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Abstract: In this work, recurrent neural network 

based controller is implemented for controlling Robot 

Manipulator using Hardware in the Loop (HIL) 

simulation technique. The gains of the PID based 

recurrent neural network controller scheme are 

initialized with the cuckoo search algorithm (CSA) 

optimization method rather than assuming randomly. 

The Least Mean Square (LMS) adaptive algorithm is 

then investigated for the online adaptation of the 

gains of the controller. The performance of the 

designed controller is tested against the plant 

parameters uncertainties and external disturbances 

for all the links of a three link rigid robotic 

manipulator with variable payload. The stability 

analysis of the presented control system is investigated 

out using Lyapunov's approach. The Simulink model 

of the robotic manipulator has been developed using 

Matlab-Simulink software and the performance of the 

controller implemented using the HIL technique in 

C2000 real time controller was analyzed. From the 

HIL simulation for trajectory tracking results it is 

evident that the dominance and effectiveness of the 

CSA optimized recurrent neural network PID 

controller (RNPID) over the optimized neural network 

PID (ONPID), optimized PID (OPID), and PID 

controllers for variable payload and disturbance 

rejection. 
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1. Introduction 

 In industrial automation, nowadays robotic 

manipulators are playing a leading role. Various 

domains of research were in progress to make them 

applicable for very high precision control of end 

effector and improving their performance with better 

stability [1]. In such crucial applications, that 

demands real time tuning of controller gains, which 

has been experimented to be a challenging task using 

PID controllers [14]. Since, robotic manipulators are 

highly nonlinear, they may not respond reasonably for 

high precision control applications with conventional 

tuning methods. Typically, the joint drive torques for 

each link to track the desired trajectory is adjusted 

iteratively based on observed trajectory errors [3]. 

Due to the capability of non linear mapping in robotic 

manipulators, implementation of fuzzy controllers it 

can be a better choice for the control when coupled 

with the PID logic [15]. Even in spite of providing a 

better suited option for the control of robotic 

manipulators, a 3 Degree of Freedom (DOF) robotic 

manipulator which is a coupled system that requires 

tuning of 3 PID controllers simultaneously. With the 

aid of advanced computing facilities using processors 

and nature inspired optimization techniques several 

authors have used various techniques to tune the PID 

controllers [7-10]. They are all confined to fixed gains 

which are difficult to provide optimum performance 

for certain nonlinear and uncertain control of robotic 

manipulators. While considering the requirement of 

high precision tracking, better performance and 

convergence rate for robotic manipulators, the meta-

heuristic cuckoo search optimization can perform 

better as this its performance is independent of chosen 

parameters [11]. 

 

 The application of artificial neural networks for 

dynamic control systems has recently been used by 

many researchers because of its excellent 

generalization, adaptation and learning capabilities. 

Due to lack of faster training algorithms, the artificial 

neural network for online tuning is not much explored. 

In the presented work all the parameters of RNPID 



 

 

  

controller are optimized using CSA. After obtaining 

the optimized parameters of the RNPID controller, the 

weights of the hidden layer are re-adjusted online 

using Moore Penrose generalized inverse [6]. It 

ensures minimizing the error and to meet the desired 

torque required for tracking the trajectory followed by 

the arm of the robotic manipulator. The online 

sequential training algorithm is very fast and it will 

not converge to local minima. So, it will be a better 

choice than the conventional gradient based tuning 

methods. A Lyapunov stability criterion is used to 

analyze the stability of the proposed controller. To test 

the robustness of the proposed controller the HIL 

simulation approach is employed. It comprises the 

actuators and dynamics of the robotic manipulator as a 

portion of the simulator system and the control 

algorithm implemented in the real hardware. This kind 

of HIL based simulation modeling supports fast 

prototyping of control algorithms, rather than 

investing on the actual robotic manipulator [13].  

 This proposed work presents the combination of 

PID and recurrent neural network control algorithms. 

