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Abstract— This paper develops a robust state feedback 

control for discrete-time Takagi-Sugeno fuzzy model 
system. The state H∞ feedback controller is synthesized 
based on a fuzzy model control technique called Parallel 
Distributed Compensation (PDC). The new algorithm is  
proposed straightforward controller to robustly stabilize 
the highly nonlinear systems and to reduce the 
conservatism. So, the algorithm is used to improve the 
performance and to guarantee the steady state condition 
of the nonlinear system and ensures the robustness of the 
fuzzy model system. Moreover, a design condition and 
criteria for the controller are given by the feasibility  of 
linear matrix inequalities (LMIs). So the simulations 
verify that the designed technique will assure H∞ 
performance of the nonlinear system and attenuate the 
effect of external disturbances.  

Keywords: Takagi–Sugeno fuzzy (TSF) system, 
Parallel Distributed Compensator (PDC), Linear Matrix 
Inequality (LMI). 

I. INTRODUCTION 

As the main objectives of the control theory is  
designing a controller to be able to  robustly stabilize 
the real dynamic systems which are nonlinear. 
Therefore, a lot of studies are trying hard to find a 
simple and effective technique to control real 
systems, where the stability conditions and control 
techniques for these systems are generally 
challenging. In the last decades, the fuzzy logic 
control (FLC) is regarded to be a powerful technique 
to control complex nonlinear system. In this direction, 
FLC using Takagi-Sugeno fuzzy (TSF) system gains 
great attentions in the field of nonlinear control 
systems as a result of its simplicity, systematically 
and effectiveness [1-8]. In TSF systems, the nonlinear 
model is blending of linear time-invariant subsystems 
connected by weighted membership functions. This 
allows the nonlinear system to be presented in the 
form of local linear models set. Therefore, linear 
systems approaches can be employed to study and 
design closed-loop controlled systems. Based on TSF 

model, the technique of Parallel Distributed 
Conpensator (PDC) is used to control and stabilize 
complex nonlinear systems by using state feedback 
controller for each rule in TSF model [8–11]. 

Nowadays, a PDC scheme has been intensively 
used in solving many academic and industrial 
problems because the concept of PDC is simple and 
easy to develop. Such as, the TSF model of an 
inverted pendulum is presented and the PDC scheme 
is developed to stabilize it in [12]. In [13] switched 
PDC is synthesized for R/C Hovercraft. Baranyi et al. 
[14] propose a PDC controller for stabilization of a 
real 3-DOF RC helicopter to get a good speed 
response. A practical approach of a Takagi-Sugeno 
fuzzy (TSF) modeling and control for F16 aircraft is 
presented in [15]. The design and implementation of 
PDC controller for temperature control are introduced 
in [16]. In [17], the fuzzy controller is presented 
utilizing the PDC technique and it is synthesized in 
the design of Maximum Power Point Tracking 
(MPPT) for the solar PV power system. The PDC 
fuzzy based controller has been proposed for wind 
energy conversion systems in [18].  

 Recently, a study of the stability of TSF system 
has been a major and important problem in this 
regard, therefore considerable efforts are being 
exerted in order to reach and find the finest and 
easiest solutions using Lyapunov function approach. 
Also, the optimal procedure using linear matrix 
inequality (LMI) stability problem formulation is very 
attractive, because the optimal procedure of the LMI 
approach can solve the difficulties in finding control 
design conditions, for TSF systems. Despite the 
prosperity of LMI-based approach, there is a 
significant issue that the solutions related to LMIs are 
quite conservative. Hence, considerable researches on 
relaxed criteria and stability conditions for TSF 
system have been carried out to reduce the 
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conservatism. So some improvements have been 
reported to relax the conditions for TSF systems 
exploiting a common quadratic Lyapunov function 
[19,20]. Whereas, other studies were utilizing Piece-
wise Lyapunov function [22-24] and fuzzy Lyapunov 
function [24–30] to construct LMI relaxations 
conditions for TFS systems. Moreover, such different 
kind of relaxing techniques like non-PDC scheme 
[32-34] and switched PDC techniques [3,5,6,30,34] 
are frequently used to reduce the conservatism. The 
relaxed conditions and schemes are worthy addressed 
not only for ensuring the stability of TSF system but 
also for improving other requirements such as speed 
performance, the domain of attraction, input-output 
constraint and so on. 

