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Abstract— The high pace rise in energy consumption 

across industrial-social horizon, the reliable and quality 

power provision have become inevitable need. Phasor 

measurement unit (PMU) is one of the most significant 

grid components that plays vital role in ensuring reliable 

power transmission and distribution. However, 

maintaining cost effective and efficient electrical grid 

network design have been the dominating motivations for 

researchers. The optimal PMU placement (OPP) in power 

system can not only ensure grid cost reduction, real-time 

monitoring and control, but can reduce the operational 

complexities and overheads significantly. This paper 

proposes a novel multistage hybrid evolutionary 

computing scheme for OPP solution. Our proposed model 

applied Adaptive Genetic Algorithm (AGA) for initial state 

point retrieval for OPP, which was then fed as input to the 

Pattern Search (PS) based PMU placement optimization. 

Our proposed AGA-PS scheme ensures OPP solution by 

retrieving minimum number of PMUs and its optimal 

location across grid network to make power system 

completely observable under varied cases such as single 

PMU loss and zero injection bus conditions. The 

simulation results with IEEE 14, IEEE 39, IEEE 118 and 

KPTCL 155 bus networks has exhibited that the proposed 

AGA-PS outperforms major existing approaches in terms 

of optimal OPP solutions. Performance with KPTCL 155 

reveals that the AGA-PS can be useful for cost-effective 

large scale power grid design purpose.   

Keywords—PMU Placement, Evolutionary Computing, Adaptive 

Genetic Algorithm, Pattern Search, IEEE bus networks. 

1. INTRODUCTION 

In modern era, power system has become an inevitable 

part of human life. Typically, power system is defined as 

the collection of various electrical components to be used 

for generation, transmission and distribution of the 

electrical power. The power transmission system carries 

electrical power from the generation unit, while the 

distribution system has the responsibility to supply the 

electrical power to the nearest centers. Being a highly 

sensitive system, it comprises numerous protective 

components such as circuit breakers, relays, etc which 

play vital role in avoiding any fault probability across the 

system. In last few years, the advancement in technologies 

has motivated power industry to incorporate major 

transitional changes thus making enabling it more efficient 

and productive. The incorporation of renewable energy 

sources (RES) and the deregulation of the power system 

network has made prediction of the power flow pattern, 

highly intricate and even less accurate. On the other hand, 

the high pace rise in power demand has made present day 

electrical grid network to operate even under 

intemperately stressed situations. Measuring significant 

real-time operational parameters and their control can be 

of paramount significance to enhance power system 

reliability. To enable reliable and efficient power system, 

wide area monitoring and control system (WAMS) has 

emerged as a novel solution for electrical grid supervision 

and control. Among major advanced measuring devices 

phasor measurement units (PMUs) are considered as the 

vital component in power system that facilitate the 

consistent depiction of the real-time operation across the 

electrical grid network. It utilizes the synchronized voltage 

and current phasor measurements to present real time 

operation status of the grid network. PMU has been 

playing significance role in enabling real time and precise 

power system monitoring, analysis, and control [2]. In 

practice, PMU facilitates minimum Frequency 

measurement for 3-phase AC voltage and current 

waveforms. PMU measures the harmonics, the operating 

system state and identify or detect the fault as well as 

power system oscillations assessment. In wide-area 

interconnected systems, such real time measurements are 

synchronized by means of the time stamp facilitated by the 

Global Positioning System (GPS) [1]. The predominant 



ability of PMUs to facilitate synchronized current and 

voltage phasor measurements enables it to be the potential 

and most efficient alternative for electrical power system 

monitoring and control.  

 

The power system turns out to be the smart grid if 

it functions automatically  by employing smart meters , 

phasor measurements and integrating  renewable sources 

like solar, wind and tidal. The GPS based communication 

systems are efficient enough to localize events to ensure 

swift and flexible process without affected by dynamic 

environmental conditions. The efficient implementation of 

these mechanisms can strengthen the smart grid to 

conserve energy, minimize operational cost as well as cost 

of establishment, enhanced power system reliability and 

quality [3]. PMU being one of the advanced smart 

metering system estimates real time phasor of the grid 

voltage and current phasors of all incident branches to that 

bus in the grid network. This is the matter of fact that the 

implementation of PMUs in grid network plays vital role 

in ensuring power reliability and quality [3]. However, 

enabling complete observability of the network while 

ensuring minimum number of PMUs in the power system 

can be of paramount significance as it can not only reduce 

the computational overheads, low complexities, swift 

process, but also reduced network cost. It can have 

numerous advantages for both the industries as well as 

consumers. To meet these requirements, a new research 

dimension has come into existence called Optimal PMU 

placement (OPP). The predominant objective of OPP is to 

estimate the minimum number of PMUs to make power 

system complete observable. Enabling power system 

complete observable by OPP can provide swift state 

estimation, even in a single iteration. The OPP in a power 

system to make power system complete observable can be 

derived as a constrained optimization problem. Recently, 

numerous researches have been made for OPP solution. A 

number of optimization scheme like Genetic algorithm 

(GA), Bacterial Foraging Optimization (BFO) algorithm, 

Particle Swarm Optimization (PSO) algorithm, Cuckoo 

search algorithm and artificial bee colony (ABC) 

algorithms have been applied to select the minimum 

number of PMUs to enable the power system complete 

observable and the respective optimal location across the 

grid network or bus architecture. However, majority of the 

traditional approaches suffer from local minima and 

convergence issue. Alleviating these issues can enable a 

system more precise, time and computationally efficient 

for real time applications. 