The performance of algorithms is also optimized by 

using cuckoo search algorithm. Both the combined 

algorithms and its optimized versions are 

implemented in the hardware from Texas Instruments 

named as C2000 real time microcontroller. The 

control algorithms in the hardware act as HIL to drive 

the actuators in the model of robotic manipulator 

implemented in the Matlab Simulink. Robustness 

testing is performed under external disturbances and 

varying masses of the links and finally the 

performance comparison is carried out among RNPID 

controller, CSA tuned Neural Network PID (ONPID) 

controller, CSA tuned PID controller (OPID) and 

conventional PID controller 

 

2. Dynamic modeling of robotic manipulator 

 The mathematical model of a three link planar 

serial robot manipulator is used to express the 

behavior of robot manipulators.  The design of the 

model based controller has been derived from 

dynamic equations of robotic manipulator for carrying 

out the HIL simulation to estimate the tracking joint 

angle errors and position of end effector is shown in 

Fig.1.  

 The dynamic modeling of the robotic manipulator 

describes the relationship between joint motion, 

accelerations and torque [2]. Moreover, it is used to 

describe the particular dynamic effects such as inertia, 

Coriolis, centrifugal, and the other parameters of the 

manipulator. The dynamic mathematical model for a 

‘n’ link, serially connected, direct driven robotic 

manipulator is given in joint space as follows: 

 

Fig.1.Model of the Robotic Manipulator 

  

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) = 𝜏     (1) 

 where, 𝑀(𝜃) is the n×n inertia matrix of the 

manipulator, θ  is the n×1 joint position vector , 

𝐶(𝜃, �̇�) is the n×1 vector of Centrifugal and Coriolis 

terms, 𝐺(𝜃) is the  n×1 vector of gravity terms, 𝜏 is 

the  n×1 vector of joint actuator torques and forces. 

The manipulator chosen is modelled with three rigid 

links, the first one connecting the shoulder and elbow 

joint represented as Shoulder Joint Link (SJL), second 

link connecting elbow and wrist joint represented as 

Elbow Joint Link (EJL), and the last link connecting 

wrist joint and the gripper which is represented as 

Wrist Joint Link (WJL). The torque vector for those 

links can be expressed as: 

𝜏 =  [𝜏1 𝜏2 𝜏3]𝑇                                   (2) 

 where  𝜏1 , 𝜏2  and 𝜏3  represents the torques 

applied to the actuators of shoulder joint, elbow joint 

and wrist joints respectively.  

 

 The equation (1) and equation (2) show the 



 

 

controller output torque and the link positions 

𝜃1 , 𝜃2and 𝜃3 of three links. The Table 1 lists the 

relevant parameters used in the model of robotic 

manipulator, where 𝑙1, 𝑙2 and 𝑙3  is the length of SJL, 

EJL and WJL and 𝑚1 , 𝑚2 and 𝑚3 are the masses of 

each of those links respectively. 

Table 1: Parameters of the three link planar rigid  

robotic manipulator 

Parameters 

Shoulder 

Joint 

Link(SJL) 

Elbow Joint 

Link(EJL) 

Wrist Joint 

Link(WJL) 

Mass 𝑚1=0.15kg 𝑚2=0.1kg 𝑚3 =0.28kg 

Length 𝑙1=0.09m 𝑙2=0.063m 𝑙3=0.115m 

Distance from 

the joint to its 
center of 

gravity 

𝑙𝑐1=0.0492m 𝑙𝑐2=0.0356m 𝑙𝑐3=0.612m 

Acceleration 

due to 

gravity (g) 
9.81 m/s2 9.81 m/s2 9.81 m/s2 

  

3. Design of HIL based Recurrent PID controller 

 Designs of adaptive controllers for robotic 

manipulators, using the dynamic neural networks have 

been used because of their improved adaptation 

capabilities and prediction. The recurrent neural 

network can be easily trained and quickly because of 

the lesser number of parameters [16]. A small memory 

due to the feedback in the recurrent neural network 

increases the learning capabilities and approximation 

of the network. 

