
n-

ν ν .. νn n n-

ν ν .. ν
n n n-

ν ν .. ν
n n n-

i i .. i
n-R ωL 0 / ωC

i i .. i/ ωC R ωL 0 n n n-
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n n n-

+ =
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+
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d ( ) 1
( ) ( ) ( )d

d

i t
ν t = R i t  + L  +  i t t

t C
∫



 

  

                                                                         (9) 

 

[ ] [ ] [ ]-1

RLC
I = Z V         (10) 

where, [V], [I], and [Z]RLC are respectively the voltage 

current and impedance matrix of equation (9). The 

characteristic features of arranging the samples are 

made in such a manner that the voltage and current 

matrices of equation (9) are always of the order of 

(4xn), where 4 rows are interpreted as each of the 90 

degree segments over a line cycle period and n columns 

indicate number of samples within each of these 

segments.  The impedance matrix is always of the order 

of (4x4) and is circulant in nature. Its inverse can 

apriori be calculated for the known values of impedance 

parameters. With these values equation (10) can then be 

used in finding out the samples of the steady state 

current output signal (with zero initial condition) for 

various values of voltage inputs.  

On the other hand by conventional method, the solution 

for current (considering only sinusoidal part) is given 

by 

( ) sin( )
1 1

i t A ωt + θ=  

where 2 2 2
(1 ) ( )

1
A ωCV - ω CL + ωCR= and

1 2
 =tan {(1 )}

1
θ ω CL) / ωCR

− −                                            (11) 

 

3.2.    R-L-C Series-Parallel Circuit 

 

 
Fig. 5. Typical RLC series-parallel circuit fed from 

sinusoidal source. 

 

The differential equation describing an R-L-C series-

parallel circuit is given by, 

                                                                        (12) 

 

The equation can be written in the sampled domain as, 

2 2
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L C LC
i t i t v t v t v t

ω ωR ω R ω R
−π −π −π −π+ = + +  

or,
2

2 2

1
( ) ( ) ( ) ( ) ( )

ωL ω LC
i t i t v t ωCv t v t

R R R
−π −π −π −π+ = + +            

                                                                       (13) 

 

Thus with equation (3), (4), and (6), equation (13) can 

be written as, 
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(14) 

 

This equation can be simplified and arranged in a 

matrix form as, 
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(15)      

Again by conventional method, the solution for current 

(considering only sinusoidal part) is given by, 

2 2( ) sin( )i t A ωt +θ=  

where
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(16) 

 

1
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i t t +  i t  t = v t t + C v t  t+ v t

R R R∫∫ ∫ ∫∫ ∫



 

 

 

 

 

3.3.   R-L-C Parallel Circuit 

 

 
Fig. 6. Typical RL parallel circuit fed from sinusoidal 

source. 

 

The differential equation describing an R-L-C parallel 

circuit is given by, 
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                                                                       (17) 

The equation can be written in the sampled domain as, 
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Thus with equation (3), (4), and (6), equation (18) can 

be written as, 
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This equation can be simplified and arranged in a 

matrix form as, 
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  (20)  

Again by conventional method, the solution for current 

(considering only sinusoidal part) is given by, 

 

[ ]3 3
( ) sin( )

V
i t A ωt + θ

LR

ω
=   

where ( )2 2 2 2 2

3 ( ) /A RLC R Lω ω ω= − + and 

( ){ }2

3

1
 =tan /θ RLC R Lω ω− −                                  (21) 

4.  Experimentation 

4.1.  Simulation 

 

Matlab based programs are used to simulate the 

solution for R-L-C circuits following equations (10), 

(15) and (20) respectively. The program algorithms 

given below provide easy understanding of the logics 

for calculation of current samples, phase difference 

between input and output as well as output amplitude. 

These simulated samples using SST are compared with 

the samples obtained from the simulation using 

conventional formulae for steady state solution for 

series R-L-C circuit and for parallel R-L-C circuit 

respectively by equations (11), (16) and (21) for an 

input v(t) = sin( t)v ω . 

 

Algorithm for R-L-C circuit 

 

1. Define amplitude v, R, L, C freq and nsample 

variables.   

2. Generate nsample no. of sample values for the 

sinusoidal voltage signal following the equation v(t) = 

sin( t)v ω  and store them in an array of v. 

3. Generate impedance matrix Z of (9) with the above 

parameters store them in an array of mat.  

4. Calculate imat from the inverse of mat. 

5. Define no_of_row i.e. nrow as 4. 

6. Evaluate no_of_column i.e. ncol from nsamples/nrow 

. 

