
Implementation of the Multiplierless Parallel
Multiprocessor Interpolating Filter

M. Ashrafand* and R. Mahmud**

* Associate Professor, National University of Sciences and Technology (NUST), College of EME, Peshawar Road
Rawalpindi, Pakistan, e-mail: mashraf@ceme.edu.pk, e-mail: ashrafa_2000@yahoo.com

** Assistant Professor, National University of Sciences and Technology (NUST), PNEC, PNS JAUHAR, Karachi,
Pakistan, email: riaz@pnec.edu.pk, email: riaz71@hotmail.com

Abstract — A fast processing approach is presented to
convert the digital data gathered at lower sampling-rate into
high sampling rate by utilizing the sampling rate changes
algorithms using interpolation. A high speed low complexity
interpolation filter is implemented at a very low hardware
cost using the polyphase form, distributed arithmetic and
lookup-tables. The proposed algorithm is used to processes
the input data in parallel using a few shift and add
operations, which make it very fast. The method allows for
the multiplication of the original information stored during
digitization of the analog signal at lower computational cost.
Therefore, it is an interesting alternative for more
sophisticated methods of performance enhancement of
sampled analogue signals.

Index Terms — Interpolation; reconstruction; lookup

table, shift and add operations, multiplierless

I. INTRODUCTION
Sampling rate changes are useful in many applications,

such as interconnecting digital processing systems
operating at different rates. High sampling rate helps to
alleviate the need for high-quality analog post-filter
required at the output of the staircase Digital to Analog
Converter (DAC) for the reconstruction of signals. It is
used to enhance the quality of the output for simulation,
monitoring and control.

The paper presents a simple, very fast approach to
convert the digital data gathered at lower sampling-rate
into high sampling rate by utilizing the sampling rate
changes algorithms.

Polyphase decomposition of a sequence by multiplier
free interpolator using minimax and least squares
approaches are already presented [1]. Poly phase methods
are also used to save power dissipation and hardware
complexity [2]. A VLSI implementation of the sample
rate converter algorithm has already been presented in
which filter coefficients for the multiply accumulate
engine are generated using coefficient-interpolation block
[3].

Tapped delay lines are used in conventional FIR filters
to create the Z-1 (delay) terms in the Z-transform. These
delay lines are implemented using a one-dimensional
array or FIFO in DSP memory. The proposed method
uses the delay lines but the combination of parallel
processing and use of lookup tables make the processing
very fast by lowering the power consumption [4].

Interpolation technique is utilized to place the
additional samples between the known basic set of
samples (BSS). The process of calculation of the samples
can be improved by means of using a bank of polyphase
subfilters. Using these, interpolation is performed at
reduced computational cost as compared with the cost of
the direct form of the interpolation filter. The
computational cost can be reduced substantially because
each of the subfilters can work independently, thus it is
possible to use them like a bank of parallel working
filters. The problem of noncausality of the interpolation
filter is solved by L×M samples delaying in processing.

A FIR filter using the transversal computation structure
[5] adopts a polyphase structure to effectively pipeline
the input data streams across a register chain prior to
performing the main filtering operation. Despite the
simplicity of the structure, it requires a prohibitively large
number of registers and incurs area overhead due to the
added complexity involved with the pipeline structure
[6]. An alternative low cost FIR filter structure suitable
for high speed filtering is presented.

To reconstruct the analog signal from sampled values,
DAC is used to generate an analogue staircase output.
These rectangular pulses are sent through a lowpass filter
to finally reconstruct the original signal. Theoretically,
the sampling of the original signal, followed by
reconstruction using DAC and ideal lowpass filter will
perfectly reconstruct the original signal. There will in
practice be small errors because it is impossible to
construct perfect filters however, it is possible to obtain a
reconstructed signal with a very small error.

The filter can be used to identify some of the samples
corrupted with noise provided that the signal is
oversampled and it contains redundant information.
Hence, by calculating each sample value using the
neighboring samples and comparing the actual value with
the calculated value. The affected sampled can be
replaced with the calculated samples (by means of
interpolation based on neighboring samples), one can
achieve good restoration results. Using this interpolator
one can reduce the time of detection and correction of the
affected samples

As the coefficients of the interpolation filter are
constant and already known we can implement it at a low

mailto:mashraf@ceme.edu.pk
mailto:ashrafa_2000@yahoo.com
mailto:riaz@pnec.edu.pk

hardware cost using bit-plane-structures, lookup-table
multipliers (LUTMULT) or distributed arithmetic
(DA)[7] instead of conventional hardware multipliers.