The scope of this work is to propose a robust H∞ 
controller for TSF model. The proposed technique has 
a slack matrix which provides less conservative 
conditions, therefore, yields good results. The main 
purpose of proposed PDC is to robustly stabilize the 
closed loop system under different conditions. Based 
on LMI technique, the state feedback controller's gain 
will be obtained. Finally, Two dynamic systems are 
simulated to prove the ability of the proposed 
technique to ensure the stability properties of the 
nonlinear system and to guarantee robustness against 
external disturbance. The structure of this paper is as 
follows. The discrete TSF models are introduced in 
Section II. The proposed PDC controller is reported in 
Section III. Section IV, simulation results are shown 
to emphasize the efficiency and explore the 
effectiveness of the proposed method and compare it 
with PDC scheme. Finally in section V, the 
conclusion is given.    

Notation: The superscript “T” represents the 
transpose of a matrix. The notation “*” is used as an 
ellipsis for terms that are induced by symmetry.  

II. TSF MODEL 

The TSF model is given by fuzzy IF-THEN rules 
and represents nonlinear system by linear time-
invariant subsystems connected by weighted 
membership functions [1]. So the i-th rule of the 
discrete fuzzy models (DFS) is represented by: 

 
DFS model rule i: 
 

If δ1(z) is Mi1 ... and  δ P(z) is MiP, 
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        Here i=1,2,...,r  where r is the number of  model 
rules; Mij is the fuzzy set ; x(z) R

n
 is the state vector 

; u(z) R
m
 is the control input;  y(z) R

q
 is the 

output vector ; w(z)  R
s 

is the energy-bounded 
disturbance. Ai,B1i,B2i,Ci,D1i and D2i are of 
appropriate dimensions ; δ1(z),..., δP(z) are known 
premise variables. 
The final outputs of the fuzzy systems are inferred as 
follows: 
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For all z. The term (z))(δM jij is the grade of 

membership function of  (z))( j  in ijM .For brief 
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III. FUZZY CONTROLLER DESIGN 

      For the above TSF model, fuzzy controller can be 
constructed using the PDC technique. The PDC 
control concept is synthesized by designing a linear 
compensator to control each of fuzzy rules. So the 
fuzzy controller uses the same fuzzy sets of TSF 
model. 

Control rule i:  
    thenMiszandandMiszIF irri , 11      
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Where ),,,( riFi 21  is the gain of feedback 

controller. Hence, the PDC controller can be obtained 
by 
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     By combining (2),(3) and (6) then the closed-loop 
discrete fuzzy system is: 
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Now, a robust H∞ state feedback controller is 
proposed using PDC technique. The new controller 
will be used to control and stabilize unstable system. 
The proposed PDC will exploit an LMI-based scheme 
to conduct a solution to the controller's gain of state 
feedback controller for TSF systems in discrete form. 
So the main objective of the proposed controller is to 
stabilize the  overall system if there is no disturbance. 
Also, under zero initial conditions, the controlled 
system fulfill the exponential H∞ control performance 
γ. 

Theorem: For a given ℋ∞ performance level γ > 

0, if there exists symmetric matrix G = G
T 

> 0 , 

Ψij=Ψ
T

ij , E > 0, Yj, 1≤i,j≤ q, satisfying: 
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     Then the controller (6) with 
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i

Y
i

K                              (15) 

Provides the TSF system is asymptotically stable 
satisfying  H∞  performance level  γ .  

      The slack matrix Ψij is used to reduce the 
conservatism results from utilizing the LMI 
technique. So, the theorem provides a relaxed stability 
criteria to calculate the controller's gain of the PDC 

scheme. The algorithm is explicit to analysis the 
TSF control system and there no much LMI's 
variables to evaluate.The main advantage of this 
scheme that it is very easy and simple to implement 
the proposed controller practically because there is no 
additional information that you must know about the 
nonlinear system and there is no complexity in the 
procedures like other nonlinear control techniques.    

Remark: If we choose  Ψii = Ψij = 0,  1≤i, j≤q  in the 
theorem, then the proposed PDC will be the same 
PDC scheme as in corollary in [35]. 

IV. SIMULATION RESULTS 

In this section, discrete-time TSF control system is 
employed to two dynamic systems to make them 
stable and more robust. The TFS system model is 
presented. Then the proposed PDC controller is 
implemented and the corresponding simulations are 
given.  

