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Abstract: Synergism of two intelligent control techniques 
namely Artificial Neural Network and Genetic Algorithm 
has been presented in this paper. The technique has been 
implemented to design power system stabilizer. The 
power system stabilizer designed with help of neural 
network while the network is optimized by the genetics 
algorithm. The power system stabilizer has been used to 
generate the appropriate supplementary control signal 
for the excitation system of synchronous generator by 
reduces the low frequency oscillation and improves the 
performance of the dynamical power system. The 
effectiveness of design has been tested by non linear 
simulation of single machine infinite bus system. The 
results show, the capability and effectiveness of hybrid 
control algorithm for power system stability improvement 
under the various disturbances, faults and different 
operating conditions.  
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NOMENCLATURE  
 

𝛿        Rotor angle in radian 

𝜔𝐵     Rotor base speed in rad/sec 

𝜔𝑚     Generator slip in p.u. 

𝜔𝑚0   Initial operating slip in p.u. 

𝐻       Inertia constant  

𝑘𝑑       Damping coefficient 

𝑇𝑚      Mechanical power input in p.u. 

𝑇𝑒        Electrical power output in p.u. 

𝑇𝑑0
′      Open circuit d-axis time constant in sec 

𝑇𝑞0
′      Open circuit q-axis time constant in sec 

𝐸𝑞
′       q-axis transient voltage  

𝐸𝑑
′       d-axis transient voltage 

𝑥𝑑       d-axis synchronous reactance in p.u. 

𝑥𝑑
′        d-axis transient reactance in p.u. 

𝑥𝑞       q-axis synchronous reactance in p.u. 

𝑥𝑞
′       q-axis transient reactance in p.u. 

𝑖𝑑        d-axis current 

𝑖𝑞        q-axis current 

𝑉𝑡        Generator terminal voltage 

𝐸𝑏        Infinite bus voltage 

 
 
1. Introduction 
 

The satisfactory operation of complex, non linear 

and dynamical power system needs both small signal 

stability and transient stability. The stability of the 

power system has been effected due to disturbances 

like a sudden change in load, loss of one generator 

or switching out of a transmission line during the 

fault and wide spread use of the high gain fast acting 

excitation system. The instability and low frequency 

oscillations limit the power transmission capability 

and the eventually breakdown of the entire power 

system under the various operating conditions and 

configurations. Power system stabilizer (PSS) can 

help to damp generator rotor oscillations by 

providing an additional input control signal for the 

excitation system of the generator that produces a 

torque component which is in phase with the rotor 

speed deviation.  

The conventional power system stabilizer has 

been designed very extensively using phase 

compensation techniques and their parameters have 

been calculated based on linearized model of the 

power system [1] [2]. The application of PSS for 

improvement of small signal oscillation and the 

transient stability of a power system with 

transmission lines, generating units equipped with 
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high-gain and fast-acting excitation system have 

been explained in the literature [1]-[6]. 

Different type of arrangement of lag- lead 

compensator based PSSs [5] are used for detail 

analysis of the power system.  Two-stage lead 

compensator with washout filter and gain is most 

common structure of PSS which is used for normal 

analysis purpose [1] [2] [6].  

The modern and conventional control techniques 

based PSS can provide optimal performance for the 

nominal operating condition and nominal system 

parameters. However, to solve the stability problem 

at large, non linear and complex power system has 

become difficult through conventional and linear 

optimal control approaches.  

To overcome these limitations, modern control 

techniques like adaptive controller [7], H-infinity 

control technique [8] and robust control based [9] 

power system stabilizer has been proposed for 

damping improvement. The coordinated design for 

power system stabilizer and automatic voltage 

regulator for the improvement in the small signal 

stability performance and transient stability 

performance has been given [10]. 