 

 
Fig.2. Block diagram of the HIL simulation strategy 

implementation of RNPID, ONPID,OPID and PID 

controllers for robotic manipulator 

 Modelling of PID based recurrent neural network 

controller using HIL simulation technique is presented 

in the following section. Fig.2 shows the 

implementation of the RNPID controller employing 

HIL simulation strategy using C2000 real time 

controller, Matlab and Code Composer Studio (CCS) 

environment [5].   

 

3.1 Recurrent Neural Network PID controller 

 The structure of PID based recurrent controller is 

shown in Fig. 3. The three nodes of the structures act 

like proportional, integral and derivative nodes for the 

recurrent controller. It is implemented using HIL 

simulation technique is C2000 real time controller. 

Fig. 3: Recurrent Neural Network PID controller 

  

 The three hidden layer neurons 

𝐻1, 𝐻2and 𝐻3 outputs can be expressed in terms of 

SJL, EJL and WJL as 

 

𝐻1(𝑘) = 𝜙(ℎ11 𝑆𝐽𝐿(𝑘) + ℎ21 𝐸𝐽𝐿(𝑘) + ℎ31 𝑊𝐽𝐿(𝑘))       (3) 

𝐻2(𝑘) = 𝜙(ℎ12 𝑆𝐽𝐿(𝑘) + ℎ22 𝐸𝐽𝐿(𝑘) +  ℎ32 𝑊𝐽𝐿(𝑘)) +

                         𝐻2(𝑘 − 1)          (4) 

𝐻3(𝑘) = 𝜙(ℎ13 𝑆𝐽𝐿(𝑘) + ℎ23 𝐸𝐽𝐿(𝑘) +  ℎ33 𝑊𝐽𝐿(𝑘) +

ℎ13 𝑆𝐽𝐿(𝑘 − 1) + ℎ23 𝐸𝐽𝐿(𝑘 − 1) + ℎ33  𝑊𝐽𝐿(𝑘 − 1)) (5) 

 The hidden layer weight ( ℎ)  and output layer 

weight(𝑄) matrices can be expressed as  

 

ℎ = [

ℎ11 ℎ12 ℎ13

ℎ21 ℎ22 ℎ23

ℎ31 ℎ32 ℎ33

] ; 𝑄 = [

𝑄11 𝑄12 𝑄13

𝑄21 𝑄22 𝑄23

𝑄31 𝑄32 𝑄33

] 

 The output of second and third nodes with the along 

with unit delay z−1 can be expressed as 

 

𝐻2(𝑘) =
𝜙(ℎ12 𝑆𝐽𝐿(𝑘)+ℎ22 𝐸𝐽𝐿(𝑘)+ ℎ32 𝑊𝐽𝐿(𝑘))

1−𝑧−1    (6) 

𝐻3(𝑘) = 𝜙( (1 − 𝑧−1) ℎ13 𝑆𝐽𝐿(𝑘) + ℎ23 𝐸𝐽𝐿(𝑘) +

                 ℎ33 𝑊𝐽𝐿(𝑘)  )   

                                   (7) 



 

 

  

The RNPID controller output torque at its final stage 

is  

𝜏 = 𝑄1𝐻1(𝑘) + 𝑄2𝐻2(𝑘) + 𝑄3𝐻3(𝑘)         (8) 

The equation (8) can also be represented in matrix 

form as in equation (9) 

𝜏 =  𝑄𝐻    (9) 

3.2 Online Training Strategy 

  The training of the recurrent controller is done to 

minimize the error which is accomplished by 

adjusting the 𝑄  and 𝐻  parameters. The recurrent 

controller output parameter 𝑅  uses the CSA 

optimized output weights and the LMS error norm can 

be minimized by readjusting the weights in the hidden 

layer. The hidden layer matrix is reinitialized using 

equation (10) and the corresponding error is shown in 

equation (11) 

 

𝐸 = 𝑅 − 𝐻𝑄, ‖𝐸‖2 = (𝑅 − 𝐻𝑄)(𝑅 − 𝐻𝑄)𝑇 (10) 

‖𝐸‖2 = 𝑅𝑅𝑇 −  2𝐻𝑄𝑅𝑇 + 𝐻𝐻𝑇𝑄2   (11) 
 

 The training of the RNPID controller is required to 

adjust 𝑄 and 𝐻 so that the error ‖E‖2 is minimized 

with respect to the 𝑄 and 𝐻 parameters as shown in 

equations (12) and (13) respectively.  

