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Abstract — A fast processing approach is presented to 
convert the digital data gathered at lower sampling-rate into 
high sampling rate by utilizing the sampling rate changes 
algorithms using interpolation. A high speed low complexity 
interpolation filter is implemented at a very low hardware 
cost using the polyphase form, distributed arithmetic and 
lookup-tables. The proposed algorithm is used to processes 
the input data in parallel using a few shift and add 
operations, which make it very fast. The method allows for 
the multiplication of the original information stored during 
digitization of the analog signal at lower computational cost. 
Therefore, it is an interesting alternative for more 
sophisticated methods of performance enhancement of 
sampled analogue signals. 

 
Index Terms — Interpolation; reconstruction; lookup 

table, shift and add operations, multiplierless  

I. INTRODUCTION 
Sampling rate changes are useful in many applications, 

such as interconnecting digital processing systems 
operating at different rates. High sampling rate helps to 
alleviate the need for high-quality analog post-filter 
required at the output of the staircase Digital to Analog 
Converter (DAC) for the reconstruction of signals. It is 
used to enhance the quality of the output for simulation, 
monitoring and control. 

The paper presents a simple, very fast approach to 
convert the digital data gathered at lower sampling-rate 
into high sampling rate by utilizing the sampling rate 
changes algorithms. 

Polyphase decomposition of a sequence by multiplier 
free interpolator using minimax and least squares 
approaches are already presented [1]. Poly phase methods 
are also used to save power dissipation and hardware 
complexity [2]. A VLSI implementation of the sample 
rate converter algorithm has already been presented in 
which filter coefficients for the multiply accumulate 
engine are generated using coefficient-interpolation block 
[3]. 

Tapped delay lines are used in conventional FIR filters 
to create the Z-1 (delay) terms in the Z-transform. These 
delay lines are implemented using a one-dimensional 
array or FIFO in DSP memory. The proposed method 
uses the delay lines but the combination of parallel 
processing and use of lookup tables make the processing 
very fast by lowering the power consumption [4]. 

Interpolation technique is utilized to place the 
additional samples between the known basic set of 
samples (BSS). The process of calculation of the samples 
can be improved by means of using a bank of polyphase 
subfilters. Using these, interpolation is performed at 
reduced computational cost as compared with the cost of 
the direct form of the interpolation filter. The 
computational cost can be reduced substantially because 
each of the subfilters can work independently, thus it is 
possible to use them like a bank of parallel working 
filters. The problem of noncausality of the interpolation 
filter is solved by L×M samples delaying in processing. 

A FIR filter using the transversal computation structure 
[5] adopts a polyphase structure to effectively pipeline 
the input data streams across a register chain prior to 
performing the main filtering operation. Despite the 
simplicity of the structure, it requires a prohibitively large 
number of registers and incurs area overhead due to the 
added complexity involved with the pipeline structure 
[6]. An alternative low cost FIR filter structure suitable 
for high speed filtering is presented. 

To reconstruct the analog signal from sampled values, 
DAC is used to generate an analogue staircase output. 
These rectangular pulses are sent through a lowpass filter 
to finally reconstruct the original signal. Theoretically, 
the sampling of the original signal, followed by 
reconstruction using DAC and ideal lowpass filter will 
perfectly reconstruct the original signal. There will in 
practice be small errors because it is impossible to 
construct perfect filters however, it is possible to obtain a 
reconstructed signal with a very small error. 

The filter can be used to identify some of the samples 
corrupted with noise provided that the signal is 
oversampled and it contains redundant information. 
Hence, by calculating each sample value using the 
neighboring samples and comparing the actual value with 
the calculated value.  The affected sampled can be 
replaced with the calculated samples (by means of 
interpolation based on neighboring samples), one can 
achieve good restoration results. Using this interpolator 
one can reduce the time of detection and correction of the 
affected samples 

As the coefficients of the interpolation filter are 
constant and already known we can implement it at a low 
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hardware cost using bit-plane-structures, lookup-table 
multipliers (LUTMULT) or distributed arithmetic 
(DA)[7] instead of conventional hardware multipliers. 