To achieve OPP solution, an array of efforts has been 

made using mathematical optimization approaches [4–12]. 

Authors in [4–9] developed the integer linear 

programming (ILP) technique to resolve OPP problem. In 

[4–7] the emphasis was made on OPP solution retrieval to 

ensure complete network observability, while in [8, 9], 

authors emphasized on retrieving minimal PMU counts 

while considering channel limitation conditions. However, 

authors [9] could not address the issue of the PMU 

locations and the number of each PMU measuring 

channels. Furthermore, the key limitations of the ILP 

technique such as local minima was not take into 

consideration that confines it to deliver only one solution, 

while the might have multiple solutions. An optimization 

technique named branch and bound (B and B) was 

developed in [10, 28] where authors focused on placing 

PMU to make power system complete observable. Authors 

in [12] developed the cellular learning automata (CLA) for 

estimating the optimal number and the locations of PMUs 

to strengthen complete power system observability. 

However, the issue of the number of PMUs measuring 

channels could not be addressed. In general, mathematical 

optimization approaches often fail and reach local 

optimum that even becomes frequent with non-linear 

objectives and significantly large variables. In addition, 

these approaches are confined primarily for solving linear 

optimization problems. Interestingly, in function these 

techniques need gradient information and therefore it is 

infeasible to solve non-differentiable functions. The 

existing mathematical optimization techniques are of no 

significance for OPP optimization as it is inefficient in 

solving discrete optimization issue, which is common in 

OPP problem. In fact, mathematical or conventional 

optimization techniques employ mathematical approaches 

to estimate the best feasible solution where the constraints 

as well as the objective functions are linear with integer 

magnitudes of control variables. On the other hand, 

heuristic paradigms are typically problem dependent and 

are programmed to perform in the problem specific 

manner, where it intends to achieve the best solution on 

the basis of knowledge to either construct or enhance 

certain solutions. On the other hand, meta-heuristic 

optimization scheme are typically problem independent 

and can be applied for major optimization problems. In 

addition, these techniques are capable of avoiding the 

issue of local optimum and even achieve the global best 

solution. In recent years, evolutionary computing 

algorithms have gained global attention towards solving 

optimization problems.  

 Considering robustness of the evolutionary 

computing approaches, numerous efforts have been made 

to enhance PMU placement for better observability. 

Among different algorithms, GA has been applauded for 

its effectiveness. GA algorithm represents a type of search 

heuristic that imitates the natural evolution phenomenon. 

It is primarily used to obtain significant optimized 

solutions. Authors [13] suggested GA for solving OPP 

problem where they used varied PMU placement 

conditions, like the unavailability of the significant 

measurements and system variables, highest 

measurements received than the initial one, highest 

estimation accuracy, minimum cost of PMU placement, 

etc. Authors [14] used GA for OPP solution, where they 



applied estimator accuracy as the fitness function and to 

estimate the fitness function they used the inverse of the 

cumulative differences between measured and the really 

estimated power flows. A topology based approach was 

developed in [15] to solve OPP problem where they used 

B and B algorithm [10, 28] along with the GA technique. 

Authors [16] enhanced traditional GA and derived 

Minimum Spanning Tree Genetic Algorithm (MST-GA) 

which they applied to reduce PMU counts while ensuring 

complete observability in large scale power grid. In their 

work they applied MST algorithm to deal with 

impracticable solutions, and employ the power grid 

topology in mutation. An effort for OPP was made in [17] 

where they intended to enable maximum observability 

under probabilistic events. Researchers used PMUs 

installation cost as the objective function to perform OPP. 

Similarly, authors [18] applied GA for reliability oriented 

PMUs placement in smart grid. They split their problem in 

two parts: (i) Retrieving minimal PMU counts to enable 

power system observable while considering single PMU 

loss, and (ii) Retrieving the optimum PMU location to 

achieve maximum redundancy in network observability 

[19]. In [20] authors developed an immunity genetic 

algorithm (IGA) to solve OPP problem.  

 Authors [21] used PSO to solve PMU placement 

issue and evaluated the proposed system on 7, 14, 57 IEEE 

standard buses. Authors revealed that placing the PMUs 

merely at the buses with the maximum incident branches 

might certainly not enable OPP solution. In [22] PSO was 

used to estimate both the optimal number as well as 

location of the PMUs. However, authors could not address 

the issue of the loss of even a single PMU in the network. 

Authors [23,24] used binary PSO (BPSO) and modified 

BPSO schemes to estimate the number and the location of 

PMUs. In [25], the problem of OPP was solved while 

ensuring minimum number of branch current phasor 

measurements. An exhaustive search paradigm was used 

in [26] to solve OPP problem and to perform state 

estimation. Authors [26] considered single branch failure 

in assessment. A meta-heuristic paradigm was derived in 

[27] to perform OPP in which initially the PMUs were 

assigned at the vital network nodes or the grid positions, 

which was then followed by the implementation of the 

iterative local search technique so as to reduce PMU 

counts in the network to have complete observability. 