The Artificial Neural Network (ANN) and adaptive 

neural network based power system stabilizer has 

been proposed by [11][12][13]. The adaptive polar 

fuzzy logic based PSS [14] and adaptive neurofuzzy 

PSS with adaptive input link weights has been 

proposed by [15] for analysis of the performance of 

the power system stability over a wide range of 

operating conditions. The two level fuzzy, ANFIS, 

and fuzzy based auto tuned PI stabilizer has been 

given [16] [17]. The concept of the parameters 

optimization of the conventional and proportional 

integral derivative(PID)-PSS using computational 

optimization techniques such as genetics algorithm 

(GA), particle swarm optimization and  simulated 

annealing have been presented by [9] [18]-[21]. 

Third –order dynamic model and Philips –Heffron 

linear model of the synchronous machine is mostly 

preferable by researcher for stability analysis of 

power system, in which the model only takes into 

account the generator main field winding. In this 

paper, for the enhanced analysis of single machine 

infinite bus system, the fourth-order complex 

dynamic model has been considered which includes 

both, the generator main field winding and the 

damper winding on q-axis.  

This paper proposes the design of power system 

stabilizer using combination of genetics algorithm 

based neural network hybrid controller for analysis 

of dynamical power system. Two different strategies 

have been observed for designing of neural network 

through GA. In the first strategy, a genetic algorithm 

has been used to minimize the error before learning 

algorithm is applied and for second strategy, a 

genetics algorithm has been used to minimize the 

sum of square of error with respect to the ANN 

parameters. Here, the calculation of weight and bias 

of ANN have been considered as an optimization 

problem. The weights and bias of the feed forward 

neural network have been indentified and optimized 

using genetic search algorithm. The trained and 

optimized GA-ANN based PSS has been tested on 

non-linear power system dynamics under the 

different operating conditions, various disturbances 

and faults in the power system. The GA-ANN based 

PSS has been designed for improvement of the small 

signal oscillations and the transient stability of a 

power system with long transmission lines and 

generating unit equipped with high-gain and fast-

acting excitation system.  

 

2. Mathematical model of system 

 

The single machine infinite bus system model is 

used to evaluate the performance of power system 

stabilizer as shown in figure 1. Where 𝑉𝑡  and 𝐸𝑏  are 

generator terminal voltage and infinite bus voltage 

respectively. The 𝑋𝑒  and 𝑋𝑡  are transmission line 

reactance and transformer reactance respectively. 

Figure 1shows the test to be conducted to power 

system with GA-ANN hybrid algorithm based PSS. 
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Fig.1.SMIB with PSS 

2.1 Dynamic  model of Power System 

The synchronous generator is represented by non-

linear equations which includes both the generator 

main field winding and the damper winding on q-

axis [6]. The mathematical model of the above 

systems are defined as below: 

 

𝛿 =𝜔𝐵 𝜔𝑚 − 𝜔𝑚0                                      (1) 

 



 

𝜔𝑚 =
1

2𝐻
 −𝑘𝑑(𝜔𝑚 − 𝜔𝑚0 + 𝑇𝑚

 
− 𝑇𝑒        (2) 
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𝑇 ′
𝑑0

  −𝐸′
𝑞 +  𝑥𝑑 − 𝑥𝑑

′  𝑖𝑑 + 𝐸𝑓𝑑    (3) 

 

 𝐸′
𝑑
 =

1

𝑇𝑞 ′
0

 −𝐸′
𝑑 −  𝑥𝑞  − 𝑥𝑞

′  𝑖𝑞              (4) 

 

The IEEE type –ST1 excitation system can be 

described by 

 

𝐸𝑓𝑑
 = −

1

𝑇𝐴
𝐸𝑓𝑑 +

𝐾𝐴

𝑇𝐴
(𝑉𝑟𝑒𝑓 − 𝑉𝑖)                 (5) 

 

Where the electrical torque can be expressed by  

 

𝑇𝑒 = 𝐸′𝑑 𝑖𝑑 + 𝐸′𝑞 𝑖𝑞 +  𝑥𝑑
′ − 𝑥𝑞

′  𝑖𝑑 𝑖𝑞      (6) 

 

