

A COMPARATIVE STUDY OF ADDER ARCHITECTURES FOR 3X

MULTIPLE GENERATION IN RADIX-8 BOOTH ENCODING

Nirmaladevi. R and Seshasayanan. R

College of Engineering, Anna University, Chennai-600025, India
nirmala.sashi@gmail.com, +91-9941455004

Abstract: Several energy efficient adder designs have
been proposed over the years to speed up the
multiplication in digital signal processors. The selection
of the specific adder improves the performance of the
multiplier design. In this paper, we propose a
comparative study of different adders for the generation
of 3X term (Hard multiple) in radix-8 booth encoding.
The focus of this paper is to explore the design aspects of
various adder architectures for the implementation 3X
term. We consider Ripple carry adder (RCA), Carry look
ahead adder(CLA), Ling adder, Parallel prefix Ling
adder, Conditional carry adder(CCA), Kogge-Stone(KS)
adder and Sklansky(SK) adder for our comparison. These
adders are simulated using ISE simulator with the VHDL
structural coding. Cadence RTL complier with TSMC
library 180nm is used to synthesize and analyze the cell
area, power and delay. The experimental results imply
that the Sklansky adder shows the improved performance
over other architectures and saves energy ~50% for 64
bits implementation of 3X term.

Key words: Radix-8 Booth encoding, Hard

multiple, Carry propagate adders, Ling adder,

Parallel prefix adder.

1. Introduction
 Faster arithmetic modules are essential for

modern DSP systems, as the maximum operating

speed of these processors depend largely on these

modules. Addition is the fundamental arithmetic

operation and the other operations like subtraction,

multiplication and division can be derived from

addition. Hence adders are seen as the most integral

part of the arithmetic unit. This necessitates the

focus on improving the power delay performance of

the adder. In VLSI implementations, parallel-prefix

adders are known to have the best performance.

However the carry propagation in adders needs to be

addressed for enhancing the adder performance.
 Adders play a key role in all three phases of
digital multiplication namely: partial product
generation, partial product accumulation and final
addition. Modified Booth Algorithm is preferred to
reduce the number of partial product rows as it
involves a different encoding scheme (MBE-
Modified Booth encoding) [1]. Although several

different MBE schemes have been proposed, most of
them do not take the hardware cost, timing
performance, and power consumption into
consideration at the same time. The complexity of
modified booth encoding lies in the generation of
odd multiples (+3X,+5X,+7X,….) (X-
multiplicand), due to the higher radix encoding [2].
Hence Radix-8 booth multiplier architecture is
selected over the higher radix architecture, since it
needs to generate the odd multiple 3X only and
reduces the partial products to (n+1)/3 (n- input bit
width). However +3X multiple requires an addition
operation together with shifting, it is referred as hard
multiple. This drawback is overcome by special kind
of carry propagate adders.

This proposed work examines various adder

architectures for 3X multiple generation and

compares their performance based on energy

dissipation. The structure of the paper is organized

as follows .Section 1 presents the introduction to the

need of high speed binary addition. Section 2

describes the basics of 3X multiple generation.

Ling’s adder and Parallel prefix adders for 3X

implementation are explained in section 3 & 4

respectively. Finally the results are discussed in

section 5.

2. Preliminaries

 Radix-8 Booth encoding involves the

calculation of +2X, +3X and +4X multiples for the

generation of partial product rows. +2X and +4X

multiples are calculated by shifting the multiplicand

X, on the other hand +3X requires an addition

operation together with shifting, i.e 3X = 2X+X. In

2X+X addition, adjacent full adders share the input

(multiplicand X). Therefore the sum and carry

equations are defined as, �� =	��⨁����⨁		��� (1) 	� = �� . ���� + (�� + ����)	���	 (2)

In the conventional Ripple carry adder(RCA), n bit
input produces n+2 bit output for 3X (= 2X+X)
multiple as shown in Fig.1

 Fig 1. Conventional n bit RCA architecture for 3X

generation

 RCA generates the sum signal after the carry
signal has rippled through the adder from least
significant bit (LSB) to most significant bit (MSB).
As a result, the final sum is available only after the
carry propagation through the entire bit width. This
indicates that RCA has O(n) delay, which will
increase the delay of the booth encoder and hence
the partial product generation in modified booth
algorithm.