 

𝜕‖𝐸‖2

𝜕𝑄
= − 2𝐻𝑅𝑇 +  2𝐻𝐻𝑇𝑄   (12) 

𝜕‖𝐸‖2

𝜕𝐻
= − 2𝑄

𝜕𝐻𝑇

𝜕𝑤
𝑅𝑇 +  2𝑄2 𝜕𝑄𝑇

𝜕𝑥
𝑄  (13) 

 

 The output weights can be calculated in a single 

step analytically using equation (14) if the hidden 

layer weights are known. 

 

𝑄 =
𝐻𝑅𝑇

𝐻𝐻𝑇     (14) 

 This feature enables high speed training comparaed 

to the other gradient methods. The initial weights and 

optimized output weights were calculated using CSA 

is used in the RNPID controller as the weights are 

readjusted to obtain the minimum norm least square 

solution. By using  𝐻1(𝑘), 𝐻2(𝑘) and 𝐻3(𝑘) , the 

hidden layer weights hij are readjusted.  If the error 

‖𝐸‖2 exceeds the fixed threshold, then the sequential 

learning is employed, followed by applying the 

control torque to the joint actuators [4].  

4. Optimization of RNPID controller using Cuckoo 

search algorithm 

 

 Cuckoo search enables faster convergence 

performance and it is used to tune the parameters of 

the RNPID controller [12]. The integral of absolute 

error (IAE) is chosen as objective function for all the 

three links of the robotic manipulator. It is used to 

minimize the errors 𝑒1(𝑡), 𝑒2(𝑡) and 𝑒3(𝑡) between 

desired and actual trajectories for SJL, EJL and WJL 

respectively as represented in equations (15), (16) and 

(17). The weighted sum of IAE of the three links 

represents an aggregate fitness function (AFF) as 

represented in equation (18). 

 

𝑂𝑓1 = ∫|𝑒1(𝑡)| 𝑑𝑡    (15) 

𝑂𝑓2 = ∫|𝑒2(𝑡)| 𝑑𝑡    (16) 

𝑂𝑓3 = ∫|𝑒3(𝑡)| 𝑑𝑡    (17) 

𝐴𝐹𝐹 = 𝑤1𝑂𝑓1 + 𝑤2𝑂𝑓2 + 𝑤3𝑂𝑓3  (18) 

 

Where,  𝑂𝑓1 , 𝑂𝑓2 and 𝑂𝑓3  are the objective 

functions  of the links SJL,EJL and WJL having the 

weights represented by 𝑤1, 𝑤2 and w3 respectively. 

 

5. Experimental Results and Discussion 

 The control scheme for RNPID, ONPID, OPID, 

PID controllers for a three link rigid robotic 

manipulator trajectory tracking is shown in Fig. 2. The 

performance of the recurrent neural network controller 

is compared with CSA optimized neural network PID 

controller, CSA optimized conventional PID controller 

and PID controller. All the control algorithms were 

implemented in C2000 real time controller that houses 

TMS320F2807x digital signal processor. The fluxgate 

sensors integrated with the board is used to measure 

the current and voltage of the modeled actuators in the 

robot joints. Based on the control algorithm the 

current flow to the modeled actuators are controlled 

with signal conditioning using the differential 12 bit 

analog to digital converters. By using the on chip 

enhanced pulse width modulation modules the current 

flow to the actuators are varied based on the 

conditioned signal, which in turn is used to control the 

movements of actuators. From the HIL simulations 



 

 

were carried out using the Matlab Simulink and Code 

Composer Studio utilizing fixed step ODE 4 solver 

with a fixed time of 0.01s. The optimized parameters 

for the controller obtained with the aid of cuckoo 

search approach are summarized in Table2.  