Where Re=0; the equations for𝑖𝑑 ,𝑖𝑞 , 𝑣𝑞 ,  𝑣𝑑are 

represented by  

 

 𝑖𝑑 =
𝐸𝑏 cos 𝛿−𝐸′

𝑞

 𝑥𝑒+𝑥𝑑
′  

                                        (7.a) 

 

𝑖𝑞 =
𝐸𝑏sin 𝛿+𝐸′

𝑑

 𝑥𝑒+𝑥𝑞
′  

                                                    (7.b)  

                     

𝑣𝑞 = −𝑥𝑒 𝑖𝑑 + 𝐸𝑏 cos 𝛿    

                 (8.a) 

 

  𝑣𝑑 = 𝑥𝑒 𝑖𝑞 − 𝐸𝑏                   (8.b) 

 

𝑉𝑡 =   𝑣𝑑
2 + 𝑣𝑞

2                                                 (9) 

 

3. Design of PSS using GA based ANN 

 

Genetics Algorithm and Artificial Neural Network 

in the broad sense, reside in the class of the 

evolutionary computing algorithm. Both GAs and 

ANNs are adapting, they learn, and can deal with 

high non linear, complex model. The objective of 

the hybridization is to overcome the weakness in one 

technology during its application, with the strengths 

of the other by appropriately integrating them. 

3.1 Genetics Algorithm 

Now a days, for control system problem, the GAs 

has been used for optimization of the parameters 

where plant is complex and difficult to optimize the 

system through conventional optimization methods. 

Some of the advantages of GAs are as follows: 

1. GA is capable of parallel processing. 

2. A large solution set can be obtained very 

quickly by GA. 

3. GA is well suitable for complex, non linear 

and noisy fitness function. 

4. GA is capable of converging to the local 

minima effectively. 

GAs is the part of the evolutionary algorithm family, 

and powerful stochastic search algorithm based on 

the mechanism of natural selection and natural 

genetics. GA work with population of binary string, 

searching many peaks in parallel. By employing 

genetics operator, they exchange the information 

between the peaks, hence reducing possibility of 

ending at a local optimum [22][23]. The basic 

process of genetics algorithm as follows: 

 

1. Define the fitness function to be optimized. 

2. Selection of population size depends on 

number of variables in fitness function. 

3. Definition and implementation of genetics 

operator likes: cross over and mutation. 

 

The algorithm is implemented as follows: 

Genetics algorithm has been proposed in this paper 

to calculate the initial value of parameters of neural 

network, the algorithm as follows: 

 

1. Randomly generate the initial population for 

the parameter of initial weigh and bias of 

NN. 

2. Calculation of total number of weight and 

bias of NN for optimization. 

3. Generate the fitness function to be 

evaluated. 

4. Evaluate fitness function of each 

chromosome in population and select a new 

population from old population based on the 

fitness of individuals as given by the 

evaluation function. 

5. Selection of appropriate value of genetic 

operators such as reproduction, crossover, 

mutation etc.  to member of the population 

to create new solution.  

6. Calculation of convergence rate of fitness 

function. 

7. If expected convergence rate is achieved 

then stop the algorithm otherwise repeat 

from the step 4-7 and change the GA 

parameters.  

 

By changing the GA parameters such as population 

size, crossover rate and function, mutation rate and 

function, No. of generation etc, the new set of NN 



 

 

parameters are developed, and best fitness values 

have been selected. The appropriate choice of the 

GAs parameters affects the convergence rate of the 

algorithm. The parameters are selected for expected 

solution as given in table 1. The figure 2 shows the 

rate of the convergence of the optimization function, 

the best fitness value of the function 0.00021793 is 

achieved after the 51 population generation has been 

reached. The figure 3 shows the total 81 best 

individual values of weight and bias of NN. 