The delay of conventional RCA is reduced by

Carry look ahead adder (CLA), as the carry bits are

computed in advance to speed up the addition

process. In this structure, two internal signals

propagate (pi) and generate (gi) are defined as, �� =	�� ⊕������ = ��. ����								� (3)

The output carry and sum signals for 3X term are

given by, 	� = �� + ��. 	����� = 	�� ⊕	�											� (4)

In CLA, all the carry signals are generated

simultaneously, hence the delay is reduced by

O(log2n). However the carry equation become quite

complex when the input bit width is increased. This

leads to large fan-out problem, which can be

minimized by 4 bit modules [3].
3. Ling’s adder for 3x multiple generation

 Ling [4] proposed a new carry recurrence to

reduce the logical depth for carry computation in

carry look ahead structures. This new carry is

referred as pseudo or Ling carry signals. As

suggested by Doran [5], the recurrence involved in

carry equation can be exploited to form a number of

combinations for carry generation in binary

addition. He also listed the properties and

advantages of Ling carry signals. Ling’s algorithm

provides a fast alternative to CLA.

Ling’s equations for 3X term are as follows: �� =	�� + ����		�� = ��. ����								�� = ��⨁����		 � (5)

Here pi represents half sum signal and the propagate
signal (ti) is OR of consecutive bits whereas in CLA
it is EXOR of consecutive bits. From the
conventional CLA, 	��� = �� + ��	�, where �� = ��⨁����. Ling proposed a new term pseudo
carry Hi [6],[7] instead of original carry Ci, which is
propagated to the sum, defined as �� = 	� + 	��� (6)
Similar to (4), the term pi is replaced by ti in pseudo
carry as , ���� = �� + ����. �� (7)

The relationship between the two carry

signals is derived from the identity property as given

in (8), which simplifies the logic in the carry

generation stage. As a result, one AND gate is

removed from the critical path. ��. �� = (�� . ����). (�� + ����) = 	��. ���� =	�� (8)

Hence, �� = ��. ���� and 	��� = ��. ���� (9)

From (7), Hi can be expanded as, ���� = �� + ���� + ����. ���� + ����. ����. ���� +⋯+ ����. ����…��. 	�� (10)

The output sum is defined as (11), which is complex

compared to the conventional CLA.

�� = ���																																																														� = 0�����. �� + ����. (�� ⊕����)						� = 1	�!	"����																																																	� = " + 1

 (11)

From (9 and 10), the new carry Hi is faster than the

original carry Ci, for example, �# = �� + �� + ���� + ������ + ������	�� and(12) 	# = �� + ���� + ������ + �������� + ��������	��

 (13)

 An examination of (12 and 13), reveals that the

product term in H signal is computationally simpler

than C in conventional CLA. Therefore H

propagates faster than C signal. This logical

reorganisation of the the carry signal reduces the

critical path delay in Ling adder, but this makes the

computation of output sum complex as shown in

Fig.2. As the output sum are off the critical path, the

complexity will not affect much of the adder speed.

 Fig. 2 represents the prefix computation graph of

Ling’s adder for 3X multiple generation for 8 bit

multiplicand. Preprocessing stage computes

propagate(ti), generate(gi) and half sum (pi)signals,

whereas level 1,2 and 3 are prefix stages for

computing Ling (pseudo) carry signals(Hi). The final

stage computes the sum, (i.e., 3X for the given

input) with the help of Ling carry signals. The

higher level of propagate and generate signals are

represented by the capital letters with the subscript

representing the level and the bit position.

Fig. 2 Ling’s Adder for 3X generation (8 bit)

A. Parallel prefix ling’s adder for 3x multiple
 generation
 An improvement of Ling’s adder to achieve

reduced delay as well as logic level is presented as

Area efficient parallel prefix Ling adder [8]. Here

the authors, compute the final carry signals (Ci),

based on the Ling carry signals (Hi) produced by the

lower bit positions. Since the final carry signals are

computed early by one logic level compared to

Ling’s adder, the final sum is computed with the

EXOR gate unlike Ling’s adder[4], which leads to

significant reduction in logic gates and lower delay.

