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Abstract— Real ants are capable of finding the 
shortest path from their nest to a food source without 
visual sensing. They are also able to adapt to changes 
in the environment. Ant Colony Algorithms try to 
make use of these real ant abilities to solve various 
optimization problems. This paper presents solution of 
optimal power flow (OPF) problem of a power system 
via an Ant Colony Optimization Metaheuristic 
method. The objective is to minimize the total fuel cost 
of thermal generating units and also conserve an 
acceptable system performance in terms of limits on 
generator real and reactive power outputs, bus 
voltages, shunt capacitors/reactors, transformers tap-
setting and power flow of transmission lines. 
Simulation results on the 25-bus Electrical Network 
show that the Ant Colony Optimization method 
converges quickly to the global optimum. 
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1. INTRODUCTION 
The optimal power flow has been frequently solved 
using classical optimization methods. The OPF has 
been usually considered as the minimization of an 
objective function representing the generation cost 
and/or the transmission loss. The constraints involved 
are the physical laws governing the power generation-
transmission systems and the operating limitations of 
the equipment. 

Effective optimal power flow is limited by (i) the high 
dimensionality of power systems and (ii) the 
incomplete domain dependent knowledge of power 
system engineers. The first limitation is addressed by 
numerical optimization procedures based on 
successive linearization using the first and the second 
derivatives of objective functions and their constraints 
as the search directions or by linear programming 
solutions to imprecise models [1-4]. The advantages 
of such methods are in their mathematical 
underpinnings, but disadvantages exist also in the 
sensitivity to problem formulation, algorithm selection 
and usually converge to local minima [5]. The second 
limitation, incomplete domain knowledge, precludes 
also the reliable use of expert systems where rule 
completeness is not possible. 

In the evolutionary and adaptive algorithms one of the 
most recent is the Ant Colony Optimization (ACO) 
computational paradigm introduced by Marco Dorigo 
in his Ph.D. thesis in 1992 [6], and expanded it in his 
further work, as summarized in [7], [8], [9].  
ACO offer a new powerful approach to these 
optimization problems made possible by the 
increasing availability of high performance computers 
at relatively low costs. 
As the name suggests, these algorithms have been 
inspired in the real ant colonies behavior. When 
searching for food, ants initially explore the area 
surrounding their nest in a random manner. As soon as 
an ant finds a food source, it evaluates quantity and 
quality of the food and carries some of the found food 
to the nest. During the return trip, the ant deposits a 
chemical pheromone trail on the ground. The quantity 
of pheromone deposited, which may depend on the 
quantity and quality of the food, will guide other ants 
to the food source. The indirect communication 
between the ants via the pheromone trails allows them 
to find shortest paths between their nest and food 
sources. This functionality of real ant colonies is 
exploited in artificial ant colonies in order to solve 
global optimization searching problems when the 
closed-form optimization technique cannot be applied. 
ACO is characterized by the use of a (parameterized) 
probabilistic model that is used to generate solutions 
to the problem under consideration.  The probabilistic 
model is called the pheromone model. The pheromone 
model consists of a set of model parameters, which are 
called the pheromone trail parameters. The 
pheromone trail parameters have values, called 
pheromone values. At run-time, ACO algorithms try 
to update the pheromone values in such a way that the 
probability to generate high-quality solutions 
increases over time. The pheromone values are 
updated using previously generated solutions. The 
update aims to concentrate the search in regions of the 
search space containing high-quality solutions. In 
particular, the reinforcement of solution components 
depending on the solution quality is an important 
ingredient of ACO algorithms. It implicitly assumes 
that good solutions consist of good solution 
components. To learn which components contribute to 
good solutions can help to assemble them into better 
solutions. 
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In general, the ACO approach attempts to solve an 
optimization problem by repeating the following two 
steps.  
1) Candidate solutions are constructed using a 
pheromone model; that is, a parameterized probability 
distribution over the solution space. 
2) The candidate solutions are used to modify the 
pheromone values in a way that is deemed to bias 
future sampling toward high-quality solutions. 
ACO methods have been successfully applied to 
diverse combinatorial optimization problems 
including traveling salesman [10], [11], quadratic 
assignment [12], [13], vehicle routing [14], [15], [16], 
telecommunication networks [17], graph coloring 
[18], constraint satisfaction [19], Hamiltonian graphs 
[20], and scheduling [21], [22], [23].  
In a previous paper [33], the authors have proposed 
the use of a genetic algorithm with real coding on the 
optimal power flow problem using as objective 
function the minimization of the fuel cost and NOx 
emission control. More than 6 small-sized test cases 
were used to demonstrate the performance of the 
proposed algorithm. Consistently acceptable results 
were observed. In other paper [34] we have presented 
the results of the application of GA using real coding 
on the Algerian Electrical Network.  
In this paper, we showed the application of the ant 
colony optimization algorithms in the Optimal Power 
Flow (OPF) on the Algerian Electrical Network. 
The ACO is more likely to converge toward the global 
solution because it, simultaneously, evaluates many 
points in the parameter space. It does not need to 
assume that the search space is differentiable or 
continuous. To accelerate the processes of ACO-OPF, 
the controllable variables are decomposed to active 
constraints that effect directly the cost function are 
included in the ACO process and passive constraints 
which are updating using a conventional load flow 
program, only, one time after the convergence on the 
ACO-OPF. The slack bus parameter would be 
recalculated in the load flow process to take the effect 
of the passive constraints.  
The algorithm was developed in an Object Oriented 
fashion, in the C++ programming language [30]. 
 