 

 Fig2.Convergence rate 

 

 

TABLE I 

GA PARAMETERS AND VALUES 

 

Parameters Values/Functions 
Population size 50 

Stopping Generation 100 

Scaling function Rank 

Selection function Stochastic 

Uniform 

Mutation function Gaussian 

   

 

 
Fig 3: Best value of NN parameters 

 

4. Artificial neural network 

 

An Artificial Neural Networks (ANN) is an 

information processing paradigm that is inspired by 

the way of biological nervous systems, such as the 

brain, process information. The key element of this 

paradigm is the novel structure of the information 

processing system. It is composed of a large number 

of highly interconnected processing elements 

(neurons) working in union to solve specific 

problems.  

ANN has been one of the most interesting topics 

in the control community because they have the 

ability to treat many problems that cannot be 

handled by traditional analytical techniques. There 

are several different approaches to neural network 

training, for determining an appropriate set of 

weights. The feedforward multilayer neural 

networks are the most common neural network 

architecture for solution of control problem. A 

widely used training method for feedforward 

multilayer neural network is the back propagation 

algorithm. The standard back propagation learning 

algorithm has several limitations. Most of all, a long 

and slow training process when plant is non-linear 

and parameters of the plant are dynamics i.e. the rate 

of convergence is seriously affected by the initial 

weights and the learning rate of parameters. 

The neural network consists of a number of 

neurons connected by links. The neurons are divided 

into several layers: the input layer, hidden layers and 

output layer. The input signals are connected to the 

input layer of NN, while the output layer provides 

the desired output. The hidden layers pass the 
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information between input layer and output layer by 

adjusting the weight and bias of the network. The 

selection of no. of neurons in different layers is 

dependent on type of problem, and problem 

complexity.  

In this paper the training pattern for the 

feedfoward neural network is dynamic inputs 𝑢 𝑡   

and corresponding outputs 𝑦(𝑡) such that 

𝜔𝑚 𝑡 , 𝜔𝑚  𝑡 − 1 , 𝜔𝑚 𝑡 − 2 , 𝜔𝑚 𝑡 − 3      and 

𝑉(𝑠) respectively and targeted value of the neural 

network is ŷ(t). The network has been trained using 

8000 sample training data, which are generated 

under the consideration of the different operating 

conditions and dynamic behavior of the power 

system. The feedforward network has been 

developed with 10 neurons in the first layer, 5 

neurons in the hidden layer and 1 neuron in the 

output layer with hyperbolic tangent sigmoid 

transfer function in the first layer and hidden layer, 

and liner transfer function in output layer.  

In this problem derivative –based optimization 

Levenberg-Marquardt method is used for solving the 

nonlinear least squares problem. The Gauss Newton 

Levenberg-Marquardt method works well in practice 

and has become standard of nonlinear least squares 

routines [24][25]. 

 

4.1 Levenberg-Marquardt Algorithm 

 

To implement the Levenberg–Marquardt algorithm 

for neural network training, the first step is 

calculation of Jacobin matrix and second step is to 

organize the training process iteratively for weight 

updating. Suppose that we have a function 𝑉(𝑘)  to 

minimize with respect to the parameter 𝑘 vector,   

and then Newton's method would be 

 

∆𝑘 = − ∇2𝑉 𝑘  −1∇𝑉(𝑘)        (10) 

 

Where,   ∇2𝑉 𝑘  −1 is Hessian matrix and ∇𝑉(𝑘) 

is the gradient. 

 

∇𝜔(𝑘) - sum of square function 

 

𝑉 𝑘 =  𝑒𝑖
2𝑁

𝑖=1 (𝑘)              (11)                                                                                                                                                         

 

Then it can be shown that 

 

∇𝑉 𝑘 = 𝐽𝑇 𝑘 𝑒 𝑘                                     (12) 

 

∇2𝑉 𝑘 = 𝐽𝑇 𝑘 𝐽 𝑘 +  𝑠(𝑘)                    (13)                                                                                                             

 

Where 𝐽  is Jacobian matrix  

 

𝐽 𝑘 =

 
 
 
 
 
 
 
𝜕𝑒1(𝑘)

𝜕𝜃1

𝜕𝑒1(𝑘)

𝜕𝜃2
…… .