 IAE for the proposed RNPID for the three links are 

tabulated in Table 5. Clearly IAE values are less for 

the proposed RNPID controller and high for the PID 

controller, when compared among the four 

implemented control schemes. The proposed RNPID 

control scheme has outperformed the ONPID, OPID 

and PID controllers in terms of tracking error and IAE 

variations. The observed IAE values for a 5% increase 

and 5% decrease in the mass of all the three links 

simultaneously are summarized in Table 3 and Table 4 

respectively. Because of the adaptive nature of the 

RNPID controller, it is able to reject effectively the 

parameter variations and leads to less change in IAE 

values compared to ONPID, OPID and PID 

controllers. The test trajectory chosen is of cubic 

polynomial type for the three joints. The comparison 

of the HIL simulation results for reference trajectory 

tracking of SJL, EJL, WJL and the end effector 

implemented for RNPID, ONPID, OPID and PID 

controllers are shown in Fig. 4. 

Table 2: Optimized Choice of tuning parameters for RNPID, ONPID, OPID and PID Controllers 

 

 

Parameters 

 RNPID Controller 

(𝑲𝒑, 𝑲𝒊 , 𝑲𝒅) 

   ONPID Controller 

(𝑲𝒑, 𝑲𝒊 , 𝑲𝒅) OPID Controller 

(𝑲𝒑, 𝑲𝒊 , 𝑲𝒅) 

PID Controller 

(𝑲𝒑, 𝑲𝒊 , 𝑲𝒅) 
Hidden layer Output layer Hidden layer Output layer 

SJL 
1.337, 

0.175, 

2.2115 

394.57, 

133.9473, 

39.0267 

0.8192, 

0.8782, 

0.89822 

398.9858, 

135.2397, 

38.5438 

398.2528, 

65.7475, 

13.4757 

399.1264, 

66.694, 

14.3531 

EJL 
0.9657, 

0.0963, 

4.1315 

59.1318, 

11.5101, 

4.5675 

0.9459, 

0.7798, 

0.042 

59.9386, 

11.3886, 

3.2724 

44.048, 

18.607, 

2.657 

44.9195, 

19.4435, 

3.4585 

WJL 
0.95505, 

0.0926, 

4.09225 

58.4468, 

10.9501, 

4.55325 

0.91885, 

0.7597, 

0.0365 

59.4336, 

10.9186, 

2.8374 

43.1765, 

17.7705, 

1.8555 

44.48375, 

19.02525, 

3.05775 

 

Table 3: IAE values for RNPID, ONPID, OPID and PID Controllers for 5% decrease in masses of the links  

Parameter 

Variation 

(5%Decrease) 

IAE of RNPID 

controller 

IAE of ONPID 

controller 

IAE of OPID 

controller 

IAE of  PID 

controller 

Mass in % 
SJL 

(x10
-4

) 

EJL 

(x10
-4

) 

WJL 

(x10
-5

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-2

) 

EJL 

(x10
-2

) 

WJL 

(x10
-3

) 

m1 0.323 0.827 1.330 0.575 1.940 3.306 0.902 2.559 4.217 1.502 4.335 7.168 

m2 0.327 0.827 1.327 0.581 1.940 3.300 0.902 2.552 4.203 1.505 4.326 7.146 

m3 0.337 0.839 1.341 0.590 1.953 3.315 0.914 2.568 4.222 1.528 4.354 7.181 

m1,m2 0.322 0.827 1.332 0.571 1.940 3.310 0.897 2.552 4.208 1.493 4.326 7.158 

m1,m2, m3 0.314 0.825 1.337 0.564 1.940 3.315 0.871 2.550 4.229 1.454 4.322 7.189 

 

 By adding a sinusoidal signal to the controllers, the 

external disturbance during the trajectory performance 

has been observed. The IAE values with the effect of 

disturbance on the controllers have been tabulated in 

Table 5. As the IAE of RNPID controller is smallest 

among all, it outperforms other controllers even in 

spite of disturbances applied to the links. With the 

proposed tuning procedure, the RNPID controller is 

easy to implement and tune which ensures minimum 

effects of external disturbances and parametric 

uncertainties. Fig.5 summarizes the joint disturbances 

effect of all three links on individual links. It is also 

evident that the base link SJL is less prone to 

disturbances due to the dynamics of the robotic 

manipulator, when compared to the upper links EJL 

and WJL. 