II. SAMPLING AND RECONSTRUCTION 

A  Effect Of Sampling 
In sampling process high frequency components are 

generated which appear in periodical fashion that is every 
frequency component of the original signal is periodically 
replaced over entire frequency axis [8]. The frequency 
spectrum of a continuous analog signal is shown in Fig 1.a 
while ideal sampler is shown in Fig-1.b. 

B Signal Reconstruction 
Since spectrum of sampled signal consists of baseband 

spectrum and spectral images shifted at multiples of Fs, 
reconstruction means isolating the baseband image as shown 
in Fig-1.c. To reconstruct the sampled values, DAC 
generates an analogue staircase output waveform. The 
reconstructor does not completely eliminate the replicated 
spectral images. An additional lowpass post filter, called an 
anti-image post filter, may be used to remove the surviving 
spectral replicas [9]. 
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C Interpolation 
It is used to increase sampling rate by inserting 

additional samples of the signal between the original 
ones. An FIR digital filter calculates the inserted samples. 
The process of increasing the sampling rate by the factor 
of L= 4, that is L fold over sampling of the signal, as 
illustrated in Fig.2. 
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Figure 2.  Sampling rate increase with digital interpolation 

 

Consider an analog signal x(t) and its discrete time 
signal x(n), n = 0,1,2, - -, N -1 (N – the number of samples 
of the signal). The first stage of the L- fold over sampling 
of x(n) is to insert L-1, zero samples for every low-rate 
sample (the L fold upsampler). The resultant signal xup(n 
is connected with the signal x(n) by the relationship [9]: 
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Where i = 1,2, - - -,L-1,  
 
To reduce the computational cost by a factor of L, the 

high rate interpolating FIR filter is replaced by slow FIR 
subfilters, known as polyphase filters. Each polyphase 
filter has to be operated at low sampling rate Fs at a 
factor of 1/L as compares to the high rate single 
interpolator. 
D Interpolation Filter 
The filters can be implemented in the following two 
forms. 

1) Direct form: The interpolation filter operates at the 
fast rate fs, with a cutoff frequency Fc equal to the low 
rate Nyquist frequency. Impulse response coefficients of 
the ideal L-fold interpolation filter are obtained from the 
equation [9], given below. 

)/(
)/sin()(

Lk
Lkkd

′
′

=′
π
π

,    -LM ≤ k΄≤ LM (2) Figure 1.a. The frequency spectrum of continuous signal

Figure 1.b. The frequency spectrum of ideal sampler output

Figure 1.c. Isolation of baseband using Ideal Lowpass filter 

or  

LLMk
LLMkLMkdkh

/)(
)/)(sin()()(

−′
−′

=−′=′
π
π   (3) 

Where k΄ = 0, 1, …, N΄ -1 

The FIR approximation to the ideal interpolator is 
obtained by truncating d(k') to the finite length, say  N = 
2LM+1 and a casual filter is obtained by delaying it L×M 
samples. The output of the interpolation filter is obtained 
by convolving the upsampled input xup(n΄) with the 
impulse response d(k΄) For example using d(k΄) one can 
get: 
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Where i = 0, 1, …, L -1 

2) Polyphase form: Using the above equation the 
coefficients of the impulse response for ideal FIR filter 
are calculated. The computational cost of direct form 
interpolator is ML22  and the cost of polyphase filter is 

LM2  for L interpolated values. The computational cost 
is L times less in case of polyphase filter. 
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Defining ith polyphase filter by di(k) = d(KL+i), M ≤ k 
≤ M-1 and by algebraic manipulation, the above equation 
may be simplified into the form 
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III IMPLEMENTATION SCHEME OF THE PARALLEL 
MULTIPROCESSOR INTERPOLATING FIR FILTER USING 