𝜕𝑒1(𝑘)

𝜕𝜃𝑛

𝜕𝑒2(𝑘)

𝜕𝜃1

𝜕𝑒2(𝑘)

𝜕𝜃2
…… .

𝜕𝑒2(𝑘)

𝜕𝜃𝑛
. . .
. . .

𝜕𝑒𝑁 (𝑘)

𝜕𝜃1

𝜕𝑒𝑁 (𝑘)

𝜕𝜃2
……

𝜕𝑒𝑁 (𝑘)

𝜕𝜃𝑛  
 
 
 
 
 
 

       (14)                                                                                                                      

and 

𝑠 𝑘 =  𝑒𝑖
𝑁
𝑖=1  𝑘 ∇2𝑒𝑖(𝑘)                           (15)                                                                                                                         

 

The updated rule of Levenberg Marquardt to the 

Gauss-Newton method is 

 

𝜃𝑘+1 = 𝜃𝑘 − (𝐽(𝑘)𝑇𝐽(𝑘) + 𝛼𝐼)−1𝐽 𝑘 𝑒(𝑘)          

                                                                           (16)             

                                                       

Where 𝐽(𝑘) is Jacobian matix,  𝛼 is always positive 

called combination coefficient, 𝐼 is the identity 

matrix. 

As the combination of the steepest descent algorithm 

and the Gauss–Newton algorithm, the Levenberg–

Marquardt algorithm switches between the two 

algorithms during the training process. When the 

combination coefficient  𝛼 is very small, the Gauss–

Newton algorithm is used while combination 

coefficient 𝛼 is very large; the steepest descent 

method is used. With the update rule of the 

Levenberg–Marquardt algorithm equation (37) and 

the computation of Jacobian matrix, the next step is 

to organize the training process.  

The weights and bias of the network are adjusted 

such that the error between the actual output and 

targeted output is minimized and desired goal is 

achieved through Levenberg-Marquardt derivatives 

–based optimization. The optimization function can 

be represented mathematically by equation (17) 

Levenberg-Marquardt„s direction that is determined 

by using equation (16) is an intermediate between 

the Gauss-Newton direction and the steepest descent 

direction. The optimization function can be 

represented by 

 

𝐽𝑖 𝑘 =  
1

2
  𝑦 𝑘 − ŷ (𝑘)) 2                         (17)                               

  

The following are the steps for implementation of 

neural network 

 

1. The initial parameters of NN are computed 

by GA 



 

 

2. Generate the input data pattern and 

corresponding the target data pattern  

3. Develop the feedforward neural net  

4. Train the neural network using Levengerg-

Marquardt algorithm  

5. Update the NN parameters through equation 

16. 

6. Calculation of mean square error between 

actual output and targeted output using 

equation 17 

7. Compute the output of the NN network 

8. If desired solution is achieved, then stop else 

change the NN goal, learning rate, no. of 

epochs and repeat the algorithm from the 

step 4. 

The figure 4 shows the error generated between 

actual data and target data and figure 5 shows the 

relation between training data versus actual data and 

target data.  

 

 
Fig 4 : Error generated between actual and target 

 
Fig 5: Output of GANN 

 

 

 

5. Non Linear Simulation and Analysis 

 

All simulations have been carried out under various 

operating conditions and disturbances in the power 

system. All results are experimentally validated. 

The conventional power system stabilizer (CPSS) 

has required new set of data such as gain and time 

constant for each operating condition and various 

faults. But GA-ANN power system stabilizer can 

handle all dynamic situation of power system and 

generate the good response of rotor speed deviation, 

and improve the transient stability of the power 

system. All simulation results are plotted for 

dynamical power system under the consideration of 

different cases, which results show the satisfactory 

response of the power system. 