 

 

  

Table 4: IAE values for RNPID, ONPID, OPID and PID Controllers for 5% increase in masses of the links  

Parameter 

Variation 

(5%Increase) 

IAE of RNPID 

controller 

IAE of ONPID 

controller 

IAE of OPID 

controller 

IAE of  PID 

controller 

Mass in % 
SJL 

(x10
-4

) 

EJL 

(x10
-4

) 

WJL 

(x10
-5

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-2

) 

EJL 

(x10
-2

) 

WJL 

(x10
-3

) 

m1 0.310 0.762 1.214 0.583 1.853 3.124 0.864 2.472 4.080 1.450 4.168 6.886 

m2 0.307 0.762 1.217 0.577 1.853 3.129 0.864 2.472 4.080 1.447 4.168 6.888 

m3 0.320 0.774 1.228 0.592 1.865 3.139 0.876 2.484 4.092 1.473 4.192 6.911 

m1,m2 0.312 0.762 1.212 0.586 1.853 3.120 0.869 2.479 4.089 1.457 4.177 6.897 

m1,m2, m3 0.301 0.761 1.221 0.573 1.853 3.133 0.839 2.472 4.104 1.410 4.167 6.923 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. Trajectory tracking of (a) SJL (b) EJL (c) WJL (d) End effector of robotic manipulator 

 

 

 

 

 

 

 

 

 

 



 

 

Table 5: IAE values for RNPID, ONPID, OPID and PID Controllers for disturbances in the links 

 

 

 

Disturbances 

   (N-m) 

IAE of RNPID 

controller 

IAE of ONPID 

controller 

IAE of OPID 

controller 

IAE of  PID 

controller 

SJL 

(x10
-4

) 

EJL 

(x10
-4

) 

WJL 

(x10
-5

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-3

) 

EJL 

(x10
-3

) 

WJL 

(x10
-4

) 

SJL 

(x10
-2

) 

EJL 

(x10
-2

) 

WJL 

(x10
-3

) 

SJL 0.413 0.854 1.295 0.740 2.006 3.273 0.970 2.626 4.283 1.677 4.455 7.234 

EJL 0.404 0.827 1.249 0.724 1.939 3.155 0.948 2.559 4.171 1.640 4.334 7.029 

WJL 0.329 1.472 2.615 0.585 3.797 7.010 0.905 3.192 5.479 1.512 6.013 10.514 

SJL & EJL 0.405 1.477 2.548 0.732 3.835 6.939 0.948 3.193 5.439 1.643 6.028 10.414 

SJL,  

EJL & WJL 
0.373 1.306 2.240 0.680 3.346 6.012 0.907 3.029 5.150 1.561 5.589 9.617 

 

 

Fig. 5. IAE for RNPID, ONPID, OPID and PID Controllers 

for joint disturbances  

 

6. Conclusion 

    A PID based recurrent neural network controller 

is implemented in the C2000 launch pad and the HIL 

simulation for the trajectory tracking control of a three 

link rigid robotic manipulator is inspected in this work. 

While the conventional PID controller uses nine 

parameters for tuning, the recurrent neural network 

controller uses eighteen, which adds more flexibility 

and has a simplified structure with compatible 

learning capabilities. To deal with nonlinear, time-

varying and dynamic payload handing capabilities of 

robotic manipulators, updating of the parameters of 

the recurrent neural network controller is done online. 

Using a sequential cuckoo search learning algorithm, 

the initial gains of neural network controller are 

calculated. The learning algorithm deals with the 

robotic manipulator that possesses nonlinear dynamics 

and tunes the weights in a nonlinear manner in the 

output layer. From the analyzed results it is observed 

that the performance of the proposed recurrent neural 

network controller RNPID is less affected due to 

external disturbances and parametric uncertainties 

when compared to ONPID, OPID and PID controllers. 
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