The equations defined in [8] are modified to

generate 3X multiple are explained below, �� = �� + ������ = �� . ������ = ��⨁���� � (14)

The ling carry signals are obtained in two groups, i.e
lower group for bit positions 0 to 3 (H0 to H3) and

higher group for 4 to 7 (H4 to H7) in case of 8bit
multiplicand. The computational nodes in Fig. 2
are modified to compute the final carry signals
in parallel prefix ling adder which is depicted in
Fig. 3

Fig.. 3 Parallel prefix Ling Adder [8] for 3X multiple

generation (8 bits)

From (15), the original carry is computed by

 	� = ��. �� (16)

With the use of this original carry, the final sum is

expressed as,

�� = $ ��																																			� = 0��⨁	���										� = 1	�!	" − 1����⨁	���																			� = "����. 	���														� = " + 1 (17)

From (17), it is seen that the sum calculation is
EXOR of Ci and pi signals which is easy compared
to the Ling adder without prefix computation. From
the prefix computation graph of parallel prefix Ling
adder in Fig. 3, the final carry is computed early

�� = $ �� + ����																																																																																																																		� = 0,1(�� +����) + ((����. ����). (����. ����)																																																												� = 2,3(�� + ����) + ((����. ����). (����. ����) +)∏ ���+,-��	./0 1 . �(��	./)							� = 4	�!	" − 1 (15)

by one logic level compared to Fig. 2. Hence the

final sum is calculated simply by EXOR of half sum

(pi) and final carry (ci) which simplifies the post

computation stage unlike Ling adder.

B. Conditional carry adder

Propagation of carry signals decides the operating

speed of the adder, hence various adder designs are

proposed for fast carry generation. Carry select

adder computes two versions of the addition with

carry as 0 and 1 using multiplexers. Thus the speed

can be increased by increasing the number of

multiplexers, which results more area and irregular

structures [9]. Similarly the conditional sum adder

[10] also shows the peak performance for high speed

applications. Modifications to the conditional sum

addition rule result in a new architecture, which

reduces the number of internal nodes and

multiplexers.

This type adder is referred as Conditional carry

adder (CCA). CCA has a smaller capacitive load due

to reduced area and less power dissipation [11].

Fig.4 Conditional carry adder for 3X multiple generation

(8 bits)

The structure of CCA (Fig. 4) includes three parts:

a carry generation module, a conditional carry

reduction unit and EXOR gates for the final sum

outputs. The carry generation module generates all

possible carry output signals. The conditional carry

unit is used for the carry output selections of every

bit using multiplexers.

The carry equation 	� = �� + ��. 	���	 is also

expressed as 	� = ��. ���� + (��+����). 	��� for 3X

multiple term. Here pi signal is defined as �� =��+���� . When Ci-1=0, then 	� = ��. ���� and

when Ci-1=1, then		� = ��+����. Thus the carry

generation module of every bit only contains a 2-

input AND gate and a 2-input OR gate. No sum

signals are generated in the unit. The 2-input EXOR

gates are used to execute the final sum outputs as

defined in (4).
4. Parallel prefix adders for 3x multiple
 generation

The parallel prefix adders are the most general

form of network which is used to pre-calculate the

carry signals. The maximum levels required to

calculate the final carry signal is referred as the

depth of the prefix graph and it is proportional to the

input bit width. Many authors proposed different

parallel prefix adder structures [12-15] based on the

carry equation to speed up the carry propagation.

Kogge and Stone [16] developed a parallel

algorithm in which the recurrence equations are split

into functionally equivalent sub equations each can

be executed in parallel to improve the speed of the

process. Successive splitting of this sub functions

further reduces the delay. This property is used in

parallel prefix adder for carry generation in binary

addition. Prefix adder generates the carry signals

simultaneously and has O(2 log2n) delay [17]. PPA

also uses the propagate (pi), generate (gi) signals

defined in (3) and the prefix operator is defined as, (�� , ��) ∘ (����, ����) = (�� + ��. ����, ��. ����)
 (18)

The basic difference between PPA and CLA lies

in the organization of the carry equations. Since the

carry path of the adder constitutes the critical path,

PPA improves the speed of the addition over the

other architectures.

Kogge-Stone adder employs the idempotency

property to limit the number of lateral logical fan-

out at each node to unity. It has the advantage of

log2n logic levels at the cost of increased the

number of lateral wiring at each level. In this design,

the number of logic gates is increased and consumes

a large amount of power because of the massive

overlap between the prefix sub-terms being pre-

computed (Fig. 5).

Fig. 5 Kogge-Stone (KS) adder for 3X multiple

generation (8 bits)

Sklansky proposed divide-and-conquer approach

to reduce the depth of the prefix tree by computing

the intermediate prefixes along with the large group

prefixes. This recursive doubling idea is derived

from Conditional sum adder [10]. This kind of

logical reorganization reduces the delay by log2 and

increases the fan-outs double at each level that

degrades the performance at higher logic levels.