7.  Initialise row_counter with 1. 

8.  Initialise col_counter with 1. 

9.  Initialise ((row_counter-1)*ncol + col_counter )
th
  

element of current i with 0. 



 

  

10. Initialise element_counter with 1. 

11. Multiply (row_counter, element_counter)
th
 element 

of imat with ((element_counter-1)*ncol + 

col_counter )
th
  element of v. 

12. Add the multiplication result with ((row_counter-

1)*ncol + col_counter)
th
  element of i. 

13. Store the addition result in the ((row_counter-

1)*ncol + col_counter )
th
  element of i. 

14. Increase element_counter by 1. 

15. Repeat from step 11 for element_counter upto 4. 

16. Increase col_counter by 1. 

17. Repeat from step 9 for col_counter upto ncol. 

Table 2 

Voltage and current samples 

Samples of Samples of 

No. V iconv iprop No. V iconv iprop 

1 0 0.0629 0.0629 11 0 -0.0629 -0.0629 

2 30.9017 0.0598 0.0598 12 -30.9017 -0.0598 -0.0598 

3 58.7785 0.0509 0.0509 13 -58.7785 -0.0509 -0.0509 

4 80.9017 0.0369 0.0369 14 -80.9017 -0.0369 -0.0369 

5 95.1057 0.0195 0.0195 15 -95.1057 -0.0195 -0.0195 

6 100 0.00003 0.00003 16 -100 -0.00003 -0.00003 

7 95.1057 -0.0194 -0.0194 17 -95.1057 0.0194 0.0194 

8 80.9017 -0.0369 -0.0369 18 -80.9017 0.0369 0.0369 

9 58.7785 -0.0508 -0.0508 19 -58.7785 0.0508 0.0508 

10 30.9017 -0.0598 -0.0598 20 -30.9017 0.0598 0.0598 

 

Table 3 

Voltage and current samples 

Samples of Samples of 

No. V iconv iprop No. V iconv iprop 

1 0 -44.9849 -44.9849 11 0 44.9849 44.9849 

2 30.9017 -20.6279 -20.6279 12 -30.9017 20.6279 20.6279 

3 58.7785 5.7481 5.7481 13 -58.7785 -5.7481 -5.7481 

4 80.9017 31.5616 31.5616 14 -80.9017 -31.5616 -31.5616 

5 95.1057 54.2855 54.2855 15 -95.1057 -54.2855 -54.2855 

6 100 71.6957 71.6957 16 -100 -71.6957 -71.6957 

7 95.1057 82.0877 82.0877 17 -95.1057 -82.0877 -82.0877 

8 80.9017 84.4445 84.4445 18 -80.9017 -84.4445 -84.4445 

9 58.7785 78.5352 78.5352 19 -58.7785 -78.5352 -78.5352 

10 30.9017 64.9384 64.9384 20 -30.9017 -64.9384 -64.9384 

 

18. Increase row_counter by 1. 

19. Repeat from step 8 for row_counter upto nrow. 

20. Evaluate 
1A  and 

1θ  using above equations. 

21. Evaluate samples for 
1y  for the nsample 

element. 

22. Plot the samples of 
1y  and i. 

 

4.2. Numerical Example 

 

4.2.1     For R-L-C series circuit 

 

Let the voltage be of  v(t) = v sin ωt . For R=22 

Ohm, L= 2mH, C=2µF, Frequency = 50 Hz, 

Amplitude v =100 V and nsample = 20. The voltage 

and current samples are then obtained following 

equations (10) and (11), as in the Table 2. 
 

The output current samples are obtained by proposed 

and conventional method following equations (10) 

and (11) respectively. The peak value of the current 

wave, by the proposed method, is estimated as the 

maximum value from the samples of current matrix. 

 The phase angle of the current wave is also 

estimated from these samples by considering the 

angle corresponding to the first zero sample value. 

For the case of non-zero sample, this angle is 

approximated from the intersecting point of zero line 

and the line connecting two consecutive samples on 

either side of the zero line.  In this case, as seen from 



 

the above table, the phase angle lies between 5
th
 and 

6
th
 sample which is 77

o
.  Fig. 6 shows the exact 

matching of the plots of the samples of the output 

current waveform in both the proposed and 

conventional simulation methods. 

 

4.2.2.   For R-L-C series-parallel circuit 

 

Considering the same applied voltage for above 

impedance parameters the voltage and current 

samples, following equations (15) and (16), are 

given as per the Table-3. 