However, they could not address the issue of contingency 

during process. Authors [29] applied Markov process to 

perform OPP. However, they could not address the issue 

of the number of measuring channels needed for 

individual PMU. In [30], the heuristic paradigm was 

developed to perform simultaneous OPP as well as phasor 

data concentrators (PDCs) placement in WAMS. Authors, 

at first placed PMUs on all system buses, which were then 

followed by the implementation of a multi-stage 

elimination process to eliminate PMUs having no 

significant impact on the system observability. Authors’ 

derived three approaches depth first search (DFS), 

simulated annealing (SA) and minimum spanning tree 

(MST) to perform OPP [31]. In [32], a multi-phase method 

was developed to solve OPP problem using connectivity 

information. In the initial two phases, PMUs were 

considered in all buses, while in the last phase, the PMUs 

entities were checked using pruning process so as to attain 

OPP solution. The heuristic search methods were used in 

[33, 34]. In [35], the grenade explosion method (GEM) 

was applied to solve OPP problem while ensuring 

complete system observability. An enhanced approach 

named non-dominated sorting Genetic Algorithm (NSGA) 

was applied in [36] where author focused on obtaining the 

Pareto optimal solutions. In [37] authors made the 

minimum PMUs required to have complete observability, 

as the objective functions. In [38], a hybrid two-phase 

paradigm was suggested for OPP solution. In this 

approach in the first phase, authors used the graph-

theoretic paradigm to resolve the power domination (PD) 

issue in sparse graphs that obtains feasible PMUs quickly. 

In the next phase, a local search heuristic approach, named 

ant colony optimization (ACO) was employed to achieve 

the least possible PMUs to have maximum observability. 

A hybrid GA-PS approach was developed in [39] to solve 

OPP problem. In this approach GA was applied to find 

best initial point which was then followed by generic 

pattern search (PS) algorithm to estimate optimal result. 

Among various meta-heuristic approaches for OPP 

solution, the simplified chemical reaction optimization 

(SCRO) technique [40], the cellular GA (CGA) [41], 

hybrid discrete PSO (HDPSO) technique [42], binary PSO 

(BPSO) algorithm [43], non-dominated sorting differential 

evolution (NSDE) algorithm [44] and GA are the 

dominating techniques to solve OPP problem. Authors in 

[42–44] applied ACO algorithm to estimate minimum 

number of PMUs and their position to have maximum 

observability. However, the authors could not address the 

issue of large scale power systems. 

 In this paper, a novel multiphase hybrid 

evolutionary computing (EC) algorithm encompassing 

Adaptive GA (AGA) and Pattern Search Algorithm 

(AGA-PS) has been developed. The conventional GA 

algorithm can’t achieve the global optimal solution as it 

primarily reply on the initial populations, genetic operators 

and defined fitness function. Varied GA designs might 

give different results. Unlike conventional approaches, 

AGA retrieves initial sub-optimal solution (initial starting 

points) which is then fed as input to another evolutionary 

approach, Pattern Search (PS) algorithm. Pattern Search 

(PS) achieves the minimum PMUs required and thus 

provides the final output as the optimal number of PMUs 

to be incorporated so as to achieve maximum 

observability. The developed algorithms have been 

implemented and tested with IEEE 14, IEEE 39, IEEE 118 

bus systems, and KPTCL 155 bus systems.  



The other sections of the presented manuscript are divided 

are follows. Section 2 presents the related works and 

literatures studied, and in Section 3 the power system 

observability analysis is discussed. Section 4 discusses the 

problem formulation and associated PMU placement rules 

applied. The implementation of the proposed AGA-PS 

algorithm for OPP problem solving is discussed in Section 

5. Results obtained for the proposed system are discussed 

in Section 6, which is followed by the discussion of the 

research conclusion in Section 7. References used in this 

research are presented at the last of the manuscript. 

  

2. POWER SYSTEM OBSERVABILITY ANALYSIS 

In general, a power system state estimator needs complete 

network observability from the associated set of 

measurements that can form a spanning tree with “full 

rank” of the system [45]. In general power system 

observability analysis is performed in two distinct 

manners. These are: 

1. Numerical observability analysis (NOA),  

2. Topological observability analysis (TOA).  

This section briefs the process of power system 

observability analysis.  

 

A. Numerical Observability Analysis (NOA) 

The generic measurement model applied in state 

estimation can be presented as: 

   ( )    (1) 

where   states the system state vector. Here, the state 

vector signifies the voltage phasor of all connected buses 

in the network. The variable   represents the measurement 

vector, and  ( )  refers the non-linear function which 

relates the state vector   to the measurement vector . The 

other variable   presents the measurement error vector. As 

PMUs facilitate precise measurements of the phasor 

components and hence   is typically very small and in 

practice can be ignored. The elite employment of PMU 

measurements turns into the linear state estimation model 

[46]. Thus, the derived linear state estimator can be 

presented as (2):  

 

     (2) 

where   represents the measurement function matrix. 