II. SAMPLING AND RECONSTRUCTION

A Effect Of Sampling
In sampling process high frequency components are

generated which appear in periodical fashion that is every
frequency component of the original signal is periodically
replaced over entire frequency axis [8]. The frequency
spectrum of a continuous analog signal is shown in Fig 1.a
while ideal sampler is shown in Fig-1.b.

B Signal Reconstruction
Since spectrum of sampled signal consists of baseband

spectrum and spectral images shifted at multiples of Fs,
reconstruction means isolating the baseband image as shown
in Fig-1.c. To reconstruct the sampled values, DAC
generates an analogue staircase output waveform. The
reconstructor does not completely eliminate the replicated
spectral images. An additional lowpass post filter, called an
anti-image post filter, may be used to remove the surviving
spectral replicas [9].

.

1
Amplitude

.

Frequency (Hz)

Amplitude
1

0 Fs 2Fs-Fs-2Fs Fc 5/2Fs3/2Fs-3/2Fs-5/2Fs -Fc

0 Fs 2Fs-Fs-2Fs 5/2Fs3/2Fs-3/2Fs-5/2Fs -Fc

.
0 Fs 2Fs-Fs-2Fs

Amplitude
1

Fs/2 5/2Fs3/2Fs-3/2Fs-5/2Fs -Fs/2

Fc
Frequency (Hz)

Frequency (Hz)

C Interpolation
It is used to increase sampling rate by inserting

additional samples of the signal between the original
ones. An FIR digital filter calculates the inserted samples.
The process of increasing the sampling rate by the factor
of L= 4, that is L fold over sampling of the signal, as
illustrated in Fig.2.

n n n

Yup()nXup()n

4
upsampler

FIR interpo-
lation filter

low rate high ratehigh rate
fs fs = 4fsfs = 4fs

Figure 2. Sampling rate increase with digital interpolation

Consider an analog signal x(t) and its discrete time
signal x(n), n = 0,1,2, - -, N -1 (N – the number of samples
of the signal). The first stage of the L- fold over sampling
of x(n) is to insert L-1, zero samples for every low-rate
sample (the L fold upsampler). The resultant signal xup(n
is connected with the signal x(n) by the relationship [9]:

⎩
⎨
⎧

=
,0

),(
)'(

nx
nxup (1)

If n’ = nL

If n’ = nL+i

Where i = 1,2, - - -,L-1,

To reduce the computational cost by a factor of L, the

high rate interpolating FIR filter is replaced by slow FIR
subfilters, known as polyphase filters. Each polyphase
filter has to be operated at low sampling rate Fs at a
factor of 1/L as compares to the high rate single
interpolator.
D Interpolation Filter
The filters can be implemented in the following two
forms.

1) Direct form: The interpolation filter operates at the
fast rate fs, with a cutoff frequency Fc equal to the low
rate Nyquist frequency. Impulse response coefficients of
the ideal L-fold interpolation filter are obtained from the
equation [9], given below.

)/(
)/sin()(

Lk
Lkkd

′
′

=′
π
π

, -LM ≤ k΄≤ LM (2) Figure 1.a. The frequency spectrum of continuous signal

Figure 1.b. The frequency spectrum of ideal sampler output

Figure 1.c. Isolation of baseband using Ideal Lowpass filter

or

LLMk
LLMkLMkdkh

/)(
)/)(sin()()(

−′
−′

=−′=′
π
π (3)

Where k΄ = 0, 1, …, N΄ -1

The FIR approximation to the ideal interpolator is
obtained by truncating d(k') to the finite length, say N =
2LM+1 and a casual filter is obtained by delaying it L×M
samples. The output of the interpolation filter is obtained
by convolving the upsampled input xup(n΄) with the
impulse response d(k΄) For example using d(k΄) one can
get:

)()()(kinLxkdinLy up

LM

LMk
up ′−+′=+ ∑

−=′

 (4)

Where i = 0, 1, …, L -1

2) Polyphase form: Using the above equation the
coefficients of the impulse response for ideal FIR filter
are calculated. The computational cost of direct form
interpolator is ML22 and the cost of polyphase filter is

LM2 for L interpolated values. The computational cost
is L times less in case of polyphase filter.