2. PROBLEM FORMULATION 
The standard OPF problem can be written in the 
following form, 
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where F(x) the objective function, h(x) represents 
the equality constraints, g(x) represents the inequality 
constraints and is x is the vector of the control 
variables, that is those which can be varied by a control 
center operator (generated active and reactive powers, 

generation bus voltage magnitudes, transformers taps 
etc.); 

The essence of the optimal power flow problem 
resides in reducing the objective function and 
simultaneously satisfying the load flow equations 
(equality constraints) without violating the inequality 
constraints 
 

A. Objective Function 
The most commonly used objective in the OPF 
problem formulation is the minimization of the total 
cost of real power generation. The individual costs of 
each generating unit are assumed to be function, only, 
of active power generation and are represented by 
quadratic curves of second order. The objective 
function for the entire power system can then be 
written as the sum of the quadratic cost model at each 
generator. 
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where ng is the number of generation including the 
slack bus. Pgi is the generated active power at bus i. 
ai, bi and ci are the unit costs curve for ith generator. 

 

B. Types of equality constraints 
While minimizing the cost function, it is necessary 

to make sure that the generation still supplies the load 
demands (Pd) plus losses in transmission lines. Usually 
the power flow equations are used as equality 
constraints. 
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where active and reactive power injection at bus i are 
defined in the following equation: 
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(4) 
Where gis is the conductance, bij is the susceptance, Vi 
is voltage magnitude at the buse i and θ ij is the bus 
voltage phase angle 
 

C. Types of inequality constraints 
The inequality constraints of the OPF reflect the 

limits on physical devices in the power system as well 
as the limits created to ensure system security. The 
most usual types of inequality constraints are upper bus 
voltage limits at generations and load buses, lower bus 
voltage limits at load buses, var. limits at generation 
buses, maximum active power limits corresponding to 
lower limits at some generators, maximum line loading 
limits and limits on tap setting of TCULs and phase 
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shifter. The inequality constraints on the problem 
variables considered include: 

• Upper and lower bounds on the active generations at 
generator buses  

Pgi
min≤ Pgi ≤ Pgi

max , i = 1, ng.   (5) 
 
• Upper and lower bounds on the reactive power 
generations at generator buses and reactive power 
injection at buses with VAR compensation  

Qgi
min≤ Qgi≤ Qgi

max , i = 1, npv  (6) 
 
• Upper and lower bounds on the voltage magnitude at 
the all buses. 

