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Abstract: Several energy efficient adder designs have 
been proposed over the years to speed up the 
multiplication in digital signal processors. The selection 
of the specific adder improves the performance of the 
multiplier design. In this paper, we propose a 
comparative study of different adders for the generation 
of 3X term (Hard multiple) in radix-8 booth encoding.  
The focus of this paper is to explore the design aspects of 
various adder architectures for the implementation 3X 
term. We consider Ripple carry adder (RCA), Carry look 
ahead adder(CLA), Ling adder, Parallel prefix Ling 
adder, Conditional carry adder(CCA), Kogge-Stone(KS) 
adder and Sklansky(SK) adder for our comparison. These 
adders are simulated using ISE simulator with the VHDL 
structural coding. Cadence RTL complier with TSMC 
library 180nm is used to synthesize and analyze the cell 
area, power and delay. The experimental results imply 
that the Sklansky adder shows the improved performance 
over other architectures and saves energy ~50% for 64 
bits implementation of 3X term. 
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1. Introduction  
 Faster arithmetic modules are essential for 

modern DSP systems, as the maximum operating 

speed of these processors depend largely on these 

modules. Addition is the fundamental arithmetic 

operation and the other operations like subtraction, 

multiplication and division can be derived from 

addition. Hence adders are seen as the most integral 

part of the arithmetic unit. This necessitates the 

focus on improving the power delay performance of 

the adder. In VLSI implementations, parallel-prefix 

adders are known to have the best performance. 

However the carry propagation in adders needs to be 

addressed for enhancing the adder performance.  
 Adders play a key role in all three phases of 
digital multiplication namely: partial product 
generation, partial product accumulation and final 
addition. Modified Booth Algorithm is preferred to 
reduce the number of partial product rows as it 
involves a different encoding scheme (MBE- 
Modified Booth encoding) [1]. Although several 

different MBE schemes have been proposed, most of 
them do not take the hardware cost, timing 
performance, and power consumption into 
consideration at the same time. The complexity of 
modified booth encoding lies in the generation of 
odd multiples (+3X,+5X,+7X,….) (X- 
multiplicand), due to the higher radix encoding [2]. 
Hence Radix-8 booth multiplier architecture is 
selected over the higher radix architecture, since it 
needs to generate the odd multiple 3X only and 
reduces the partial products to (n+1)/3 (n- input bit 
width). However +3X multiple requires an addition 
operation together with shifting, it is referred as hard 
multiple. This drawback is overcome by special kind 
of carry propagate adders. 

This proposed work examines various adder 

architectures for 3X multiple generation and 

compares their performance based on energy 

dissipation. The structure of the paper is organized 

as follows .Section 1 presents the introduction to the 

need of high speed binary addition. Section 2 

describes the basics of 3X multiple generation. 

Ling’s adder and Parallel prefix adders for 3X 

implementation are explained in section 3 & 4 

respectively. Finally the results are discussed in 

section 5. 

 
2. Preliminaries  

 

 Radix-8 Booth encoding involves the 

calculation of +2X, +3X and +4X multiples for the 

generation of partial product rows. +2X and +4X  

multiples are calculated by shifting the multiplicand 

X, on the other hand +3X requires an addition 

operation together with shifting, i.e 3X = 2X+X. In 

2X+X addition, adjacent full adders share the input 

(multiplicand X). Therefore the sum and carry 

equations are defined as, �� =	��⨁����⨁		���                     (1) 	� = �� . ���� + (�� + ����)	���	      (2) 
 



 

 

In the conventional Ripple carry adder(RCA), n bit 
input produces n+2 bit output for 3X (= 2X+X) 
multiple as shown in Fig.1 

 Fig 1. Conventional n bit RCA architecture for 3X 

generation 

 
 RCA generates the sum signal after the carry 
signal has rippled through the adder from least 
significant bit (LSB) to most significant bit (MSB).  
As a result, the final sum is available only after the 
carry propagation through the entire bit width. This 
indicates that RCA has O(n) delay, which will 
increase the delay of the booth encoder and hence 
the partial product generation in modified booth 
algorithm. 