MULTIPLIER AND ADDER 
Equation (7) is used to calculate impulse response for the 
ith subfilter and L is total number of subfilters. There are 
total N (0,1, ….., m) coefficients and the value of k 
represents the kth coefficient. Equation (6) is used to 
generate missing samples calculated by the subfilters. 
Block diagram of a polyphase interpolating filter is 
shown below in Fig 3. Each subfilter is consists of a 
processor that has N multipliers and (N – 1) adders to 
process the data. Each subfilter is implemented in parallel 
and processes the input data independently. The 
interpolated output data is achieved by collecting output 
of individual subfilters and arranging it into proper 
sequence.  

The polyphase FIR filter can be implemented by a 
lookup tables containing all possible pre-calculated filter 
outputs. These are tabulated in memory for any input 
transition patterns which requires a very large memory. In 
this way the subfilter can be implemented using a ROM 
or Dual RAM in case it is to be implemented using 
FPGA. 

 

Figure 3. The parallel multiprocessor interpolating filter with multiplier 
and adder 

IV. MULTIPLICATION USING LOOKUP TABLES 
The size of the lookup table can be reduced by using 

Quarter Squares technique and speed of the multiplication 

can be increased by using nibble based lookup table as 
explained below. 

A Bit multiplication 
An 8-bit multiplication can be perform by successive 

addition or binary shifting and accumulation, or by 
concatenating the two 8-bit values to give a 16-bit index 
into a massive 65,536 entry lookup table.  

We can reduce the size of the lookup table to just 511 
entries by using Quarter Squares by using the equation 
(8) given below  
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We can express the above equation in terms of 
function f(n) as given below  
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A lookup table of indexed n can easily represent the 
function itself.  

The whole lookup table necessary to implement an 8-
bit by 8-bit multiplication can then be held in just 511 
entries. The maximum value that needs to be held is for 
an index of 511, and that table entry will have a 
maximum value of 255x255 (65,025), which can be held 
in a 16-bit word.  

In reality no rounding error appears in the 
multiplication that is introduced by an integer division by 
four within the lookup table values. 

B Nibble based lookup table 
Another way to speed up multiplication, using lookup 

tables, additions and shifting, which are all usually 
efficiently implemented is to take individual groups of 
nibbles (4-bits) from the numbers to be multiplied and use 
those.  

Every byte has two nibbles, the top four bits and the 
bottom four bits.  

Consider the following example of multiplying two 2-
digit numbers together 

db  10cb  10da  100ca ×+××+××+××=×cdab   (10) 

The function f(x,y) can be used to perform a 4-bit by 4-
bit multiply, using 8-bit, 30 bytes lookup table.  

 f(b,d)  f(b,c)  f(a,d) f(a,c)cdab +×+×+×=× 1010100    (11) 

Where yxf ×=  y),x(  



The reduction in the size of the lookup table does 
reduce the execution speed due to the process of de-
nibbling the numbers, nibble multiply, shift and 
accumulate operations.  

The above process can be implemented efficiently 
within FPGA where parallel processing for the 
manipulation of nibble data is often very easily 
achievable. 

V PROPOSED IMPLEMENTATION SCHEME OF THE 
PARALLEL MULTIPROCESSOR INTERPOLATING FIR FILTER 

Block diagram of a low cost interpolating filter is 
shown below in Fig.4. It consists of lookup table 
generator, lookup table address generator, lookup table 
and parallel processing unit to do all required 
computation to obtain the required output. The 
coefficients of ideal interpolation filter are already 
known. The lookup tables can be generated for any 
number of coefficients (N) outside and can be imported in 
the proposed multiprocessing system. The lookup table 
generator section may be removed from the block 
diagram. Each subfilter contains small parallel processors 
which are consists of shifter and adder units to process 
the data. The main processor synchronizes all the small 
processors and feed data at low sampling rate to each 
subfilter. Each small processor is implemented in parallel 
and processes the input data independently. The output 
data, from each subfilter is arranged to get over sampled 
interpolated data having L times higher sampling rate by 
the main processor. 
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Figurev 4. Implementation of the proposed efficient parallel 
multiprocessor interpolating filter 