 Vi
min≤ Vi ≤ Vi

max , i = 1, nbus.   (7) 
• Upper and lower bounds on the bus voltage phase 
angles  

θi
min≤ θi ≤ θi

max , i = 1, nbus.   (8) 
 
• Upper and lower bounds on branch 
MW/MVAR/MVA flows may come from thermal 
ratings of conductors, or they may be set to a level due 
to system stability concerns. 

22
max ijij SS ≤     (9) 

 
It can be seen that the generalized objective function F 
is a non-linear, the number of the equality and 
inequality constraints increase with the size of the 
power distribution systems. Applications of a 
conventional optimization technique such as the 
gradient-based algorithms to a large power 
distribution system with a very non-linear objective 
functions and great number of constraints are not good 
enough to solve this problem. Because it depend on 
the existence of the first and the second derivatives of 
the objective function and on the well computing of 
these derivative in large search space. 
 

3.  ANT COLONY OPTIMIZATION IN 
OPTIMAL POWER FLOW 

A.   Description of ant colony optimization method 
In the ant colony optimization (ACO), a colony of 
artificial ants cooperates in finding good solutions to 
difficult optimization problems. Cooperation is a key 
design component of ACO algorithms: The choice is 
to allocate the computational� resources to a set of 
relatively simple agents (artificial ants) that�
communicate indirectly by stigmergy. Good�
solutions are an� emergent property of the agents’ 
cooperative interaction.  
Artificial ants have a double nature. On the one hand, 
they are an abstraction of those behavioral traits of 
real ants which seemed to be at the heart of the 
shortest path finding behavior observed in real ant 
colonies. On the other hand, they have been enriched 
with some capabilities which do not find a natural 
counterpart. In fact, we want ant colony optimization 
to be an engineering approach to the design and 

implementation of software systems for the solution of 
difficult optimization problems. It is therefore 
reasonable to give artificial ants some capabilities that, 
although not corresponding to any capacity of their 
real ants counterparts, make them more effective and 
efficient. 
The objective function to be minimized, as in the 
traveling salesman problem, is  
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where  is the transition cost between state i 
and j,  and π(i) for i=1,n defines a permutation. 
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where bi(t) is the number of the ants in state i at time t.  

Each ant generates a complete tour by choosing the 
cities according to a probabilistic state rule.  
Mathematically, the probability with which ant k in 
city r chooses to move to the city s is [24]: 
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Where τ is the pheromone, η is the visibility which is 
the inverse of the distance δ(r,s), Jk(r) is the set of 
cities that remain to be visited by ant k positioned on 
city r , α and β  are two coefficients which make the 
pheromone information or the visibility information 
more important with respect to one another and  the 
parameter γ>0 determines the relative influence of 
pheromone values corresponding to earlier decisions, 
i.e., preceding places in the permutation. A value γ=1 
results in unweighted summation evaluation, i.e., every 
τir ,i ≤r is given the same influence. A value γ < 1 (γ > 
1) gives pheromone values corresponding to earlier 
decisions less (respectively more) influence.  

The best solutions found so far and in the current 
generation are used to update the pheromone 
information. However, before that, some portion of 
pheromone is evaporated according to  

rsrs τρτ )1( −=    (13) 

where ρ is the evaporation rate with 0 ≤ρ< 1 and (1-ρ) 
is the trail persistence. The reason for this is that old 
pheromone should not have too strong an influence on 
the future.  

Let τrs(t) be the intensity of trail on edge (r,s) at time t. 
Each ant at time t chooses the next city, where it will 
be at time t+1. Therefore, after each cycle, i.e., after 
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each ant has determined a tour, the pheromone trail is 
updated using the founded solutions according to the 
following formula: 

∑
=

Δ+=+
m

K

k
rsrsrs tnt

1

)()()( τρττ   (14) 

where is the contribution of the ant k to the 
pheromone trial between cities r and s,  
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where Q0 is a constant related to the amount of 
pheromone laid by ants and Lk is the tour length of 
the the k–th ant . 