Once the grid network is entirely observable, the linear 

state estimator retrieves system state by solving (2). NOA 

verifies whether H has is full rank or not. For a   bus 

electric grid network the measurement sets comprising 

voltage as well as current phasor can enable the power 

system observable, if  

 

    ( )       (3) 

 

The optimal PMU placement for NOA based approach can 

be performed in two distinct ways. In first approach by 

introducing PMU in the power grid network sequentially 

so as to enhance the rank of   and then terminating PMU 

introduction once equation (3) is satisfied. Meanwhile, in 

the second approach OPP can be done by applying or 

placing PMU on each buses of the network, while 

removing PMUs one by one from different buses to fulfill 

condition (3). In this paradigm the elimination process can 

be overruled at a bus that turns   as rank-deficient. As 

stated, in these schemes to achieve OPP solution, 

numerous combinations are needed to be assessed. Here, 

the individual combination comprises rank assessment that 

eventually raises the computational complexity of NOA. 

Unlike this approach, the topological observability 

analysis (TOA) exhibits minimal computational 

complexity and burden. A brief of the TOA approach is 

given as follows.  

 

B. Topological Observability Analysis (TOA) 

In TOA approach the power system is presented in terms 

of a topological graph. Here, the graph possesses ‘ ’ 
nodes signifying the bus bar and ‘ ’ states the total 
number of edges reflecting the network’s branches 

connecting the bus bars. Unlike NOA, in TOA scheme the 

OPP set is obtained in such a manner that the individual 

bus across the network is observable by a least single 

PMU. Our proposed model employs the TOA approach 

that completely functions on the basis of PMU 

estimations.  

 

3. PROBLEM FORMULATION 

This section primarily discusses the problem formulation 

for OPP problem. Before discussing OPP formulation, the 

depiction of key rules to be followed for a robust 

methodological formulation to have maximum 

observability can be of paramount significance. With this 

motivation, the following section briefs about the key OPP 

rules.  

 

A. OPP Rules 

Considering the robustness and functional effectiveness, in 

this paper the topological observability analysis (TOA) has 

been applied. A power system achieves complete network 

or the power system observability if all associated or the 

connected buses are observable. In electric grid network or 

the power system, a bus is stated to be observable only 

when its voltage can be estimated directly or indirectly 

using pseudo-measurements [47]. The ability of PMU to 

estimate the voltage phasor at the installed bus and the 

current phasor of all the branches connected to the PMU 

installed bus can play vital role in estimating other 

significant parameters to perform indirect measurements. 
Now, implementing Ohm’s law and Kirchhoff’s Current 

Law (KCL), bus adjoining the PMU installed bus can have 

its voltage and branch current phasor value known. Some 

of the key rules applicable to identify observable bus in 

OPP problem are given as follows: 

 

 



Rule-

1 

A bus with a PMU installed on it would 

have its voltage phasor and connected 

branches currents incident to it measured 

by the phasor measurement unit (PMU). 

Rule-

2 

Applying the Ohm’s rule, the voltage 

phasor at one terminal (end) of a branch 

current may be estimated in case the 

voltage phasor at the other terminal of the 

branch current is under knowledge or 

known. 

Rule-

3 

Applying Ohm’s rule the branch current 

can be measured, if the voltages are known 

at both the terminals (ends) of a branch. 

 
Another factor called the zero injection bus (ZIB) can also 

play significant role in reducing PMUs required to ensure 

complete power system observability. There exists no 

generator that could inject power or a load which may 

consume power from this bus [48]. According to the KCL 

rule, the cumulative addition or the sum of flows on all 

branch currents connected with ZIB is zero. In such cases, 

the power system observability can be accomplished with 

the presence of ZIB based on the following rules [49, 50]: 
 

Rule-

4 

When grid buses incident to an observable 

ZIB can be completely observable except for 

the one, and thus the unobservable bus can be 

stated to be observable by employing KCL at 

the ZIB. 

Rule-

5 

In case the buses are placed to certain 

unobservable ZIB are observable, then ZIB 

can be recognized as observable by 

introducing Ohm’s rule. 

Rule-

6 

A set of unobservable ZIB, in conjunction 

with the observable buses can be identified as 

observable by retrieving the voltage phasor of 

ZIB by means of KCL node equation. 

 
These all mentioned rules enable buses incident to the ZIB 

to remain observable without introducing or placing a 

PMU on it and therefore it plays vital role in reducing 

PMU counts to make the power system completely 

observable.  

The problem definition used in this research work 

is presented as follows:  

B. Problem Definition 

The OPP problem while taking into consideration of the 

PMUs measuring channels to make power system 

completely observable can be mathematically expressed as 

(4) [51,52]:  

    ( )  ∑    

  

   

 

(4) 

Subject to:  

 ( )  ∑        

  

     

 

(5) 

where  ( ) represents the objective function (OF) which 

is needed to be minimized so as to achieve least count of 

PMUs and its optimal locations with measuring channels. 

In (4), the variable    signifies the weighting factor of the 

PMU placed at bus   based on system configuration, which 

is numerically equivalent to the total number of branches 

incident to the bus   plus one, which is again equal to the 

total number of PMU measuring channels. The parameter 

   represents the total number of buses in the considered 

grid network or architecture. Here,     is the binary 

decision variable [0,1], which can be characterized as 

follows (6):  

   {
                                     
                                                      

 
(6) 

Here, the other variable  ( ) as presented in (5) represents 

the observability constraint that must verify whether each 

bus belongs to the system. In (5), the variable     

represents the connectivity matrix which is formed on the 

basis of the system line data in binary form. 