 

Case I: 𝑃𝑡 = 0.6 𝑝. 𝑢. , 𝑄𝑡 = 0.02224 𝑝. 𝑢., A 

three phase fault is created at 1 s at the sending end 

of the circuits of transmission line and cleared after 

100ms. The original system restored after the fault 

clearance. The figure 6(a) , 6(b) and 6(c) are shown 

the response of the δ,𝜔𝑚  and 𝑃𝑒  respectively. As 

shown in figure, during this fault condition without 

the application of PSS the oscillation in rotor angle, 

speed deviation and electrical torque have been 

observed. While after using the GANN PSS, it 

significantly diminished this oscillation in the 

system and providing very good damping 

characteristics.  

 

Case II: 𝑃𝑡 = 0.6 𝑝. 𝑢., 𝑄𝑡 = 0.02224 𝑝. 𝑢., A 

three phase fault is applied at 1 s at middle of one 

transmission line and cleared after 50ms by the 

disconnection of the faulted line , and then 

successfully reclosed at 5 s. The figure 7(a) ,7(b) and 

7(c)  show the response of the 𝛿,𝜔𝑚  and 𝑃𝑒  

respectively. 

 

Case III:  𝑃𝑡 = 0.6 𝑝. 𝑢., 𝑄𝑡 = 0.02224 𝑝. 𝑢., In 

this case another sever disturbance is considered. 

One of the transmission lines is permanently tripped 

at 1 sec. The reactance of the system is quickly 

increased. The system response for the above 

contingency is shown in figure 8. 
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Fig 6(a): Rotor angle (degree) 

 
Fig 6(b): Speed deviation (rad/sec) 

 
Fig 6(c) : Electrical torque (p.u.) 

 

Case 1: A three phase fault is created at 1 s at 

the sending end of the circuits of transmission 

line and cleared after 100ms. 

 

 
Fig 7(a): Rotor angle (degree) 

  
Fig 7(b): Speed deviation 

 
Fig 7(c) : Electrical torque (p.u.) 

 

Case 2: A three phase fault is applied at 1 s at 

middle of one transmission line and cleared after 

50ms by the disconnection of the faulted line , and 

then successfully reclosed at 5 s. 
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Fig 8(a): Rotor angle (degree) 

 

 
Fig 8(b): Speed deviation (rad/sec) 

 
Fig 8(c) : Electrical torque (p.u.) 

 

Case 3: One of the transmission lines is permanently 

tripped at 1 sec 

 

Case IV:  𝑃𝑡 = 0.75 𝑝. 𝑢. , 𝑄𝑡 = 0.1 𝑝. 𝑢., A 10% 

change in reference input voltage is applied at 1 s 

and removed at 5 s the response of the 𝛿,𝜔𝑚  and 

𝑃𝑒  are shown by figure 9(a) ,9(b) and 9(c) 

respectively. From the figure, it is cleared that in this 

operating condition the active power and reactive 

power are increased, the frequency of oscillation in 

rotor angle and speed deviation are continuously 

growing which creates the instability of the system. 

The application of GANN PSS has been produced 

good damping response.  

 

 
Fig 9(a): Rotor angle (degree) 

 
Fig 9(b): Speed deviation (rad/sec) 

 
Fig 9(c) : Electrical torque (p.u.) 

 

Case 4: A 10% change in reference input is applied 

at 1 s and removed at 5 s 
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Case V:  𝑃𝑡 = 0.6 𝑝. 𝑢., 𝑄𝑡 = 0.02224 𝑝. 𝑢., A 

20% change in mechanical input is applied at 1 s and 

removed at 5 s, the response of the 𝛿,𝜔𝑚  and 𝑃𝑒  are 

plotted. Figure 10(a), 10(b) and 10(c) show the 

oscillation of rotor angle in degree, deviation in 

speed of the generator in rad/sec and electrical 

torque in p.u. respectively. It is cleared from the 

figures that, without controller the system is 

unstable, the GA-PSS is significantly suppresses the 

oscillations in the power angle, rotor speed deviation 

and electrical torque, and it  has been provided the 

good damping characteristics to low frequency 

oscillation by the stabilizing the system very 

quickly. It is also much cleared from the figure 10(a) 

,10(b) and 10(c), that the application of the GANN-

PSS gives the best response and time response 

parameters such as settling time and overshoot has 

been improved.  