 

The process is then iterated and the algorithm runs 
until some stopping criterion is met, e.g., a certain 
number of generations have been done or the average 
quality of the solution found by the ants of a generation 
has not changed for several generations. 

 
B.   ACO applied to optimal power flow 
Our objective is to minimize the objective function of 
the OPF defined by (2), using into account the 
equality constraints (3), and the inequality constraints 
(5)-(9). 
The cost function implemented in ACO is defined as: 

( ) ( ) maxmin

1

2 ; iii

ng

i
iiiii PgPgPgPgcPgbaxF ≤≤++= ∑

=

 (16) 
where, only equations (2) and (5) are considered. 
The search of the optimal parameters set is performed 
using into account a part of the equality constraints (3) 
which present the active power transmission losses 
(PL) to be deal with in feasible region.  
These losses are represented as a penalty vector given 
by: 

1)1( −
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The transmission loss of a power system PL can be 
calculated by the B-Coefficients method [25] and 
given by: 

000 BBPgPgBPgP TT
L +⋅+⋅⋅=  (18) 

where Pg is a ng-dimensional column vector of the 
generator power of the units, PgT is the associate 
matrix of Pg, B is an ng x ng coefficients matrix, B0 is 
an ng-dimensional coefficient column vector and B00 
is a coefficient. 
Our objective is to search (Pgi) set in their admissible 
limits to achieve the optimization problem of OPF. At 
initialization phase, (Pgi) is selected randomly 
between Pgi

min and Pgi
max. 

The use of penalty functions in many OPF 
solutions techniques to handle inequality constraints 
can lead to convergence problem due to the distortion 
of the solution surface. In this method only the active 

power of generators are used in the cost function. And 
the inequality constraints are scheduled in the load 
flow process. Because the essence of this idea is that 
the constraints are partitioned in two types of 
constraints, active constraints are checked using the 
ACO-OPF procedure and the reactive constraints are 
updating using an efficient Newton-Raphson Load 
flow procedure. 

After the search goal is achieved, or an allowable 
generation is attained by the ACO algorithm. It is 
required to performing a load flow solution in order to 
make fine adjustments on the optimum values obtained 
from the ACO-OPF procedure. This will provide 
updated voltages, angles and transformer taps and 
points out generators having exceeded reactive limits. 
to determining all reactive power of all generators and 
to determine active power that it should be given by 
the slack generator using into account the deferent 
reactive constraints. Examples of reactive constraints 
are the min and the max reactive rate of the generators 
buses and the min and max of the voltage levels of all 
buses. All these require a fast and robust load flow 
program with best convergence properties. The 
developed load flow process is based upon the full 
Newton-Raphson algorithm using the optimal 
multiplier technique [26],[27]. 

 
There are few parameters that to be set for the ant 
algorithm; these parameters are the evaporation rate ρ, 
the numbers of ants in the colony m and the two 
coefficients α and β. In the OPF case these values 
were obtained by a preliminary optimization phase, in 
which we found that the experimental optimal values 
of the parameters were largely independent of the 
problem. By letting the values of α and β change with 
respect to one another. We observe that the best value 
for α is 1 and the value of β is 2. The initial 
pheromone τ0 is given by τ0 = (ng·L)-1, where L is the 
tour length produced by the nearest neighbor heuristic. 
Q0 and ρ are set to the following values:  Q0=0.9 and 
ρ=0.1. The number of ants used is m=20. Regarding 
their initial positioning, ants are placed randomly, 
with at most one ant in each generator unit. 
A local improvement method suggested by Johnson & 
McGeoch [28] called the restricted 3-opt method has 
been adapted for use in the ACO. It involves 
successive arc-exchanges in an attempt to improve a 
candidate solution. But we choose a limited number of 
exchanges in order to avoid over-long computation 
times. The local search is applied once the solution is 
built and the results of this phase are used to update 
the pheromone trails. 