Mathematically, the connectivity matrix    is presented as 

follows:  

    {
       
                               
          

 
 

(7) 

The parameter   represents the minimum limit of MR that 

can be considered as follows (8): 

  {
                     
                                  

 
(8) 

 

To enable power system completely observable under 

normal operating condition,   should be equal to 1 that 

signifies that the individual bus is observed no less than 

once, while in case of any contingency like single PMU 

failure, b should be equal to 2 which signifies that the 

individual bus is observed (minimal) twice to enable 

power system completely observable. 

4. MULTIPHASE AGA-PS BASED OPP SOLUTION 

As proposed, in this paper a two phase PMU placement 

model has been developed to enable power system 

optimally observable. In this first phase an enhanced EC 

algorithm called Adaptive Genetic Algorithm (AGA) has 

been applied to obtain the initial state points, which has 

been further used in second phase where Pattern Search 

(PS) algorithm obtains the minimum PMUs and their 

respective best location to enable maximum or complete 

network observability. The different phases of the 

proposed OPP mechanism are as follows: 

A. AGA Based Initial State Point Retrieval, 

B. Pattern Search (PS) Based OPP Solution 

Retrieval. 

 



A succinct presentation of the proposed OPP scheme is 

presented as follows: 

 

A.  AGA Based Initial State Point Retrieval  

In our proposed OPP model, AGA has been applied in the 

initial phase so as to obtain the initial state point range. 

Here, it should be noted that the predominant purpose of 

using AGA is to retrieve the optimal state points which is 

feasible because of its swift convergence rate that 

eventually enables sub-optimal solution retrieval even 

within a few iterations. Generally, the tentative start point 

retrieved from GA is fairly near the optimal solution or 

results. It reduces computational time and complexities 

incurred over unwanted iterations. It significantly assists 

our proposed model to facilitate additional time for further 

optimization, as scheduled in the second phase.  

In GA approach, a population of strings, generally known 

as chromosomes encode each solution for optimizing the 

result, evolves toward more efficient solutions. Typically, 

these solutions are stated in the form of binary value or the 

strings of zeros and ones. In GA the evolution is initiated 

from a population where the individuals are generated 

randomly and keeps on generating across the generations. 

The fitness value of an individual in the population is 

estimated, and based on respective fitness value the 

individuals with higher fitness are selected stochastically, 

and are altered to generate a new generation with 

relatively higher fitness and closeness towards the optimal 

solution. Thus, the newly generated population is then 

processed in the next iteration and continues till the 

stopping criterion is met. This process may continue 

iterating till the number of the individuals in the 

population equals the specified size of the population. 

Here, the size of population states the total number of 

individuals in each generation. In our proposed OPP 

model, the initial population has been defined as a binary 

string. Thus, in the targeted grid design and OPP problem, 

individual grid design can be stated as an individual that 

eventually is represented as a binary string with 0’s or 1’s. 

These binary strings is then used for AGA based OPP 

optimization. In our proposed AGA based OPP 

optimization model, these generated 0's and 1's have been 

transferred to the three network variables (          ) so 

as to estimate the OF. In this paper, the grid construction 

cost has been taken as the OF that actually signifies the 

PMUs required enabling power system completely 

observable. In general, the algorithm terminates once 

retrieving the expected fitness level. In case, the algorithm 

is terminated after reaching predefined number of 

iterations, an expected solution may or may not be 

obtained [53]. To ensure optimal solution retrieval, 

estimating sufficient fitness level plays significance role. 

The following section briefs the fitness function estimation 

for our proposed OPP optimization.  

 

a. Fitness Function Estimation 

Considering the research optimization needs, in this 

research work the total number of PMUs, which signifies 

the overall cost of the power grid is considered as the OF. 

To estimate the fitness function for PMU placement, the 

following mathematical expression is used (9):  

 ( )     ∑     

  

   

            

 

 

(9) 

where ∑      
   reflects the observability index of the 

considered power system network and      represents the 

PMUs needed to make network complete observable. 

Assuming the expected level of redundancy as 2,    

represents the difference existing in between the expected 

and the real values. In order to estimate the weights of the 

fitness function, the significance level of individual factor 

as compared to the other factor has been taken into 

consideration. Constructing the hierarchy framework, a 

pair-wise comparison matrix is obtained at the individual 

hierarchy and the comparison is made using a scale pair-

wise comparison [54]. Table 1 represents the scale for the 

pair-wise comparison.  

 

Table 1 Pair-wise comparison scale [55]. 

Relative 

intensity 

Definition 

1 Equal (value) 

3 Slightly more (value) 

5 Essential or strong (value) 

7 Very Strong value 

9 Extreme (value) 

2,4,6,8 Intermediate values between two 

adjacent judgments. 