)()()(
1

0
jkLinLxjkLdinLy up

LM

LMk

Lj

j
up −−++=+ ∑ ∑

−=′

−=

=

(5)

Defining ith polyphase filter by di(k) = d(KL+i), M ≤ k
≤ M-1 and by algebraic manipulation, the above equation
may be simplified into the form

),()()(
1

knxkdny
M

Mk
ii −= ∑

−

−=′

 i = 0, 1, …, L-1 (6)

Where

(() /)() (,) sin
() /i
kL i Ld k h i k
kL i L

π
π

+
= =

+
 (7)

III IMPLEMENTATION SCHEME OF THE PARALLEL
MULTIPROCESSOR INTERPOLATING FIR FILTER USING

MULTIPLIER AND ADDER
Equation (7) is used to calculate impulse response for the
ith subfilter and L is total number of subfilters. There are
total N (0,1, ….., m) coefficients and the value of k
represents the kth coefficient. Equation (6) is used to
generate missing samples calculated by the subfilters.
Block diagram of a polyphase interpolating filter is
shown below in Fig 3. Each subfilter is consists of a
processor that has N multipliers and (N – 1) adders to
process the data. Each subfilter is implemented in parallel
and processes the input data independently. The
interpolated output data is achieved by collecting output
of individual subfilters and arranging it into proper
sequence.

The polyphase FIR filter can be implemented by a
lookup tables containing all possible pre-calculated filter
outputs. These are tabulated in memory for any input
transition patterns which requires a very large memory. In
this way the subfilter can be implemented using a ROM
or Dual RAM in case it is to be implemented using
FPGA.

Figure 3. The parallel multiprocessor interpolating filter with multiplier
and adder

IV. MULTIPLICATION USING LOOKUP TABLES
The size of the lookup table can be reduced by using

Quarter Squares technique and speed of the multiplication

can be increased by using nibble based lookup table as
explained below.

A Bit multiplication
An 8-bit multiplication can be perform by successive

addition or binary shifting and accumulation, or by
concatenating the two 8-bit values to give a 16-bit index
into a massive 65,536 entry lookup table.

We can reduce the size of the lookup table to just 511
entries by using Quarter Squares by using the equation
(8) given below

4
)()(22 bababa −−+

=× (8)

We can express the above equation in terms of
function f(n) as given below

)()(
4

)(
4

)(22

bafbafbababa −−+=
−

−
+

=× (9)

Where
4

)(
2nnf =

A lookup table of indexed n can easily represent the
function itself.

The whole lookup table necessary to implement an 8-
bit by 8-bit multiplication can then be held in just 511
entries. The maximum value that needs to be held is for
an index of 511, and that table entry will have a
maximum value of 255x255 (65,025), which can be held
in a 16-bit word.

In reality no rounding error appears in the
multiplication that is introduced by an integer division by
four within the lookup table values.

B Nibble based lookup table
Another way to speed up multiplication, using lookup

tables, additions and shifting, which are all usually
efficiently implemented is to take individual groups of
nibbles (4-bits) from the numbers to be multiplied and use
those.

Every byte has two nibbles, the top four bits and the
bottom four bits.

Consider the following example of multiplying two 2-
digit numbers together

db 10cb 10da 100ca ×+××+××+××=×cdab (10)

The function f(x,y) can be used to perform a 4-bit by 4-
bit multiply, using 8-bit, 30 bytes lookup table.

 f(b,d) f(b,c) f(a,d) f(a,c)cdab +×+×+×=× 1010100 (11)

Where yxf ×= y),x(

The reduction in the size of the lookup table does
reduce the execution speed due to the process of de-
nibbling the numbers, nibble multiply, shift and
accumulate operations.

The above process can be implemented efficiently
within FPGA where parallel processing for the
manipulation of nibble data is often very easily
achievable.