The delay of conventional RCA is reduced by 

Carry look ahead adder (CLA), as the carry bits are 

computed in advance to speed up the addition 

process. In this structure, two internal signals 

propagate (pi) and generate (gi) are defined as, �� =	�� ⊕������ = ��. ����								�                         (3) 

The output carry and sum signals for 3X term are 

given by, 	� = �� + ��. 	����� = 	�� ⊕	�											�                                  (4) 

 
In CLA, all the carry signals are generated 

simultaneously, hence the delay is reduced by 

O(log2n). However the carry equation become quite 

complex when the input bit width is increased. This 

leads to large fan-out problem, which can be 

minimized by 4 bit modules [3]. 
3. Ling’s adder for 3x multiple generation 
 
    Ling [4] proposed  a new carry recurrence to 

reduce the logical depth for carry computation in 

carry look ahead structures. This new carry is 

referred as pseudo or Ling carry signals. As 

suggested by Doran [5], the recurrence involved in 

carry equation can be exploited to form a number of 

combinations for carry generation in  binary 

addition. He also listed the properties and 

advantages of Ling carry signals. Ling’s algorithm 

provides a fast alternative to CLA. 

Ling’s equations for 3X term are as follows:   �� =	�� + ����		�� = ��. ����								�� = ��⨁����		 �                                           (5) 

Here pi represents half sum signal and the propagate 
signal (ti) is OR of consecutive bits whereas in CLA 
it is EXOR of consecutive bits. From the 
conventional CLA, 	��� = �� + ��	�, where  �� = ��⨁����. Ling proposed a new term pseudo 
carry Hi [6],[7] instead of original carry Ci, which is 
propagated to the sum, defined as �� = 	� + 	���                                  (6) 
Similar to (4), the term pi is replaced by ti in pseudo 
carry as , ���� = �� + ����. ��                            (7) 

The relationship between the two carry 

signals is derived from the identity property as given 

in (8), which simplifies the logic in the carry 

generation stage. As a result, one AND gate is 

removed from the critical path. ��. �� = (�� . ����). (	�� + ����) = 	��. ���� =	��  (8) 

Hence, �� = ��. ���� and 	��� = ��. ����            (9) 

From (7), Hi can be expanded as, ���� = �� + ���� + ����. ���� + ����. ����. ���� +⋯+ ����. ����…��. 	��                 (10) 

The output sum is defined as (11), which is complex 

compared to the conventional CLA. 

�� = ���																																																														� = 0�����. �� + ����. (�� ⊕����)						� = 1	�!	"����																																																	� = " + 1      

                                                                     (11) 

From (9 and 10), the new carry Hi is faster than the 

original carry Ci, for example, �# = �� + �� + ���� + ������ + ������	�� and(12) 	# = �� + ���� + ������ + �������� + ��������	��   

                                                                      (13) 

   An examination of (12 and 13), reveals that the 

product term in H signal is computationally simpler 

than C in conventional CLA. Therefore H 

propagates faster than C signal. This logical 

reorganisation of the the carry signal reduces the 

critical path delay in Ling adder, but this makes the 

computation of output sum complex as shown in 

Fig.2. As the output sum are off the critical path, the 

complexity will not affect much of the adder speed.  

      Fig. 2 represents the prefix computation graph of 

Ling’s adder for 3X multiple generation for 8 bit 

multiplicand. Preprocessing stage computes 

propagate(ti), generate(gi) and half sum (pi)signals, 

whereas level 1,2 and 3 are prefix stages for 

computing Ling (pseudo) carry signals(Hi). The final 

stage computes the sum, (i.e., 3X for the given 

input) with the help of Ling carry signals. The 



 

higher level of propagate and generate signals are 

represented by the capital letters with the subscript 

representing the level and the bit position.  

 

 

 
Fig. 2 Ling’s Adder for 3X generation (8 bit) 

 

A.  Parallel prefix ling’s adder for 3x multiple 
      generation 
   An improvement of Ling’s adder to achieve 

reduced delay as well as logic level is presented as 

Area efficient parallel prefix Ling adder [8]. Here 

the authors, compute the final carry signals (Ci), 

based on the Ling carry signals (Hi) produced by the 

lower bit positions. Since the final carry signals are 

computed early by one logic level compared to 

Ling’s adder, the final sum is computed with the 

EXOR gate unlike Ling’s adder[4], which leads to 

significant reduction in logic gates and lower delay. 

