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Abstract—In this paper, a sensorless speed control
for induction machines (IM) is proposed. In order to
improve the robust properties of the controller, the control
approach is synthesised based on the Lyapunov theory.
Moreover, an interconnected observer is presented to
estimate the rotor speed.
Stability analysis of the closed loop system is developed
and proved. Finally, simulation results have been presented
in order to exhibit the performances of the suggested
control under parametric uncertainties.
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I. INTRODUCTION

The interest in ac-motor drives has seen an important
growth in several applications such as aerospace, military
and automotive industries.
Improving the performances of IM has known a progres-
sively increasing attention as a topic research. In fact,
several control schemes have been proposed such as the
linearization technique [1]-[2] where the control design
in this category is based on a linear model around an
equilibrium point [3]-[4].
Other methods using adaptive control approaches has
been proposed in [5]-[7]. Indeed, authors in [5] have
suggested that the flux the rotor resistance and the load
torque are estimated while the speed is assumed to be
known.
Moreover, sliding mode control has been proposed in [8]-
[10]. An Integral sliding surface for vector control has
been described in [9].
Another kind of control is called, the Backstepping
control [11]-[12]. The control design is divided into two
steps. The first one is to synthesize a virtual control
variable. Then, the second step is to determine the actual
command using appropriate Lyapunov functions.
The knowledge of the rotor speed is very important for
the induction machine control. Speed sensors, tradition-
ally used, increases the complexity of the arrangements
and imposes additional costs.
Sensorless control has been considered as an important
solution. Several approaches for speed/position estima-
tion have been investigated such as : Model reference

Adaptive System (MRAS)[13]-[14], Extended Kalman
filter (EKF) [15]-[16], Lunberger observer (ELO) [17]-
[19], newly fuzzy logic and neuronal network observers
[20]-[21]
The proof of the global stability of the closed loop system
(Control + Observer) is the major difficulty for the sen-
sorless speed control . Indeed, few works have proposed
a comprehensive demonstration of this approach, except
[22]-[23].
In this paper, we propose a robust control for induction
machine based on the Lyapunov theory. In fact, this
approach is made up of a PI Flux and speed regulators,
whose provides the IM park current reference.
The control laws can be determined systematically using
an appropriate Lyapunov function. Then, an intercon-
nected observer is presented. This observer was synthe-
sised under parametric uncertainties.
The global stability study of the closed loop system
(Control + Observer) has been analyzed and proved based
on Lyapunov theory.

The rest of the paper is arranged as following: Section
II presents the Control technic for the IM based on
the Lyapunov approach. The third section is reserved to
present the interconnected observer. In section IV, the
stability study of Observer-Controller has been analyzed.
Simulations results are reported in Section V to illustrate
the effectiveness of the proposed control topology.

II. CONTROL TECHNIC FOR INDUCTION MACHINE
BASED ON THE LYAPUNOV APPROACH

In this section, we present a robust control approach
for IM based on the Lyapunov stability theory.
The main objective of this control technic is to ensure
the global stability of the closed loop system based on
an appropriate choice of the voltage control values.
Two PI controllers for the Flux and the speed are applied
allowing a better tracking characteristics of The IM.
The associate PI gains are calculated by pole placement
method. Robustness study against parametric variations
is developed.
The state model of the induction machine with rotor
flux orientation in the d-q reference is represented by :
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where:
Ω: Rotational speed.
ϕrd, ϕrq: d-q components of the magnetic rotor flux.
isd, isq: d-q components of the stator current.
usd, usq: d-q components of the stator voltage.
Tl: Load torque.
Parameters σ, τr, c, γ1 and γ2 are defined by:
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Lr

Rr
, c =

f

J

γ1 =

L2
m

L2
r

Rr +Rs

σLs
, γ2 =

Lm

LrLsσ

with (Rr, Rs): rotor and stator resistances, σ: leakage
coefficient, τr: rotor time constant, Ls: stator inductance,
Lr: rotor inductance, Lm: mutual inductance, p: number
of pole pairs, J : rotor moment of inertia.
U=[usd, usq]T presents the control voltage. Outputs of
the flux and the speed controllers are isd and isq .
I∗=[i∗sd, i

∗
sq]

T is the current reference.
The control law is defined based on the global stability
study using Lyapunov functions.