With appropriate buffering and transistor sizing, this

fan-out problem could be carefully addressed to

improve the performance of the adder (Fig. 6).

Fig. 6 Sklansky (SK) adder for 3X multiple generation

(8 bits)

5. Experimental results and discussions

This section presents the experimental results of

the adders taken for comparison in the context of

relating the energy efficiency to the adder

architecture. These adders are simulated using ISE

simulator with the VHDL structural coding.

Cadence RTL complier with TSMC library 180nm

is used to synthesize and analyze the cell area,

power and delay. All the evaluations are taken after

post place and route synthesis of cadence digital

flow.

Table. 1 compares the performance of various

adder architectures that have been taken for the

reference. Here the cell area and power refer to the

amount of space occupied and the power dissipated

by the logic, and the delay refers to the maximum

path delay involved in producing the sum output

signals. On the examination of the simulated results,

RCA achieves the least power and area, however

with the penalty of maximum delay. CLA, Ling

adders are using the modified recurrence equations

to minimize the path delay which is proved in the

result table. Parallel prefix ling adder is showing

reduced area compared to Ling adder.

The conditional carry adder mainly concentrates

on the fast carry generation by using multiplexers in

the critical path. As multiplexers are occupying

more space, the area of CCA is increased in

comparison to other adder architectures.

Parallel prefix architectures are characterized by

three main design parameters: logic level, number of

fan-outs and wire tracks. Here we consider the

Kogge-Stone and Sklansky architectures for the

reason that both the architectures are having the

minimum logic levels (log2n) when compared to

other prefix architectures. Though the KS adder has

minimum logic level, it has larger number of

computational nodes and hence the wire tracks. This

increases the area as well as more power dissipation

in wire tracks which results in maximum energy

dissipation. In contrast to the KS adder, SK adder

has reduced number of computational nodes and

wire tracks. This design minimizes the energy

dissipation ~50% in comparison to KS adder for 64

bit input (Fig. 7)
As the Sklansky network has increased fan-out
problems at each level, which cause poor
performance on large input bit width. Hence the fan-
out problems have to be addressed carefully. The
domino logic style of implementation mainly
concern about the processing speed of the
architecture due to the reduced fan-in capacitance

Table 1 Comparison of Adders for cell area, Power and Delay

and faster switching thresholds, this style of
implementation could be adopted for addressing
this fan-out problem [18]. The transistor which
drives the next stage has to be sized large hence this
fan-out problem can be solved. However this
variable sizing of transistors results in irregular
layout [19].
 In ASIC design, each module is customized for
enhancing performance of the overall design.
However, a close observation of the gate sizes in the
fully custom designed, Sklansky adder shows that,
of all the fan-out gates at each stage, only one gate
needs to be large and the rest can be sized uniformly
smaller. This kind of design suits for high speed
applications with reduced energy dissipation.

Fig. 7 Comparison of Energy dissipation in 10

-13
joules

6. Conclusion

This paper has presented a comparative study of

adder performances for Energy efficient design.

Radix-8 booth encoding necessitates the generation

of hard multiple (3X) to enhance the multiplication
speed. Hence the selection of adder architecture is

the key factor for any multiplication. Parallel prefix

structures exhibits flexibility in the design

constraints which is more suited for the efficient

implementation of custom binary adders. In this

paper, we analyze the areas and performances of

various families of adder architectures and we found

that the Slansky adder has the minimum area and

energy dissipation suited for the custom design of

3X adder .Methodologies for minimizing the fan-out

problem in Sklansky adder also discussed in this
paper.

References

1 O.L. MacSorley, “ High Speed Arithmetic in binary

computers”, Proc. IRE, vol49, pp.67-91, 1961..

2 P E Madrid , B Millar , and E Swartzlander , Jr,

“Modified Booth Algorithm for High radix

Multiplication”, IEEE Computer Design Conf.,

pp.118-121, 1992.

3 B. Parhami,” Computer Arithmetic Algorithms and

Hardware Designs”, Oxford Univ. Press, New York,

2000.

4 H.Ling,”High speed Binary Adder,” IBM J. R& D,

vol.25, pp.156-166,1981.

5 R.W.Doran, “Variants of an Improved carry Look

Ahead Adder,” IEEE Trans. Computers, vol.37.pp-

1110-1113,1988.

6 N. Burgess, "Implementation of Recursive Ling

Adders in CMOS VLSI," Proc. 43rd Asilomar Conf.