The equations defined in [8] are modified to 

generate 3X multiple are explained below, �� = �� + ������ = �� . ������ = ��⨁���� �                                                   (14) 

 
The ling carry signals are obtained in two groups, i.e 
lower group for bit positions 0 to 3 (H0 to H3) and 

higher group for 4 to 7 (H4 to H7) in case of 8bit 
multiplicand. The computational nodes in Fig. 2 
are modified to compute the final carry signals 
in parallel prefix ling adder which is depicted in 
Fig. 3 

 

 

 

Fig.. 3 Parallel prefix Ling Adder [8] for 3X multiple 

generation (8 bits) 

 
 
From (15), the original carry is computed by  

 	� = ��. ��                                                        (16) 

With the use of this original carry, the final sum is  

expressed as, 

�� = $ ��																																			� = 0��⨁	���										� = 1	�!	" − 1����⨁	���																			� = "����. 	���														� = " + 1                 (17) 

 
From (17), it is seen that the sum calculation is 
EXOR of Ci and pi signals which is easy compared 
to the Ling adder without prefix computation. From 
the prefix computation graph of parallel prefix Ling 
adder in Fig. 3, the final carry is computed early 

 
 

�� = $ �� + ����																																																																																																																		� = 0,1(�� +����) + ((����. ����). (����. ����)																																																												� = 2,3(�� + ����) + ((����. ����). (����. ����) + )∏ ���+,-��	./0 1 . �(��	./)							� = 4	�!	" − 1                  (15) 



 

 

 
by one logic level compared to Fig. 2. Hence the 

final sum is calculated simply by EXOR of half sum 

(pi) and final carry (ci) which simplifies the post 

computation stage unlike Ling adder. 
 
B. Conditional carry adder 
 

Propagation of carry signals decides the operating 

speed of the adder, hence various adder designs are 

proposed for fast carry generation. Carry select 

adder computes two versions of the addition with 

carry as 0 and 1 using multiplexers. Thus the speed 

can be increased by increasing the number of 

multiplexers, which results more area and irregular 

structures [9]. Similarly the conditional sum adder 

[10] also shows the peak performance for high speed 

applications. Modifications to the conditional sum 

addition rule result in a new architecture, which 

reduces the number of internal nodes and 

multiplexers. 

This type adder is referred as Conditional carry 

adder (CCA). CCA has a smaller capacitive load due 

to reduced area and less power dissipation [11].  

 

 

 

 

Fig.4 Conditional carry adder for 3X multiple generation 

(8 bits) 

 
The structure of CCA (Fig. 4) includes three parts: 

a carry generation module, a conditional carry 

reduction unit and EXOR gates for the final sum 

outputs. The carry generation module generates all 

possible carry output signals. The conditional carry 

unit is used for the carry output selections of every 

bit using multiplexers.  

The carry equation  	� = �� + ��. 	���	 is also 

expressed as 	� = ��. ���� + (��+����). 	��� for 3X 

multiple term. Here pi signal is defined as  �� =��+���� . When Ci-1=0, then 	� = ��. ����  and 

when Ci-1=1, then		� = ��+����. Thus the carry 

generation module of every bit only contains a 2- 

input AND gate and a 2-input OR gate. No sum 

signals are generated in the unit. The 2-input EXOR 

gates are used to execute the final sum outputs as 

defined in (4). 
4. Parallel prefix adders for 3x multiple  
    generation 
 

The parallel prefix adders are the most general 

form of network which is used to pre-calculate the 

carry signals. The maximum levels required to 

calculate the final carry signal is referred as the 

depth of the prefix graph and it is proportional to the 

input bit width. Many authors proposed different 

parallel prefix adder structures [12-15] based on the 

carry equation to speed up the carry propagation. 

Kogge and Stone [16] developed a parallel 

algorithm in which the recurrence equations are split 

into functionally equivalent sub equations each can 

be executed in parallel to improve the speed of the 

process. Successive splitting of this sub functions 

further reduces the delay. This property is used in   

parallel prefix adder for carry generation in binary 

addition. Prefix adder generates the carry signals 

simultaneously and has O(2 log2n) delay [17]. PPA 

also uses the propagate (pi), generate (gi) signals 

defined in (3) and the prefix operator is defined as, (�� , ��) ∘ (����, ����) = (�� + ��. ����, ��. ����)      
                                                            (18) 

The basic difference between PPA and CLA lies 

in the organization of the carry equations. Since the 

carry path of the adder constitutes the critical path, 

PPA improves the speed of the addition over the 

other architectures. 

Kogge-Stone adder employs the idempotency 

property to limit the number of lateral logical fan-

out at each node to unity. It has the advantage of 

log2n logic levels at the cost of increased the 

number of lateral wiring at each level. In this design, 

the number of logic gates is increased and consumes 

a large amount of power because of the massive 

overlap between the prefix sub-terms being pre- 

computed (Fig. 5). 