A. Flux regulator Synthesis:

We define the reference current i∗sd:

i∗sd = KIϕrd
t

∫
0
ϕ∗rd − ϕrddτ +KPϕrd (ϕ

∗
rd − ϕrd)

+
τr
Lm

ϕ̇∗rd +
1

Lm
ϕ∗rd

Where KIϕrd and KPϕrd present respectively the in-
tegral and the proportional constant of the first (PI)
regulator.
The dynamics of the flux error∆ϕ is defined by:

∆̇ϕ = ϕ̇∗rd − ϕ̇rd (1)

=
−1

τr
(1 + LmKPϕrd)∆ϕ − LmKIϕrd

τr

t

∫
0
∆ϕ(τ)dτ

Let define the following coordinates:

Γϕ = [
t

∫
0
∆ϕ(τ)dτ,∆ϕ]

T (2)

Equation (1) becames:

Γ̇ϕ = AϕΓϕ (3)

where Aϕ =

[
0 1
β1ϕ β2ϕ

]
with β1ϕ = −LmKIϕrd

τr
,

β2ϕ =
−1

τr
(1 + LmKPϕrd).

The gains KIϕrd and KPϕrd are obtained in such away
that the matrix Aϕ is stable.
Based on the pole placement technique,λ1 and λ2 where
(p+ λ1)(p+ λ2) = 0 it yields:

KIϕrd =
λ1λ2τr
Lm

,KPϕrd =
−(λ1 + λ2)τr − 1

Lm
(4)

B. Speed regulator Synthesis:
By ensured that the speed is equal to zero, we can

establish the rotor flux in the machine.
Thus, ( ϕrd = ϕ∗rd = constant), the equation of the
electromechanical torque become Cem = KT i

∗
sq with

KT is a positive constant defined by p
Lm

Lr
φrd.

The quadrature reference current i∗sq is defined as :
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1
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t

∫
0
(Ω∗ − Ω) dτ +KPΩ (Ω∗ − Ω)]

+
1
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J
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The dynamics of the speed error ∆Ω is given by:

∆̇Ω = Ω̇∗ − Ω̇ = −KPΩ

J
∆Ω − KIΩ

J

t

∫
0
∆Ω(τ)dτ (6)

Consider the coordinates change as :

ΓΩ =

[
t

∫
0
∆Ω(τ)dτ,∆Ω

]T
(7)

Equation (6) in the new coordinates becomes:

Γ̇Ω = AΩΓΩ (8)

where AΩ =

[
0 1
β1Ω β2Ω

]
with β1Ω = −KIΩ

J
,

β2Ω = −KPΩ

J
.

The gains KIΩ and KPΩ are determined using the same
way as the d-axis current controller gains
Thus,

KIΩ = λ1λ2J ;KPΩ = −(λ1 + λ2)J (9)

Remark 1. Since Aϕ andAΩ are two stable matrixes, so
∀ Qϕ > 0 and QΩ > 0,
∃ Pϕ = PT

ϕ > 0 and PΩ = PT
Ω > 0 defined as:

PϕAϕ +AT
ϕPϕ = −Qϕ (10)

PΩAΩ +AT
ΩPΩ = −QΩ



Theorem 1. [27] Consider the IM model represented by
equation (1 ) with the reference signals Ω∗ and ϕ∗rd.
U = [usd, usq]

T is a control law for system (1) that
forces the IM states variables to follow their references,
with:

usd = σLs (Kisd∆isd + i∗sd −δ1) (11)

usq = σLs

(
Kisq∆isq + i∗sq −δ2

)
(12)

Where:
∆isd = i∗sd − isd,∆isq = i∗sq − isq

δ1 = −γ1isd +
γ2
τr
ϕrd + pΩisq +

Lm

τr

i2sq
ϕrd

,

δ2 = −γ1isq − pΩisd − pΩγ2ϕrd −
Lm

τr

isdisq
ϕrd

Kisd,Kisq tow positive constants.