V PROPOSED IMPLEMENTATION SCHEME OF THE
PARALLEL MULTIPROCESSOR INTERPOLATING FIR FILTER

Block diagram of a low cost interpolating filter is
shown below in Fig.4. It consists of lookup table
generator, lookup table address generator, lookup table
and parallel processing unit to do all required
computation to obtain the required output. The
coefficients of ideal interpolation filter are already
known. The lookup tables can be generated for any
number of coefficients (N) outside and can be imported in
the proposed multiprocessing system. The lookup table
generator section may be removed from the block
diagram. Each subfilter contains small parallel processors
which are consists of shifter and adder units to process
the data. The main processor synchronizes all the small
processors and feed data at low sampling rate to each
subfilter. Each small processor is implemented in parallel
and processes the input data independently. The output
data, from each subfilter is arranged to get over sampled
interpolated data having L times higher sampling rate by
the main processor.

X(n)

. . . .

. . . .Subfilter-0 Subfilter-1 Subfilter- L-1

yup (Ln+L-1)yup(Ln)

Address for LSB to M
SB D

ATA

. . .

X(
n+

0)

X(
n+

2)

X(
n+

1)

X
(n

+m
)

Lookup Table
Address Generator

Lookup Table

h01

h00

h02

h0m

...

Lookup Table
Generator

Address for LSB to M
SB D

ATA

. . .

X(
n+

0)

X(
n+

2)

X(
n+

1)

X(
n+

m
)

Lookup Table
Address Generator

Lookup Table

h11
h10

h12

h1m

...

Lookup Table
Generator

Address for LSB to M
SB D

ATA

. . .

X(
n+

0)

X(
n+

2)

X(
n+

1)

X(
n+

m
)

Lookup Table
Address Generator

Lookup Table

hl1
hl0

hl2

h lm

...

Lookup Table
Generator

yup(Ln+1)

LSBBit-1MSB . . .MSB -1

Simple
processor

Shift + Add

Simple
processor

Shift + Add

LSBBit-1MSB . . .MSB -1

Simple
processor
Shift + Add

Simple
processor

Shift + Add

LSBBit-1MSB . . .MSB -1

Simple
processor
Shift + Add

Simple
processor
Shift + Add

Figurev 4. Implementation of the proposed efficient parallel
multiprocessor interpolating filter

A Lookup Table Generation
As the coefficients of the subfilters are already known,

the tables can be generated and made readily available.
Table-1 gives the coefficient of the subfilters (subfilter-0
to subfilter-3) for M = 1, 2 and 3 and the corresponding
number of coefficients N = 2, 4 and 6. The ‘Look up’
table is generated using the algorithm shown below
in.Fig-5. The number of address bits is equal to the
number of the coefficients of the subfilter. If address bit
is logic-1 then the value of the corresponding coefficient
is added. A lookup table for Am = 3 (4 Bit Address for 4
coefficients of subfilter-0) is shown for elaboration,

where h00, h01, h02 and h03 are the coefficient of the
subfilter-0 and 16 table entries corresponding to the 4
coefficients. Similarly tables can be generated for each
subfilter having any number of coefficients. Lookup table
entries for each subfilter having N coefficients are 2N

which are generated using corresponding coefficients as
shown in Fig.5.

TABLE-1
IMPULSE RESPONSE FOR M = 3 AND Lfold = 4

h 0 1 2 3 4 5

0 0 0 0 1 0 0

1 0.0818 -0.1286 0.3001 0.9003 -0.1801 0.1

2 0.1273 -0.2122 0.6366 0.6366 -0.2122 0.1273

3 0.1 -0.1801 0.9003 0.3001 -0.1286 0.0818

TABLE-2
LOOKUP TABLE FOR SUBFILTER-0

Address Data

0000 0

0001 h00

0010 h01

0011 h01+ h00

0100 h02

0101 h02+ h00

0110 h02 + h01

0111 h02+h01+h00

1000 h03

1001 h03 + h00

1010 h03 + h01

1011 h03 + h01+ h00

1100 h03 + h02

1101 h03 + h02+ h00

1110 h03 + h02 + h01

1111 h03 + h02+h01+h00

h 020 h 010

. . .
h 0

A2Am A0

h 000

0 1

A1

0 10 10 1

Lookup Table

0 m

Figure 5. Algorithm for the lookup table generation

B Lookup Table Address Generation
The graphical representation of the algorithm is shown