4. APPLICATION STUDY 
The ACO-OPF is coded in Borland C++ Builder 
version 5, and run using an Intel Pentium 4, 1.5 GHz 
PC with 128 MB RAM. The ACO-OPF has been 
tested on 25-bus electrical network (figure 1). It 
consists of 25 buses, 35 branches (lines and 
transformers), 5 generators and 24 loads. 
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Figure 1: Topology of 25-bus network. 
 
The table 1 shows the technical and economic 
parameters of the five generators of the 25-bus 
electrical network.  
 

TABLE 1: GENERATORS PARAMETERS OF 25-
BUS ELECTRICAL NETWORK 

Bus 
Number 

Pmax 
[MW] 

Pmin 
[MW] 

a 
[$/hr] 

b 
[$/MWhr]

c 
[$/MW2hr  ]

1 300 100 40 1.80 0.0015 
2 150 80 60 1.70 0.0030 
3 200 80 100 2.10 0.0012 
4 100 20 25 2.00 0.0080 
5 300 100 120 1.90 0.0010 

 
The comparison of the results obtained by the 
application of OPF via the ACO algorithm with a 
Quasi-Newton Method using Broyden-Fletcher-
Goldfarb-Shanno (BFGS) updating formula and 
iterated with the Newton Raphson load flow [30] is 
present. The resulting cost and power losses are 
presented in Table 2. 
The difference in generation cost between these two 
studies (1470.1 $/kW.hr compared to 1477.927 
$/kW.hr) and in Real Power Loss (11.60 MW 
compared to 15.52 MW) clearly shows the advantage 
of this method. 
The optimum value has been obtained after 5 seconds. 
This value take into account the exact cost of the total 
real power losses by proceeding to a power flow 
calculation of type Newton-Raphson in order to 
compute the reactive generated powers, the voltages 
of all buses and readjust slack generator that takes in 
consideration the exact losses of real powers. The 
convergence of the method of Newton-Raphson is 
achieved after 2 iterations and 0.0001 sec. 
 

The optimum active powers are in their secure values 
and are far from the min and max limits. It is also 
clear from the optimum solution that the ACO easily 
prevent the violation of all the active constraints. The 
security constraints are also checked for voltage 
magnitudes and angles. The voltage magnitudes and 
the angles are between their minimum and the 
maximum values. No load bus was at the lower limit 
of the voltage magnitudes (0.95p.u). The branch 
MW/MVAR/MVA flows do not exceed their upper 
and lower limits. 
 
TABLE 2: COMPARISON OF THE RESULTS 

OBTAINED BY THE ACO AND Q-N METHODS 
ON 25-BUS ELECTRICAL NETWORK 

 Q-N method ACO method 
Pg 1 163 147.15 
Pg 2 82.01 82.79 
Pg 3 86.02 86.85 
Pg 4 20.02 28.48 
Pg 5 194.47 196.33 
PG (MW) 545.52 541.6000 
PD (MW) 530.00 530.00 
PL  (MW) 15.52 11.60 
Cost($/h) 1477.927 1470.1 
 

5. CONCLUSION 
An ant Colony Optimization approach to the Optimal 
Power Flow problem is introduced and tested.  As a 
study case, the 25-bus Electrical Network with 25 
buses,  branches (lines and transformers) and 5 
generators has been selected. The ant algorithm 
usually found equally good or better solutions than the 
other methods. The simulation results show that for 
medium-scale system an ACO algorithm code can 
give a best result with reduced time. It is 
recommended to indicate that in large-scale system the 
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number of constraints is very large consequently the 
ACO accomplished in a large CPU time.  
To save an important CPU time, the constraints are to 
be decomposing in active constraints and reactive 
ones. The active constraints are the parameters that 
enter directly in the cost function and the reactive 
constraints are infecting the cost function indirectly. 
With this approach, only the active constraints are 
taken to calculate the optimal solution set. And the 
reactive constraints are taking in an efficient load flow 
by recalculate active power of the slack bus. 
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