A Lookup Table Generation 
As the coefficients of the subfilters are already known, 

the tables can be generated and made readily available. 
Table-1 gives the coefficient of the subfilters ( subfilter-0 
to subfilter-3) for M = 1, 2 and 3 and the corresponding 
number of coefficients N = 2, 4 and 6. The ‘Look up’ 
table is generated using the algorithm shown below 
in.Fig-5. The number of address bits is equal to the 
number of the coefficients of the subfilter. If address bit 
is logic-1 then the value of the corresponding coefficient 
is added. A lookup table for Am = 3 (4 Bit Address for 4 
coefficients of subfilter-0) is shown for elaboration, 

where h00, h01, h02 and h03 are the coefficient of the 
subfilter-0 and 16 table entries corresponding to the 4 
coefficients. Similarly tables can be generated for each 
subfilter having any number of coefficients. Lookup table 
entries for each subfilter having N coefficients are 2N 

which are generated using corresponding coefficients as 
shown in Fig.5. 

 
 

TABLE-1 
IMPULSE RESPONSE FOR M = 3 AND Lfold = 4 

 
h 0 1 2 3 4 5 

0 0 0 0 1 0 0 

1 0.0818 -0.1286 0.3001 0.9003 -0.1801 0.1 

2 0.1273 -0.2122 0.6366 0.6366 -0.2122 0.1273 

3 0.1 -0.1801 0.9003 0.3001 -0.1286 0.0818 

 
 

TABLE-2 
LOOKUP TABLE FOR SUBFILTER-0 

 
Address Data 

0000 0 

0001 h00

0010 h01

0011 h01+ h00

0100 h02

0101 h02+ h00

0110 h02 + h01

0111 h02+h01+h00

1000 h03

1001 h03 + h00

1010 h03 + h01

1011 h03 + h01+ h00

1100 h03 + h02

1101 h03 + h02+ h00

1110 h03 + h02 + h01

1111 h03 + h02+h01+h00
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Figure 5. Algorithm for the lookup table generation 



B Lookup Table Address Generation 
The graphical representation of the algorithm is shown 

below in Fig.6. The binary values of the required samples 
X(n+0) to X(n+m) are used to generate the address to get 
output data from the lookup table as shown in Fig.6. The 
bit D0 of X(n+0) corresponds to Ao, the bit D0 of X(n+1) 
corresponds to A1 and similarly the bit D0 of X(n+m) 
corresponds to Am. As explained above D0 of each 
sample value is used to generate address Am to Ao for 
LSB. Where Am is the MSB of the address and number of 
address bits is equal to the number of filter coefficients 
being used for each subfilter. The bit D1 of each sample 
value is used to generate address A0 to Am for Bit-1. 
Similarly address is generated upto MSB location. 
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Figure 6. Algorithm for the lookup address generation generator. 

D Parallel Processing of the Data 
The number of locations for the parallel processing unit is 
equivalent to the width (word length - no. of bits) of the 
sampled data. 

 

 
 

Figure 7. Algorithm for parallel processing of the data using shift and 
add operations. 

 
The graphical representation of the algorithm is shown 

in Fig.7. The data is loaded from the lookup table by 
using the addresses generated in previous section 3.2. The 
data from Bit-1 is shifted by 1 and added to LSB (Bit-0). 
It is done for all the consecutive pairs in parallel upto 
MSB. The result of the 2nd pair is further shifted by 4 and 
added to the result of the 1st pair. It is repeated for all 
other consecutive sets of 4 data values. The result of 2nd 

set of 4 data values is further shifted by 4 and added to 
the resultant of the 1st set of 4 data values. This makes a 
set of 8 data values and is the required result if the 
sampled data width is 8 bits. For 16-bit data width the 
resultant of the 2nd set of 8 values (Bit-8 to Bit-15) is 
further shifted by 8 and added to the resultant of 1st set of 
8 data values. This makes a set of 16 data values and is 
the required result, if the sampled data is 16-bits. 
Similarly one more shift is required if the sampled data 
width is 32-bits. Only 3,4 and 5 shift and add operations 
are required for 8-bit, 16 bit and 32 bit wide sampled 
data. 