With changing the amplitude of the disturbance, 
the proposed PDC controller is compared with PDC 
scheme. It should be mentioned that the proposed 
controller has the same response or better than PDC 
scheme.  

A. Example 1 

Consider a following discrete-time TSF model of  
steering a model car[11]. The system model with 
sampling time T=0.5 exposed to disturbance: 
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Table 1  
Some Cases of Initial Position of the Model Car 

 x1(0)(deg) x2(0)(m) 

Case1 0 6.4 

Case2 -180 5.5 

Case3 -90 -6.4 

Case4  180 -5.5 

Where x1(z) is the angle of the car with respect to 
horizontal, while x2(z) is the vertical position of the 
rear end of the car. The nonlinear system will be 
controlled and the response will be shown under 
different initial condition. The model car is exposed 
to external disturbance    zz 212010  sinw   to 

notice the effect of proposed PDC on the output and 
compare the results with PDC scheme[35].Applying 
the theorem of the proposed technique (14), we get: 
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     ‎Fig. 1. and ‎Fig. 2. display the response of the 
controlled system from the initial positions in [11]. In 
cases of changing the initial state of the system, we 
try to verify that the proposed controller will stabilize 
the system under different positions. It is realized  
that the both controller are effective to bring the car 
back to zero position very quickly. But despite the 
fact that the states in PDC are faster than the 
proposed controller, however, it is more smoothly 
without distortions in the proposed PDC. The state 
trajectories of the controlled system with change in 
the value of disturbances are shown in Fig. 3. and 
Fig. 4. It is noticed that the proposed PDC controller 
and PDC  scheme [35] stabilize and control the 
system. The obtained H∞ performance via proposed 
PDC equal 0.0088, whilst the value using PDC equal 
0.736. So from the above computational we noticed 
that the proposed PDC gives better response. 

 

Fig. 1.  Response of horizontal angle x1 

 

Fig. 2.  Response of vertical position 

 

Fig. 3.  State response of  x2 with ρ=50 

 

Fig. 4.  State response of x2 with ρ=100  
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Fig. 5.  State  response of  x2 with ρ=400 

From Fig.5, the gain of disturbance is much 
increased and both controllers try to stabilize the 
response. Nevertheless, it is depicted that in case of 
PDC the system is unstable. Where, in the proposed 
scheme the system is still stable with perfect 
response without deformity. This is because the 

proposed algorithm has slack matrix variables to 
minimize the conservatism arises from using of 
Lyapunov function.    

B. Example 2 

      The second example also presents the 
performance and robust stabilization of the proposed  
H∞ controller. So consider a discrete-time of a DC 
motor controlling an inverted pendulum via a gear 
train [12]: 
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The grade of membership functions is given: 
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     The disturbance to be w=2 (1+z)
-1

sin(10z) and 
apply to the system to analysis the controlled system 
with and without disturbance. The simulation results 
are depicted in Figs 6-8. These figures will explore 
the effectiveness of proposed PDC in attenuation the 
disturbance's influence on the output of the closed 
loop system.   

 

Fig. 6.  State  trajectory of  x1  

 

Fig. 7.  State trajectory of x2  
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Fig. 8.  State trajectory of x3  

 

Fig. 9.  The Disturbance 

      The responses indicate that the proposed PDC 
control and robustly stabilizes the system. The state 
response of the proposed controller with disturbance 
is close to the nominal response without disturbance. 
This addresses that the proposed technique ensures 
the robustness of the system with H∞ performance 
equal to 0.0538 which is less than one, which 
indicates that the new controller gives good 
performance with ensuring the robustness of the 
closed loop system.   

V. CONCLUSIONS 

      This paper analyses discrete-time TSF system 
control. A new algorithm is addressed to design an 
H∞ state feedback controller. The proposed algorithm 
is a simple controller to robustly stabilize the highly 
nonlinear systems under different conditions. The 
proposed technique not only guarantees the stability, 
but also reduces the conservative and improves  
performance of the closed loop nonlinear system and 

ensures robustness to external disturbances. The 
stabilization criteria and robust stability are 
formulated directly as LMIs and it can be solved 
simply by utilizing convex programming tools. 
Numerical results report that the proposed algorithm 
provides better results than the other controller 
scheme. 
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