Signals,Systems, and Computers, pp. 1777-1781,

2009.

7 Lakshmanan,Ali Meaamar, Masuri Othman ,”High-

Speed Hybrid Parallel-Prefix Carry-Select Adder

using Ling’s Algorithm,” ICSE,Malaysia, 2006,

8 Tso-Bing Juang, Pramod Kumar Meher, Chung-Chun

Kuan,”Area-efficient parallel-prefix Ling

adders,” APCCAS ,pp. 736-739,2010

0

50

100

150

200

250

300

350

8bit 16bit 32bit 64bit

E
n

e
rg

y
 in

 x
1

0
^

 -
1

3
 j

o
u

le
s

RCA

CLA

Ling

PP_Ling

CCA

KS

SK

Adder Type

8 bits 16 bits 32 bits 64 bits

Cell

area

(µm2)

Power

(nw)

Delay

(ns)

Cell

area

(µm2)

Power

(nw)

Delay

(ns)

Cell

area

(µm2)

Power

(nw)

Delay

(ns)

Cell

area

(µm2)

Power

(nw)

Delay

(ns)

RCA
127 3759 1.24 268 8637 2.66 538 18702 4.83 1024 35534 8.45

CLA
217 5014 0.97 780 14819 1.79 1826 32647 2.33 4764 63143 3.94

Ling
213 4943 0.93 775 13463 1.61 1724 28598 2.27 4176 60854 3.82

PP-Ling[8]
236 4528 0.87 697 12513 1.51 1484 26393 2.12 3854 59365 3.54

conditional

carry

adder[10]
237 4710 0.77 573 11578 1.13 1825 25143 2.02 4002 59043 3.45

PPA-Kogge-

Stone 216 4275 0.84 622 11492 1.21 1723 30610 1.85 4530 64403 2.82

PPA_Sklansk

y 94 3527 0.86 465 8442 1.12 1135 20590 1.58 2364 44760 1.98

9 Y. Wang, C. Pai, and X. Song, “The design of hybrid

carry-lookahead/carry-select adders,” IEEE

Transactions on Circuit and Systems II: Analog and

Digital Signal Processing, Vol. 49, 2002, pp. 16-24

10 J.Sklansky,”Conditional-sum addition logic”,IRE

Transactions on Electronic Computers, Vol. EC-

9,pp.226-231,1960

11 Kuo-Hsing Cheng, Shun-wen Cheng, ”Improved 32

bit Conditional Sum Adder for Low-Power High

Speed Applications, ”Journal of Information Science

and Engineering, vol.22,pp. 975-989,2006

12 R.E. Ladner and M.J. Fisher, “Parallel Prefix

Computation,”J. ACM,vol. 27,no. 4, pp. 831-838,

Oct. 1980.

13 R.P. Brent and H.T. Kung, “A Regular Layout for

Parallel Adders,”IEEE Trans. Computers,vol. 31, no.

3, pp. 260-264, Mar. 1982.

14 T. Han and D. Carlson, “Fast Area-Efficient VLSI

Adders,”Proc. Symp.Computer Arithmetic,pp. 49-56,

May 1987.

15 S. Knowles, “A Family of Adders,”Proc. 14th Symp.

Computer Arithmetic, pp. 30-34, Reprinted in

ARITH-15, pp. 277-281, Apr. 1999

16 P. M. Kogge and H. S. Stone, "A Parallel Algorithm

for the Efficient Solution of a General Class of

Recurrence Equations", IEEE Transactions on

Computers, Vol. 22 (a), pp. 783-791, Aug 1973

17 G. A. Ruiz and M. Granda, “An area-efficient static

CMOS carry-select adder based on a compact carry

look-ahead unit,” Microelectronics. J.,vol. 35, no. 12,

pp. 939–944, Dec. 2004

18 B.R.Zeydel, D.Baran, V.G.Oklobdzija, “Energy-

Efficient Design Methodologies:

HighPerformance VLSI Adders”, IEEE Journal of

Solid-State Circuits, vol.45, no.6, pp.1220-1233,

2010

19 Dinesh Patil, Omid Azizi , Mark Horowitz, Ron Ho

and Rajesh Ananthraman,“Robust EnergyEfficient

Adder Topologies” Proc. of 18th IEEE

Symposium on Computer Arithmetic(ARITH’07),

pp.16–28. IEEE Computer Society Press, 2007