below in Fig.6. The binary values of the required samples
X(n+0) to X(n+m) are used to generate the address to get
output data from the lookup table as shown in Fig.6. The
bit D0 of X(n+0) corresponds to Ao, the bit D0 of X(n+1)
corresponds to A1 and similarly the bit D0 of X(n+m)
corresponds to Am. As explained above D0 of each
sample value is used to generate address Am to Ao for
LSB. Where Am is the MSB of the address and number of
address bits is equal to the number of filter coefficients
being used for each subfilter. The bit D1 of each sample
value is used to generate address A0 to Am for Bit-1.
Similarly address is generated upto MSB location.

D0D1D2MSB

0[0]0[1]0[2]0[MSB]

1[0]1[1]1[2]

2[0]2[1]2[2]

m[0]m[1]m[2]

. . .

A0

A1

A2

Am
Address for LSB

Address for Bit-1

Address for Bit-2

Address for M
SB

1[MSB]

2[MSB]

m[MSB] . . .

. . .

. . .

. . .

. . .

X(n+0)

X(n+2)

X(n+1)

X(n+m)

Figure 6. Algorithm for the lookup address generation generator.

D Parallel Processing of the Data
The number of locations for the parallel processing unit is
equivalent to the width (word length - no. of bits) of the
sampled data.

Figure 7. Algorithm for parallel processing of the data using shift and
add operations.

The graphical representation of the algorithm is shown

in Fig.7. The data is loaded from the lookup table by
using the addresses generated in previous section 3.2. The
data from Bit-1 is shifted by 1 and added to LSB (Bit-0).
It is done for all the consecutive pairs in parallel upto
MSB. The result of the 2nd pair is further shifted by 4 and
added to the result of the 1st pair. It is repeated for all
other consecutive sets of 4 data values. The result of 2nd

set of 4 data values is further shifted by 4 and added to
the resultant of the 1st set of 4 data values. This makes a
set of 8 data values and is the required result if the
sampled data width is 8 bits. For 16-bit data width the
resultant of the 2nd set of 8 values (Bit-8 to Bit-15) is
further shifted by 8 and added to the resultant of 1st set of
8 data values. This makes a set of 16 data values and is
the required result, if the sampled data is 16-bits.
Similarly one more shift is required if the sampled data
width is 32-bits. Only 3,4 and 5 shift and add operations
are required for 8-bit, 16 bit and 32 bit wide sampled
data.

The computational cost of direct form interpolator is
2L2M and the cost of polyphase filter is 2LM for L
interpolated values. Cost of proposed implementation is
only four shift and four add operations.

VI SIMULATION USING MATLAB FOR THE
PROPOSED POLYPHASE INTERPOLATING FILTER

The methodology for the simulation of the signal
processing through polyphase interpolating filters, as
described above, is carried out by first determining the
coefficients i.e. impulse response of each subfillter. The
impulse response of the sinc interpolator is listed in table-
1. The software implementation is covered in ensuing
paragraph.

The input sinusoidal signal shown in Fig-8(a) is
converted into discrete signal by sampling it at Fs/Fa = 4
samples/cycle to generate Basic Set of Samples (BSS) as
shown in Fig-8(b). Three subfilters are used to calculate
three additional samples to be inserted between the BSS.
Taking M = 2, four BSS are used to calculate additional
sample by each subfilter. The plot of the calculated
interpolated values inserted between BSS is shown in
Fig-8(c) and (d). Part (a) and (b). of both the Figures Fig-
8 and Fig-9 are same. Fig-9(c) and (d) are plotted using
M = 3 and BSS = 6.

Figure .8 plot to show the reconstructed signal and interpolated high rate
samples using Lfold =4, M=2 and N = 17

(a)

(b)

(c)

(d)

(a.) original signal, (b) sampled signal, (c) reconstructed signal and (d)
high sampling rate interpolated samples values.