 

Table 4 

Voltage and current samples 

Samples of   Samples of 

No. V iconv iprop No. V iconv iprop 

1 0 -159.0921 -159.0921 11 0 159.0921 159.0921 

2 30.9017 -120.4039 -120.4039 12 -30.9017 120.4039 120.4039 

3 58.7785 -69.9297 -69.9297 13 -58.7785 69.9297 69.9297 

4 80.9017 -12.6103 -12.6103 14 -80.9017 12.6103 12.6103 

5 95.1057 45.9435 45.9435 15 -95.1057 -45.9435 -45.9435 

6 100 100 100 16 -100 -100 -100 

7 95.1057 144.2678 144.2678 17 -95.1057 -144.2678 -144.2678 

8 80.9017 174.4137 174.4137 18 -80.9017 -174.4137 -174.4137 

9 58.7785 187.4867 187.4867 19 -58.7785 -187.4867 -187.4867 

10 30.9017 182.2073 182.2073 20 -30.9017 -182.2073 -182.2073 

 

0 0.004 0.008 0.012 0.016 0.02
-0.1

-0.05

0

0.05

0.1

Time in milli Second

A
m
p
li
tu
d
e
 i
n
 V
o
lt

0 0.004 0.008 0.012 0.016 0.02
-0.1

-0.05

0

0.05

0.1

Time in milli Second

A
m
p
li
tu
d
e
 i
n
 V
o
lt

 
 

Fig. 7. Plots for simulated results using equations 

(10) and (11). 
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Fig. 8. Plots for simulated results using equations 

(15) and (16). 

 

4.2.3.   For R-L-C parallel circuit 

 

Considering the same applied voltage for above 

impedance parameters the voltage and current 

samples, following equations (20) and (21), are 

given as per the Table-4. 

0    0.004 0.008 0.012 0.016 0.02 
-200

-100

0

100

200

Time in milli Second

A
m
p
li
tu
d
e
 i
n
 V
o
lt

0 0.004 0.008 0.012 0.016 0.02
-200

-100

0

100

200

Time in milli Second

A
m
p
li
tu
d
e
 i
n
 V
o
lt

 
 

Fig. 9. Plots for simulated results using equations 

(20) and (21). 

 

4.2.4. Experimental Validation 
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Fig. 10. Schematic diagram of experimental set-up.
  

 
Fig. 11. Typical display of output waveform 
 

The voltage signal is sampled at 1 kHz sampling 

frequency through ADC as per the experimental set-

up shown in fig.10. Microcontroller collects the 

sample values for a full cycle period in its internal 

data memory. The elements of the inverse 

impedance matrix for series R-L-C circuit are 

calculated externally considering R=22 Ohm, 

L=2mH, C=2µF and then stored directly to the 

microcontroller memory. Microcontroller evaluates 

the required samples for the current signal from 

these sample values and the inverse of impedance 

matrix using equation (10). The evaluated samples 

for current are stored in another portion of the data 

memory. The analog representations of those 

evaluated samples are seen through a DSO, as 

shown in fig.11, with the help of DAC and I to V 

converters. Similarly, analog representations of the 

evaluated samples for R-L-C series-parallel circuit 

and R-L-C parallel circuit are also displayed to 

justify the proposed technique. 

 

5. Conclusion 

The uniqueness of this proposal is that the method of 

finding solution of R-L-C circuit is simplified. As 

the proposed technique utilizes a state-of the-art 

SST, this simplified technique involves only 

rearranging of the samples, and their multiplication 

and summation. This reduces the computation 

complexity of the processor but an ordinary 

microcontroller can be utilized to implement this in 

real world solution. The beauty of the proposed 

technique that the impedance matrix will always be 

of order 4x4, irrespective of the order of  differential 

equation. 

Another important feature of this technique is that 

for each higher order integral equation, the shifting 

will be / 2π  more than its previous one. So the 

shifting angle will be confined to / 2pπ , with p=1 

to q where q is the order of the equation and for 

every order of p=4r for r=1, 2, …, s are the same as 

that of original one. The only difference is in their 

amplitude which varies inversely with the order of 

the equation. The accuracy of the system largely 

depends on the accuracy of the shifting. As per the 

SST, the accurate shifting demands the number of 

samples over a cycle ‘n’ should be exactly divisible 

by 4. The sampling rate is to be such that ‘n’ should 

be an integral multiple of 4 i.e. 4n where n is the 

number of sample over a quarter cycle. The system 

determines only the steady state solutions of the 

circuit. The result of simulation for both the 

conventional and proposed technique shows no error 

for steady state solution. This justifies the proposed 

technique. 
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