III. INTERCONNECTED OBSERVER

A. Observer design

The induction machine model 1can be seen as the
interconnection between two subsystems as follows:{

ẋ1 = A1 (x2)x1 + g1(u, x2, x1)
y1 = C1x1

(13){
ẋ2 = A2 (x1)x2 + ϕ(u, y)

y2 = C2x2
(14)

with
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[
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0 0

]
,
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]
where x1 = [isαΩ]

T , x2 = [isβϕrαϕrβ ]
T are

respectively the state vectors of systems (13) and
(14).
The interconnected observer is based on the
interconnection between several observers and requires
some properties as the property of the input persistence.
Remark 2. It is clear that :

• A1 (x2) is globally lipschitz with respect to x2.
• g1(u, x2, x1) is globally lipschitz with respect to the

pair (u, x1).
• A2 (x1) is globally lipschitz with respect to x1.

Then, a high gain observers for the system (13)-(14) are
given respectively by:{

˙̂x1 = A1 (x̂2) x̂1 + g1 (u, x̂2, x̂1) +M1(x̂2, θ1)(y1 − ŷ1)
˙̂y1 = C1x̂1

(15){
˙̂x2 = A2 (x̂1) x̂2 + ϕ (u, y) +M2(θ2, x̂1)(y2 − ŷ2)
˙̂y2 = C2x̂2

(16)
where
x̂1 = [̂isαΩ̂]

T is the estimated vector of
x1x̂2 = [̂isβϕ̂rαϕ̂rβ ]

T is the estimated vector of
x2

A1 (x̂2) =

[
0 γ2pϕ̂rβ
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]
,
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And g1 (u, x̂2, x̂1) is the estimation term of
g1 (u, x2, x1).
The observer gain M1(x̂2, θ1) is given by:

M1 (θ1, x̂2) = Γ−1(x̂2)S
−1
1 CT

1 (17)

Where :

Γ (x̂2) =

[
1 0

0 γ2pϕ̂rβ

]
is the solution of the following

equation:

Ṡ1(θ1) = −θ1S1(θ1)−AT
0 S1(θ1)− S1(θ1)A0 + CT

1 C1

with θ1 is a positive constant and A0 =

[
0 1
0 0

]
.

The second observer gain is:

M2 (θ2, x̂1) = S−1
2 CT

2 (18)

is obtained by solving the differential equation:

Ṡ2(θ2, x̂1) = −θ2S2(θ2, x̂1)−AT
2 S2(θ2, x̂1)

−S2(θ2, x̂1)A2 + CT
2 C2 (19)

with θ2 is a positive constant
An estimator of the load torque Tl is given by the
following equation:

T̂l = J
d

dt
Ω̂ + fΩ̂ + Jm

(
ϕ̂rαîsβ − ϕ̂rβ îsα

)
+Γ−1(x̂2)S

−1
1 CT

1 C1(isα − îsα) (20)

B. Stability analysis of the interconnected observer un-
der parametric variations

The estimation errors are defined by:

e1 = x1 − x̂1; e2 = x2 − x̂2 (21)

The dynamics error e1 is given by:

ė1 = [A1 (x̂2)− Γ−1 (x̂2)S
−1
1 CT

1 C1]e1 + g1 (u, x2, x1)

−g1 (u, x̂2, x̂1) + [A1 (x2)−A1 (x̂2)]x1 (22)



The dynamics error e2 is defined as:

ė2 = A2 (x1)x2 −A2 (x̂1) x̂2 − S−1
2 (θ2, x̂1)C

T
2 C2e2

(23)
Considering the uncertainties on the IM parameters,
equations (22) and (23) become:

ė1 = [A1 (x̂2)− Γ−1 (x̂2)S
−1
1 CT

1 C1]e1 + g1 (u, x2, x1)

−g1 (u, x̂2, x̂1) + δg1 (u, x2, x1) (24)
+ [A1 (x2)−A1 (x̂2) + δA1 (x2)]x1

ė2 = [A2 (x1) + δA2 (x1)]x2

−A2 (x̂1) x̂2 − S−1
2 (θ2, x̂1)C

T
2 C2e2 (25)

where δg1 (u, x2, x1) , δA1 (x2) and δA2 (x1) are re-
spectively the uncertain terms of g1 (u, x2, x1) , A1 (x2)
and A2 (x1).
The machine states and parameters are known accurately
and they are bounded. ∥δg1 (u, x2, x1)∥ 6 α1