The results by the graphical presentation of the

reconstructed samples for different coefficients and
different number of Basic Set of Samples (BSS) of low
rate sampled data are used for interpolation algorithm.
For M=2, there is a delay of first two BSS samples which
corresponding to π/2. Three samples are inserted between
BSS samples 2 and 3. For M=3, there is a delay of first
three BSS samples which corresponding to π. This delay
is used to make the system a causal system. The results
show that, more the number of BSS and Lfold better is
the reconstructed plot.

The computational cost of direct form interpolator is
2L2M and the cost of polyphase filter is 2LM for L
interpolated values. The computation cost of the proposed
scheme is a few add and shift operations. Hadamard
transform has been used for polyphase decomposition of
FIR filter and its applications in efficient FIR filter design
[1]. The number of multiplications is reduced but its
computational cost is still higher than the proposed
implementation.

Figure 9. plot to show the reconstructed signal and interpolated high rate

samples using Lfold = 6, M = 3 and N = 37

VII. CONCLUSIONS
A fast approach to implement parallel multiprocessor

interpolating polyphase filter is presented. The tables are
generated and made readily available, which are tabulated
in the memory. Other discrete interpolating kernels may
be implemented by generating tables for them. The
implementation is done in parallel and the computation in
the memory. Other discrete interpolating kernels may
cost in term of Shift and Add operations remains same for
any number of filter coefficients (N). Only 3 Shift and 3
add operations are required in series for all the
calculations if the width of the sampled data is 8-bit.
Similarly for 16-bit wide sampled data, maximum 4 shift
and 4 add operations are required in series for all the
calculations. The lookup table size is very small as
compared with other techniques. The method is an
efficient low cost technique and can be implemented on
FPGA where lookup tables (LUTs) are the basic logic
blocks.

REFERENCES
1] Sanjit K Mitra, Fellow IEEE, Abhijit Mahalanobis and Tapio

Saramaki, “A generalized structureal subband decomposition of
FIR filter and its applications in efficient FIR filter design and
implementation,” IEEE transactions on circuits and systems-II
Analog and digital signal processing, Vol 40, pp 363-374, 6 Jun
1993

[2] Shyh-Jye Joe, Kai-yaun jheng, Hsiao-Yun Chen and An-yeu Wu.
“A multiplierless Multirate Decimator/Interpolator module
generator,” IEEE Asia- pacific Conference on advanced system
integrated circuits (AP-Asic-2004), pp 58-61, August 4-5, 2004..

(a)

3] Robert Adams and Tom Kwan, “A stereo asynchronous digital
sample-rate convertor for digital audio,” IEEE journal of solid
state circuits, Vol 29, NO. 4, pp 481-487, April 1994

(b) [4] Sangyam Hwang, Gunhee Han, Sungho Kang and Jae Seok KLM,
A low power implementation scheme of interpolation FIR filter
using distributed arithmetic , IEICE Treans, Electroni Vol E
86-C, No. 11 2003, pp 2346-2350

[5] J. Proakis and D. Manolakis, “Digital Signal Processing:
Principles, Algorithms, and Applications,” Prentice-Hall:Upper
Saddle River, New Jersey, 1996. (c) [6] R. Peterson, R. Ziemer, and D. Borth, “Introduction to Spread-
Spectrum Communications,” Prentice Hall:Englewood Cliffs,
New Jersey, 1995.

[7] L. Mintzer: “FIR Filters with Field-Programmable Gate Arrays,”
IEEE Journal of VLSI Signal Processing (August 1993) 119{128

[8] L. Phillips and H. T. Nagle, Jr., “Digital Control System Analysis
And Design,” 3rd edition, Prentice-Hall International, Inc, 1998. (d)

[9] S. J. Orfanidis, “Introduction to signal processing”, Prentice Hall
Inc., A Simon& Schuster Company, Englewood Cliffs, New
Jersey 07632, 1996.

	Back to Main Menu
	I. Introduction
	II. SAMPLING AND RECONSTRUCTION
	III Implementation Scheme Of The Parallel Multiprocessor Interpolating FIR Filter using multiplier and adder
	V Proposed Implementation Scheme Of The Parallel Multiprocessor Interpolating Fir Filter
	VII. Conclusions
	References