 

 

  

 
Fig. 5 Kogge-Stone (KS) adder for 3X multiple 

generation (8 bits) 

 

Sklansky proposed divide-and-conquer approach 

to reduce the depth of the prefix tree by computing 

the intermediate prefixes along with the large group 

prefixes. This recursive doubling idea is derived 

from Conditional sum adder [10].  This kind of 

logical reorganization reduces the delay by log2 and 

increases the fan-outs double at each level that 

degrades the performance at higher logic levels. 

With appropriate buffering and transistor sizing, this 

fan-out problem could be carefully addressed to 

improve the performance of the adder (Fig. 6). 

 

 

 
Fig. 6 Sklansky (SK) adder for 3X multiple generation  

(8 bits) 
 

5. Experimental results and discussions 
 

This section presents the experimental results of 

the adders taken for comparison in the context of 

relating the energy efficiency to the adder 

architecture. These adders are simulated using ISE 

simulator with the VHDL structural coding. 

Cadence RTL complier with TSMC library 180nm 

is used to synthesize and analyze the cell area, 

power and delay. All the evaluations are taken after 

post place and route synthesis of cadence digital 

flow. 

Table. 1 compares the performance of various 

adder architectures that have been taken for the 

reference. Here the cell area and power refer to the 

amount of space occupied and the power dissipated 

by the logic, and the delay refers to the maximum 

path delay involved in producing the sum output 

signals. On the examination of the simulated results, 

RCA achieves the least power and area, however 

with the penalty of maximum delay. CLA, Ling 

adders are using the modified recurrence equations 

to minimize the path delay which is proved in the 

result table. Parallel prefix ling adder is showing 

reduced area compared to Ling adder.  

The conditional carry adder mainly concentrates 

on the fast carry generation by using multiplexers in 

the critical path. As multiplexers are occupying 

more space, the area of CCA is increased in 

comparison to other adder architectures. 

Parallel prefix architectures are characterized by 

three main design parameters: logic level, number of 

fan-outs and wire tracks. Here we consider the 

Kogge-Stone and Sklansky architectures for the 

reason that both the architectures are having the 

minimum logic levels (log2n) when compared to 

other prefix architectures. Though the KS adder has 

minimum logic level, it has larger number of 

computational nodes and hence the wire tracks. This 

increases the area as well as more power dissipation 

in wire tracks which results in maximum energy 

dissipation. In contrast to the KS adder, SK adder 

has reduced number of computational nodes and 

wire tracks. This design minimizes the energy 

dissipation ~50% in comparison to KS adder for 64 

bit input (Fig. 7) 
As  the  Sklansky  network  has increased  fan-out  
problems  at  each  level, which  cause  poor 
performance on large input bit width. Hence the fan-
out problems have to be addressed carefully. The  
domino  logic  style  of  implementation  mainly  
concern  about  the  processing  speed of the 
architecture due to the reduced fan-in capacitance 



 

 

Table 1 Comparison of Adders for cell area, Power and Delay 

 
and faster  switching  thresholds,  this  style  of 
implementation could be adopted for addressing  
this fan-out problem [18]. The transistor which 
drives the next stage has to be sized large hence this 
fan-out problem can be solved. However this 
variable sizing of transistors results in irregular 
layout [19].  
      In ASIC design, each module is customized for 
enhancing performance of the overall design. 
However, a close observation of the gate sizes in the 
fully custom designed, Sklansky adder shows that, 
of all the fan-out gates at each stage, only one gate 
needs to be large and the rest can be sized uniformly 
smaller. This kind of design suits for high speed 
applications with reduced energy dissipation. 
 
 

 
Fig. 7 Comparison of Energy dissipation in 10

-13
joules 

 
6. Conclusion 
 

This paper has presented a comparative study of 

adder performances for Energy efficient design. 

Radix-8 booth encoding necessitates the generation 

of hard multiple (3X) to enhance the multiplication 
speed. Hence the selection of adder architecture is  

 

the key factor for any multiplication.  Parallel prefix 

structures exhibits flexibility in the design 

constraints which is more suited for the efficient 

implementation of custom binary adders. In this 

paper, we analyze the areas and performances of 

various families of adder architectures and we found 

that the Slansky adder has the minimum area and 

energy dissipation suited for the custom design of 

3X adder .Methodologies for minimizing the fan-out 

problem in Sklansky adder also discussed in this 
paper. 
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