The computational cost of direct form interpolator is 
2L2M and the cost of polyphase filter is 2LM for L 
interpolated values. Cost of proposed implementation is 
only four shift and four add operations.  

 

VI SIMULATION USING MATLAB FOR THE 
PROPOSED POLYPHASE INTERPOLATING FILTER 

The methodology for the simulation of the signal 
processing through polyphase interpolating filters, as 
described above, is carried out by first determining the 
coefficients i.e. impulse response of each subfillter. The 
impulse response of the sinc interpolator is listed in table-
1. The software implementation is covered in ensuing 
paragraph.  

The input sinusoidal signal shown in Fig-8(a) is 
converted into discrete signal by sampling it at Fs/Fa = 4 
samples/cycle to generate Basic Set of Samples (BSS) as 
shown in Fig-8(b). Three subfilters are used to calculate 
three additional samples to be inserted between the BSS. 
Taking M = 2, four BSS are used to calculate additional 
sample by each subfilter. The plot of the calculated 
interpolated values inserted between BSS is shown in 
Fig-8(c) and (d). Part (a) and (b). of both the Figures Fig-
8 and Fig-9 are same. Fig-9(c) and (d) are plotted using 
M = 3 and BSS = 6. 

Figure .8 plot to show the reconstructed signal and interpolated high rate 
samples using Lfold =4, M=2 and N = 17 

(a) 

(b) 

(c) 

(d) 

(a.) original signal, (b) sampled signal, (c) reconstructed signal and (d) 
high sampling rate interpolated samples values. 



 
The results by the graphical presentation of the 

reconstructed samples for different coefficients and 
different number of Basic Set of Samples (BSS) of low 
rate sampled data are used for interpolation algorithm. 
For M=2, there is a delay of first two BSS samples which 
corresponding to π/2. Three samples are inserted between 
BSS samples 2 and 3. For M=3, there is a delay of first 
three BSS samples which corresponding to π. This delay 
is used to make the system a causal system. The results 
show that, more the number of BSS and Lfold better is 
the reconstructed plot. 

The computational cost of direct form interpolator is 
2L2M and the cost of polyphase filter is 2LM for L 
interpolated values. The computation cost of the proposed 
scheme is a few add and shift operations. Hadamard 
transform has been used for polyphase decomposition of 
FIR filter and its applications in efficient FIR filter design 
[1]. The number of multiplications is reduced but its 
computational cost is still higher than the proposed 
implementation. 

 
Figure 9. plot to show the reconstructed signal and interpolated high rate 

samples using Lfold = 6, M = 3 and N = 37 

 
 
 
 
 
 
 
 
 
 
 
 

VII. CONCLUSIONS 
A fast approach to implement parallel multiprocessor 

interpolating polyphase filter is presented. The tables are 
generated and made readily available, which are tabulated 
in the memory. Other discrete interpolating kernels may 
be implemented by generating tables for them. The 
implementation is done in parallel and the computation in 
the memory. Other discrete interpolating kernels may  
cost in term of Shift and Add operations remains same for 
any number of filter coefficients (N). Only 3 Shift and 3 
add operations are required in series for all the 
calculations if the width of the sampled data is 8-bit. 
Similarly for 16-bit wide sampled data, maximum 4 shift 
and 4 add operations are required in series for all the 
calculations. The lookup table size is very small as 
compared with other techniques. The method is an 
efficient low cost technique and can be implemented on 
FPGA where lookup tables (LUTs) are the basic logic 
blocks.  
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