 

Using Table 1, a 3*3 matrix is formed (10).  

aij         =            [

 
 

 
 

   
 

 

 

 
 

] 

 

(10) 

 

Now, as stated in (9),   can be estimated using following 

mathematical expression:  

   ∏
   

∏    
 
   

    

   

 

(11) 

where     represents an entity of the matrix, and      

represents a factor called the total fitness function factors 

(FFF). Typically, it is also known as the Logarithmic Least 

Square Method (LLSM) that is a key element of the 

Analytical Hierarchy Process (AHP) approach [54].  

b. Selection 

In AGA, the fitness function is calculated based on the 

OF, which is nothing else but the cost of network. It 



should be noted that the cost of the network is directly 

propositional to the total number of PMUs applied, and 

hence reducing the PMUs while ensuring network 

completely observable is the OF. As per the fitness 

function value (here, the inverse of the OF is taken as 

fitness value), individuals in the population are ranked 

using the AGA’s selection function. In selection, the 

parent individuals with higher fitness values retain its 

place for reproduction to form next generation. In our 

proposed AGA scheme, Roulette wheel mechanism has 

been applied to perform selection and thus the individual 

having higher fitness would have higher sustainability to 

have presence in the next generation or iteration to 

perform “reproduction”.  

c. Reproduction  
Reproduction states the process that defines how AGA 

generates children (individual solution) at each generation 

of the evolution. It comprises two steps, crossover and 

mutation. In crossover process, the two parent individuals 

are combined so as to form a new individual for the next 

generation. On the contrary, mutation process simulates 

the influence of errors that occurs with low likelihood 

during replication. In GA based optimization, the optimal 

selection of the two genetic parameters, crossover (  ) and 

mutation probability (  )  is of paramount significance. 

The proper value of    and   can play vital role in 

preserving the diversity of GA algorithm and in addition 

can effectively alleviate the issue of local minima. Too 

high values of these genetic parameters might turn the 

algorithm into a primitive random search scheme. In major 

existing researchers, authors have used fixed value of    
and    that causes system to suffer issues like local 

minima and convergence and in addition it introduces high 

computational complexity and process time. Unlike 

conventional GA an enhanced GA algorithm named 

Adaptive GA has been developed in which the GA 

parameters    and    are updated adaptively and the 

process continues till 95% of the chromosomes have the 

unique fitness value. The following equation (12) is used 

to update the GA parameters adaptively,  

(  )    (  )  
      
 

 

(  )    (  )  
      

 
 

 

(12) 

 
In equation (12), (  )  represents the current crossover 

probability in kth generation, and (  )  represents the 

mutation probability at the kth generation. The other 

variables are    and    are the positive constants. In our 

AGA model,         and        . These constants 

can be any positive constant values. Here     presents the 

number of chromosomes having similar fitness value. In 

the proposed OPP problem, our proposed AGA based 

optimization process continues till the stopping criterion is 

met or till 95% of the chromosomes achieve similar fitness 

value. After that the system gets saturated. The overall 

implementation of the proposed AGA algorithm for initial 

state point estimation for OPP solution is illustrated in Fig. 

1. Once estimating the initial state point, in this paper the 

second phase of the proposed Multiphase hybrid 

evolutionary computing scheme has been executed where 

patter search heuristic has been applied to perform OPP 

optimization. 

 

A. Pattern Search Based OPP Solution  

Pattern Search (PS) has established itself as a robust 

evolutionary computing scheme to solve a number of 

optimization issues that typically remains ignored in major 

traditional optimization tasks. In addition, its simplicity, 

flexible implementation and computationally efficient 

functions enable it to be used for advanced optimization 

purposes. Unlike, GA [56, 57], PS possesses well-

balanced and efficient operators that strengthen it to 

achieve global minima and even enhance the local search 

performance. Being a direct search algorithm, PS retrieves 

a set of points in its neighborhood as the starting point, 

exploring further to achieve improved results when the 

value of the defined OF is lower as compared to the value 

at the present state point. It enables PS to be used for 

optimizing the non-linear and differentiable functions. 

Considering the robustness of the PS algorithm, in our 

proposed work, it has been used in the second phase of 

OPP optimization where it functions to search an optimal 

solution around the approximate optimum (the initial state 

points obtained through AGA algorithm). The proposed 

PS algorithm tests multiple state points approximate to the 

starting points retrieved through AGA. In case any one of 

such multiple points generates a smaller or larger OF value 

(here we consider smaller value as for OPP minimum 

PMUs are needed while ensuring complete observability) 

as compared to the initial state points or the starting point, 

the newly retrieved start point is updated as the initial state 

point for the next iteration. 
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 In our proposed OPP optimization model, with 

the retrieved AGA based initial state points  , a mesh is 

formed around the obtained state points. In case a certain 

state point in the mesh is obtained to enhance the OF, the 

newly obtained point is updated as the current state point 

for the next iteration. In the first iteration, with the mesh 

size of 1, the directional vectors, also called as the pattern 

vectors are formed as [0 1], [1 0], [-1 0] and [0 -1]    0. 
Thus, with the new state points the mesh is updated as 

depicted in Fig. 2. In this process the OF are estimated till 

a value lower than  0 is obtained. In case, there exist such 

a point, the poll is stated to be successful and thus the PS 

algorithm assigns this point as equivalent to   1 . 

Performing successful poll, PS introduces expansion factor 

that multiplies the current mesh size by 2 and thus moves 

further for the next iteration with the following new state 

points:    [-1 0]    1    [0  1]    1   [-1 0]    1 
and     [0 -1]   1 . In case a value lower than    is 

observed, the state point    is defined and thus the mesh 

size is raised by two and thus the process continues. In 

case at certain instant there is no state point having the OF 

lower as compared to the most recent value, then the poll 

is called unsuccessful then the current point remains 

unaltered and the size of mesh is reduced by half by 

applying contraction factor of value 0.5.  