 

 
Fig 10(a): Rotor angle (degree) 

 
Fig 10(b): Speed deviation (rad/sec) 

 
Fig 10(c) : Electrical torque (p.u.) 

 

Case V: A 20% change in mechanical input is 

applied at 1 s and removed at 5 s 

 

Case VI:    𝑃𝑡 = 0.75 𝑝. 𝑢. , 𝑄𝑡 = 0.1 𝑝. 𝑢., A 10% 

change in mechanical input is applied at 1 s and 

removed at 5 s the response of the 𝛿,𝜔𝑚  and 𝑃𝑒are 

shown in figure 11(a), 11(b) and11(c) respectively. 

 

 
Fig 11(a): Rotor angle (degree) 

 
Fig 11(b): Speed deviation (rad/sec) 
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Fig 11(c): Electrical torque (p.u.) 

 

Case VI : A 10% change in mechanical input is 

applied at 1 s and removed at 5 s 

 

Case VII: 𝑃𝑡 = 0.75 p. u., Qt = 0.1 p. u.,A 10 % 

change in mechanical input is applied at 1 s and 

again 5 % change applied  at 3 s and  removed after 

the 5 s, the response of the 𝛿,   𝜔𝑚  and 𝑃𝑒  are shown 

in figure 12(a) ,12(b) and 12(c) respectively. 

 

 
Fig 12(a): Rotor angle (degree) 

 

Fig 12(b): Speed deviation (rad/sec) 

 
Fig 12(b): Electrical torque (p.u.) 

 

Case VII: 10 % change in mechanical input is 

applied at 1 s and again 5 % change applied at 3 s 

and  removed after the 5 s 

 

Case VIII: 𝑃𝑡 = 0.75 𝑝. 𝑢., 𝑄𝑡 = 0.1 𝑝. 𝑢., A 

0.1p.u. change in infinite bus voltage , the 

response of the 𝛿,   𝜔𝑚  and 𝑃𝑒are shown in figure 

13(a) ,13(b) and 13(c) respectively. 

Fig 13(a): Rotor angle (degree) 

 
Fig 13(b): Speed deviation (rad/sec) 
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Fig 13(b): Electrical torque (p.u.) 

Case VIII: A 0.1p.u. change in infinite bus voltage 

 

 

       6. Conclusion 

 

In this study, the GA-ANN controller based PSS 

has been designed for the power system 

dynamic stability improvement. The non-linear 

simulations for the transient stability analysis 

have been carried out for detail study of the 

power system. Peak loading and off peak 

loading conditions are taken and the responses 

of the rotor angle, rotor speed deviation and 

electrical torque have been analyzed under 

different types of disturbances and faults. From 

the non - linear analysis, it has been seen that 

without PSS, the oscillations are produced in the 

system. While after use of GA-ANN based PSS 

it has been observed that there is extensive 

reduction of oscillations in power angle, rotor 

speed and electrical torque. It use also provides 

good damping to low frequency oscillations by 

stabilizing the system rapidly. There has been 

significant improvement in system performance 

parameters such as overshoot and settling time.  

 

7. Appendix I 

 

 𝑥𝑑 = 1.7572, 𝑥𝑞 = 1.5845, 𝑥𝑑
′ = 0.4245, 𝑥𝑞

′ =

1.04, 𝑇𝑑0
′  6.66, 𝑇𝑞0

′ = .44, 𝐻  3.542, 𝜔𝐵314 𝑟𝑎𝑑/

𝑠𝑒𝑐,𝑥𝑡 = 0.1364, 0.8125, 𝐾𝐴 , 400,    0.025 , 𝑉𝑡 =
1.05, 𝜃 = 21.65., 𝑋𝑇𝐻 = 0.1363 
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