∥δA1 (x2)∥ 6 α2

∥δA2 (x1)∥ 6 α3

(26)

Lemma 1. Assume that the input w is regularly persistent
for a given state affine system and consider the Lyapunov
differential equation defined as:

Ṡ(t) = −θS(t)−AT (w(t))S(t)− S(t)A(w(t)) +CTC

with S(0) > 0 , then ∃θ0,∀θ > θ0, ∃α > 0, β > 0, t0 >
0: ∀t0, αI 6 S(t) 6 βI where I is the identity matrix.
Remark 3.
It is clear that w = x̂2 and S(t) = S1 for subsystem (15),
and w = x̂1 and S(t) = S2 for the second subsystem
(16).
Theorem 3. [28] Consider the Induction Motor model
presented by (13) and (14), system (15)-(16), is a high
gain interconnected observer for system (13)-(14) respec-
tively.

IV. OBSERVER-CONTROLLER SCHEME STABILITY
ANALYSIS:

The main goal is to achieve a control without a
mechanical sensor for the IM. Speed and flux are not
measured, so the outputs of the speed and flux regulator
will be presented as follows :
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where Ω̂ and ϕ̂rd are the estimated values of the speed
and flux given by the adaptive observer.
The reduced closed loop model of the controlled
machine become:
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The dynamic errors equations (3) and (8) become,
respectively:{

Γ̇ϕ = AϕΓϕ +Bϕχϕ(εϕ)

Γ̇Ω = AΩΓΩ +BΩχΩ(εΩ)
(29)

where εϕ = ϕrd − ϕ̂rd

χϕ (εϕ) = −Lm
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t

∫
0
εϕ (τ) dτ

]
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εϕ
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KIΩ
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t

∫
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]
Bϕ = BΩ =

[
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]
For the closed loop system, The dynamic error is given
by:

Γ̇ϕ = AϕΓϕ +Bϕχϕ(εϕ)

Γ̇Ω = AΩΓΩ +BΩχΩ(εΩ)

ė1 = [A1 (x̂2)− Γ−1 (x̂2)S
−1
1 CT

1 C1]e1 + g1 (u, x2, x1)

+δg1 (u, x2, x1) [A1 (x2)−A1 (x̂2) + δA1 (x2)]x1

−g1 (u, x̂2, x̂1)
ė2 = [A2 (x1) + δA2 (x1)]x2 −A2 (x̂1) x̂2

−S−1
2 (θ2, x̂1)C

T
2 C2e2

Theorem 4. Consider the reduced model of the induction
machine. If the speed and the flux regulators use the



estimated variables given by the interconnected observer
(15)-(16), then the errors of the flux and the speed
asymptotically converge to zero.
Proof of Theorem 4
The control voltage usd and usq are chosen as:

usd = σLs

(
Kisdεisd + i∗sd

(
ϕ̂rd

)
− δ1

)
(30)

usq = σLs

(
Kisqεisq + i∗sq

(
Ω̂, ϕ̂rd

)
− δ2

)
(31)

with εisd = i∗sd

(
ϕ̂rd

)
− isd; εisq = i∗sq

(
Ω̂, ϕ̂rd

)
− isq

Consider the Lyapunov function defined as:

Voc = Vo + Vc = V1 + V2 + ΓT
ϕPϕΓϕ + ΓT

ΩPΩΓΩ

+
1

2
(ε2isd + ε2isq) (32)

Admitting the equation (39) in [28], we have

V̇o 6 − (1− ε)λ1V 6 δ0V;∀ ∥e∥ > λ2ψ

ελ1
(33)

with δ0 = (1− ε)λ1 .
The derivative of equation (32) is given by:

V̇oc 6 −δ0 ∥e∥2 + ΓT
φ(PϕAϕ +AT

ϕPϕ)Γϕ (34)

+ΓT
Ω

(
PΩAΩ +AT

ΩPΩ

)
ΓΩ −Kisqε

2
isq

+2ΓT
ϕPϕBϕχϕ + 2ΓT

ΩPΩBΩχΩ −Kisdε
2
isd

+εisd

(
Kisdεisd + i∗sd −δ1 −

1

σLs
usd

)
+εisq

(
Kisqεisq + i∗sq −δ2 −

1

σLs
usq

)
Replacing the control voltages by their value, equation
(34) become:

V̇oc 6 −δ0 ∥e∥2 − ηϕ ∥Γϕ∥2 − ηΩ ∥ΓΩ∥2

+2l1 ∥Γϕ∥ ∥e∥+ 2l2 ∥ΓΩ∥ ∥e∥ −Kisdε
2
isd

−Kisqε
2
isq (35)

where

∥χϕ(εϕ)∥ 6 l1 ∥e∥ and ∥χΩ(εΩ)∥ 6 l2 ∥e∥ , l1 > 0, l2 > 0

Considering the following inequalities:

∥e∥ ∥Γϕ∥ 6 ζ1
2
∥Γϕ∥2 +

1

2ζ1
∥e∥2

∥e∥ ∥ΓΩ∥ 6 ζ2
2
∥ΓΩ∥2 +

1

2ζ2
∥e∥2

∀ζ1, ζ2 ∈ ]0, 1[
We obtain :

V̇oc ≤ −δ0 ∥e∥2 − ηϕ ∥Γϕ∥2 − ηΩ ∥ΓΩ∥2 + l1ζ1 ∥Γϕ∥2

+l2ζ2 ∥ΓΩ∥2 −Kisdε
2
isd −Kisqε

2
isq+

l1
ζ1

∥e∥2

+
l2
ζ2

∥e∥2 (36)

This gives:

V̇oc ≤ −(δ0 −
l1
ζ1

− l2
ζ2

) ∥e∥2 − (ηϕ − l1ζ1) ∥Γϕ∥2 (37)

−(ηΩ − l2ζ2) ∥ΓΩ∥2 − 2Kisd(
1

2
ε2isd)− 2Kisq(

1

2
ε2isq)

We define

v = min(σ1, σ2, σ3, 2Kisq, 2Kisd)

where

σ1 = δ0 −
l1
ζ1

− l2
ζ2
, σ2 = ηϕ − l1ζ1, σ3 = ηΩ − l2ζ2

The derivative of Voc becomes:

V̇oc 6 −vVoc (38)

By choosing ηϕ, ηΩ and δ0 such that σ1, σ2 and σ3 are
greater than zero. Then, flux and speed errors converge
asymptotically to zero.

V. SIMULATION RESULTS

Simulation results have been carried out using Mat-
lab/Simulink. The nominal parameters of the IM used in
simulations are given in Table 1.

TABLE I
IM NOMINAL PARAMETERS

Magnitude Value
PnNominal power 3kW
Vn Nominal voltage 220V

Ω 1460 tr/min
p 2
fn 50Hz
Rs 1.411Ω
Rr 1.045Ω
Ls 0.1164H
Lr 0.1164H
Lm 0.1113H

J 0.0116kg.m2

Figure 1 illustrates the simulation results of the sen-
sorless control for IM with nominal parameters.
The evolution of the speed and the flux are presented in
Figures 1.(a) and 1.(c) respectively. The speed error is
displayed in Figure 1.(b), the Flux error is displayed in
Figure 1.(d). It is obvious that the estimated speed and
Flux track their actual values very well.
In order to illustrate the robustness of the sensorless
control scheme, the influence of parameter deviations is
investigated. First, Figure 2 shows the responses for a
50% increase of the stator and rotor resistances.
Secondly, Figure 3 presents the robustness with respect
to the inductances variations. According to Figures 2.(b),
2.(d), 3.(b) and 2.(d), the observer converges perfectly
and gives desirable results which proves the robustness
of the suggested sensorless control.
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Fig. 1. Speed and Flux Tracking nominal case. Legend: (a): Speed
tracking, (b): Speed error, (c): Flux tracking , (d): Flux error
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Fig. 2. Speed and Flux Tracking with respect to +50% on Rs and
Rr . Legend: (a): Speed tracking, (b): Speed error, (c): Flux tracking ,
(d): Flux error

VI. CONCLUSION

In this paper we have developed a sensorless control
for IM combining a new control approach with an
interconected observer. The global stability of both con-
troller and observer is guaranteed by Lyapunov stability
analysis. Simulation results confirm the effectiveness of
the proposed method under uncertainties parameter.
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