 
Fig.2 2N Pattern Vectors forming PS mesh points 

 

In case of mesh size 4, when there occurs unsuccessful 

poll then none of the mesh points possesses lower value of 

OF as compared to the state points value at   and thus the 

poll called unsuccessful. It results into unaltered current 

state points for the next generation and hence    =    and 

to move further the contraction factor would be used to 

scale down the mesh size [58]. Thus, this optimization 

process continues till it obtains the optimal solution for the 

reduction of the OF, i.e., minimum PMUs to make power 

system complete observable. Unlike AGA in the first 

phase, PS terminates iteration once crosses the defined 

maximum iterations (200). The flow chart of the proposed 

PS based OPP optimization scheme is presented in Fig. 3.  
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Fig. 3 Pattern Search Based OPP optimization 



5. RESULTS AND DISCUSSION 

The presented research work intended to develop 

a robust multistage evolutionary computing scheme for 

PMU placement optimization. Unlike generic GA 

algorithm, the proposed AGA approach obtains the sub-

optimal solution as the initial state points signifying the 

initial PMU placement configuration. To alleviate the 

issue of local minima and convergence, the proposed AGA 

scheme incorporated adaptive crossover and mutation 

probability    and  m  respectively. Here, AGA estimates 

minimum number of strategic bus locations while ensuring 

complete power system or the grid network observable. 

Once retrieving the initial state conditions, the retrieved 

state points have been fed as input to the pattern search 

(PS) algorithm that eventually retrieves optimal locations 

of the PMUs across the network and the least possible 

number of PMUs to enable power system complete 

observable. The proposed hybrid PMU placement 

algorithm has been examined with different standard 

benchmark bus systems like, IEEE 14, IEEE 39, IEEE 118 

and KPTCL 155 bus architecture.  

To examine the performance of the proposed 

PMU placement model, the assessment has been done in 

four conditions. These conditions and respective 

annotations are given as follows: 

Table 1 Optimization Conditions  

TC1 Hybrid GA and Pattern search Algorithm 

TC2 Hybrid GA and Pattern search Algorithm 

considering ZIB 

TC3 Hybrid GA and Pattern search Algorithm 

considering one PMU loss 

TC4 Hybrid GA and Pattern search Algorithm by 

giving priority or ranking to buses or by placing at 

least one PMU at all generator buses. Generator 

buses are given highest priority followed by load 

buses. 

 

 
 

Fig. 4 Pattern Search Based OPP optimization 
 

 

Fig 4 and 5 indicate the graphical plot with the 

objective function evolution the IEEE 14 bus power 

systems. Similar types of graphs are obtained for other test 

cases. 

 
 
Fig. 5 Pattern Search Based OPP optimization 
 

The results obtained for different test conditions 

and varied bus systems are given as follows: 

 
Table 2 Results for different OPP algorithms 
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TC1 4 

 

13 39 58 

TC2 3 9 29 49 

TC3 9 

 

28 74 114 

TC4 6 

 

16 46 68 

 

As depicted in Table 2, the minimum PMUs needed to 

enable power system complete observable; our proposed 

AGA-PS algorithm requires only 4, 13 and 39 PMUs for 

IEEE 14, IEEE 39 and IEEE 118 bus networks 

respectively. In case of single PMU loss, the proposed 

OPP scheme needs 9, 28 and 74 PMUs to have complete 

observability in IEEE 14, IEEE 39 and IEEE 118 bus 

networks respectively. The results obtained affirm that the 

proposed scheme is capable of producing optimal set of 

PMUs for single PMU loss condition. AGA-PS with ZIB 

has also shown affirmative output where it needs 3, 9 and 

29 PMUs to enable complete network observability of 

IEEE 14, 39 and 118 networks. In addition to this, the 

proposed AGA-PS algorithm has been tested by 

prioritizing generator buses or by placing at least one 

PMU at all generator buses, where it demands 6, 16 and 46 

PMUs to make power system (IEEE 14, IEEE 39 and 

IEEE 118, respectively) complete observable. The overall 

results obtained state that the proposed AGA-PS algorithm 

performs better in different PMU placement conditions. 

Discussing as cumulative performance by the proposed 

AGA-PS OPP approach, it can be found that for IEEE 14 

bus network a total of 4 PMUs are needed to have 

complete system observability; while for 39 it requires 

only 13 PMUs. For IEEE 118 bus network our proposed 

OPP approach needs 39 PMUs which seems satisfactory 
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and hence confirms that the proposed PMU placement 

strategy could be effectively employed for large scale 

power grid network observability assurance. The PMU 

placements and their optimal location in different 

benchmark networks are presented in the following tables. 

Table 3 presents the locations of the PMUs to enable 

IEEE14 bus network completely observable. Similarly, the 

PMU locations for IEEE 39 and IEEE 118 are presented in 

Table 4 and Table 5, respectively.  

Table 3 PMU placement results for IEEE 14 Bus 

system 

IEEE14 Bus 

TC1 2,6,7,9 

TC2 2,6,8 

TC3 2,3,5,6,7,8,9,11,13 

TC4 1,2,3,6,8,9 

 

Table 4 PMU placement results for IEEE39 Bus 

system 

IEEE 39 Bus 

TC1 
2,6,9,10,11,14,17,19,20,22,23,25,29 

  

TC2 2,3,5,8,9,11,13,17,23 

TC3 

   

1,2,3,6,8,9,10,11,13,14,16,17,19,20,22,23,25,26,29 

30,31,32,3334,35,36,37,38 

 

TC4 
3,4,8,12,16,26,30,31,32,33,34,35,36,37,38,39 

 

Table 5 PMU placement results for IEEE 118 Bus 

system 

IEEE 118 Bus 

TC1 

2,5,9,11,12,14,18,20,22,23,26,28,30,32,36,37,42,44 

46,51,53,57,59,61, 

66,68,71,75,79,82,85,86,89,92,96,100, 

106,109,110,114,118 

TC2 
1,6,8,12,15,17,21,25,29,34,40,45,49,53 

56,62, 72,75,77,80,85,86, 

90,94,101,105,110,114,118 

TC3 

1,2,5,7,9,10,11,12,14,15,17,18,20,21,23,26,27,28,29,30, 

32,34,35,37,40,42,44,45,46,49,50,52,54,56,61,62,63,64, 

67,68,70,71,72,73,75,76,77,79,80,83,85,86,87,88,89,91, 

92,94,96,100,101,103,105,107,108,109,110,111 

112,115,116,117 

TC4 

3,5,10,12,15,17,20,23,25,26,28,35,37,39 

,42,44,46,47,49,51,54,56,59,60,61 

65,66,68,69,71,75,78,80,83,86,89,90,92, 

94,100,103,105,110,111,115,118 

 

Considering an application aspect, the predominant 

contribution of this research work is its applicability for 

KPTCL power system or power distribution network 

where PMU are placed by giving weightage to all types of 

buses. Generator buses are given highest weight; second 

priority is given to buses with higher load connected 

buses. It is also called as the prioritized PMU placement. 

KPTCL 155 Bus Power System 

TC1 

1,3,4,6,10,11,13,15,16,18,23,,27,31,34,35,36,39 

44,46,53,54,56,59,61,66,67,6874,76,81,,82,84,86 

88,91,9495,98,100,101,105,108,109,113,114,115 

119,121,124,129,131 

132,137,138,143,144,145,152 

TC2 

1,2, 4, 6, 9, 11, 15, 17, 21, 24, 27, 30, 33, 36, 38 

44, 46, 50, 52, 54, 56, 58, 61, 64, 67, 68, 70, 78 

79, 80, 84, 86, 90, 93, 97, 99, 101, 103, 105,109 

115, 123, 129, 134, 138, 144, 145, 152,155 

TC3 

1,2,4,2,6,7,8,9,10,11,12,15,16,17,18,21,22,24,26,27 

28,31,32,33,34,35,36,38,39,40,43,44,45,46,47,49 

50,51,52,53,54,55,56,57,58,59,,61,62,63,64,65 

67,68,70,71,72,73,77,78,80,81,82,83,84,85,86,87 

89,90,92,93,96,97,98,99,100,101102,105,108,109 

110,112,113,115,116,117118,119,121,123,124 

125,126,127128,129,131,133,134,137 

138,139,143,144,145,146,147,148 

149,150,152,153154,155 

TC4 

1,4,6,7,10,12,16,17,21,22,24,28,29,30,33,36,39 

44,46,47,50,51,53,54,56,58,61 

64,67,68,70,78,80,83,84,86,90,97,98,100,102 

104,105,110,115,117,123,128 

129,130,131,132,133,134,135,136,137,138,139,140 

141,143,144,145,147,150151,152 

 

 

The overall proposed model has been developed using 

MATLAB 2015a software tool, which has been tested on 

general purpose computers with 4GB RAM, 512 GB of 

memory space and 1.80 GHz processor. 

 

6. CONCLUSION 

This paper proposed a novel multiphase evolutionary 

computing based PMU placement model. Unlike 

conventional approaches like mathematical optimization 

schemes and traditional evolutionary computing based 

OPP systems, in this paper and enhanced Adaptive 

Genetic Algorithm (AGA) was used that obtained sub-

optimal solutions as the initial state points for pattern 

search (PS) based OPP. The implementation of AGA not 

only alleviates the local minima but also deals with 

convergence and hence gives sub-optimal solution in 

minimum iterations without getting converged. It enables 

later phase (PS based OPP) to achieve optimal number of 

PMUs needed and its location to make power system 

completely observable. The performance assessment with 

different IEEE bus architectures has revealed that the 

proposed AGA-PS scheme enables complete network 



observability with 9, 28 and 74 PMUs for IEEE 14, IEEE 

39 and IEEE 118 buses respectively, with single PMU 

loss. Similarly, with zero injection bus it requires only 3, 9 

and 29 PMUs for IEEE 14, 39 and 118 bus networks. 

Considering the large scale network, the simulation of the 

proposed OPP algorithm has exhibited appreciable 

performance with KPTCL power grid network. The results 

exhibit that AGA-PS based OPP can be effectively used 

for cost effective large scale network design. The 

effectiveness of AGA combined with PS strengthens the 

proposed system to be used to cost effective grid design 

and optimal PMU placement to make electrical network 

completely observable.  
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