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Abstract: This paper proposes the application of 
Improved Differential Evolution (IDE) algorithm to solve 
the Voltage Stability Constrained Reactive Power 
Planning (VSCRPP) problem. Minimization of total cost 
of energy loss and cost of VAR source installments are 
taken as the objectives incorporating static voltage 
stability constraints to analyze VAR support decisions in 
the Reactive Power Planning (RPP) problem. The 
maximum L-index of the load buses is taken as the 
indicator of voltage stability. In the proposed approach, 
generator bus voltage magnitudes, transformer tap 
settings and reactive power generation of capacitor bank 
are taken as the control variables and are represented as 
the combination of floating point numbers and integers. 
DE/randSF/1/bin strategy scheme of Differential 
Evolution with self tuned parameter which employs 
binomial crossover and difference vector based mutation 
is used for the VSCRPP problem. The proposed VAR 
planning model is implemented on two typical systems, 
IEEE 30-bus system and IEEE 57 bus test system using 
Improved DE. The simulation results of the proposed 
optimization approach is better than Modified Genetic 
Algorithm (MGA) with BLX-α crossover and non uniform 
mutation and other conventional methods.  
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1. Introduction. 

 Reactive power planning is one of the most 

challenging problems in power systems, as it 

involves the simultaneous minimization of two 

objective functions and hence falls in non smooth 

and non differentiable optimization problems. It is to 

plan for economic compensation strategy of new 

reactive power sources in next few years. The first 

objective deals with the minimization of operation 

cost by reducing real power loss and improving the 

voltage profiles. The second objective minimizes the 

allocation cost of additional reactive power sources. 

Thus the VAR planning aims at reduced VAR 

support to maintain feasible operation with 

acceptable voltage profiles. Conventional calculus 

based optimization algorithms like linear 

programming [1], nonlinear programming [2] and 

Newton method [3] have been applied to solve the 

RPP problem. The conventional optimization 

methods may lead to local minimum and sometimes 

result in divergence in solving complex RPP 

problems.  

Recently, Evolutionary computation techniques 

like Genetic Algorithm (GA) [4] and Evolutionary 

programming (EP) [5] have received greater 

attention to obtain global optimum for RPP problem. 

Lai et al [2] proposes an application of evolutionary 

programming approach to RPP problem. The test 

results are compared with conventional gradient 

based optimization method. In [6], an Integer-coded 

multi objective Genetic algorithm is applied to 

reactive power planning problem considering both 

intact and contingent operating states. The problem 

of voltage stability and voltage collapse has become 

a major concern in power system planning and 

operation. The reactive power support and voltage 

problems are intrinsically related. Ajjarapu et. al [7] 

proposed a method of determining the minimum 

amount of shunt reactive power support which 

indirectly maximizes the real power transfer before 

voltage collapse is encountered. A sequential 

quadratic programming algorithm is adopted to 

solve the optimal solution. Vaahedi et. al [8] 

proposed an algorithm for optimal Var planning 

which takes into account voltage profile and voltage 

stability margins simultaneously. A new and fast 

method for computing the minimum voltage stability 

margin (VSM) of power systems is presented in [9] 

.The computation of the minimum VSM (mVSM) 

allows forecasting the load increase worst scenario. 

The information regarding the mVSM and the 

corresponding load increase direction for which it 

occurs, along with the usual VSM, allows operators 

to take measures like preventive control actions to 

move the system to secure operating points. Bedoya 

et al [10] presents critical areas using sensitivities 
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and participation factors for reactive compensation 

or load shedding control actions.  The work 

demonstrates that by using sensitivity analysis, a 

dependable shape of the critical areas can be 

obtained without the calculation of eigen values and 

eigen vectors. Wang et al [11] proposed a flexible 

compensation method based on multi scenario and 

reactive power divisions to adapt the changes in 

future environment. 

 In this paper, voltage stability level is included as 

an additional constraint in the RPP problem in the 

contingency state. The L-index proposed in [12] is 

used as the indicator of voltage stability. DE is an 

attractive optimization tool due to simplicity in 

coding, accuracy, convergence speed and robustness 

and hence drawn the attention of many researches all 

over the world. This paper proposes an Improved 

DE with self tuned parameters for VSC-RPP 

problem. DE/rand/1/bin scheme [13] is used for the 

RPP problem in which mutation scheme uses a 

randomly selected vector and only one weighted 

difference vector is used to perturb it. The mutation 

scheme is combined with binomial type crossover 

and with random scale vector. The simulation results 

are compared with modified genetic algorithm [17] 

in which BLX- α crossover and non uniform 

mutation scheme is used.  
 
2. Voltage Stability Indicator 

 Kessel and Glavitch [12] proposed an index, 

namely, L-index to assess the voltage stability level 

of the power system. It is based on load flow 

analysis. Its value ranges from 0 (no load condition) 

to 1 (voltage collapse). The bus with the highest L-

index value will be the most vulnerable bus in the 

system. The L-index calculation for a power system 

is briefly discussed below: 

Consider a N-bus system in which there are Ng 

generators. The relationship between voltage and 

current can be expressed by the following 

expression: 
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where, IG, IL and VG, VL represent currents and 

voltages at the generator buses and load buses. 

Rearranging the above equation we get, 
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The L-index of the j
th 

node is given by the 

expression, 
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where 

     Vi, Vj    Voltage magnitude of i
th
 and j

th
 

generator. 

     ij          Phase angle of the term Fji. 

     i , j   Voltage phase angle of i
th  

and j
th
 

generator unit. 

 

The values of Fji are obtained from the matrix 

FLG. The L-indices for a given load condition are 

computed for all the load buses and the maximum of 

the L-indices (L
max

) gives the proximity of the 

system to voltage collapse. The indicator L
max

 is a 

quantitative measure for the estimation of the 

distance of the actual state of the system to the 

stability limit. The L-index has an advantage of 

indicating voltage instability proximity of current 

operating point without calculation of information 

about maximum loading point. 
  
3. Problem Formulation. 
    The objective function in RPP problem comprises 

of two terms, namely, the total cost of energy loss 

and the cost of reactive power source installation 

which is given by: 

     Minimize fc = Wc + Ic                         (5) 

                  

The first term Wc represents the total cost of energy 

loss as follows: 
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Where, Plossl  is the network real power loss during 

the period of  load level  dl and is given by equation: 
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The second term Ic represents the cost of VAR 

source installments which has two components 

namely a fixed installation cost and  variable cost. 
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Where QCi is reactive power source installation at 



 

bus i and Qci can be either positive or negative, 

depending on whether the installation is capacitive 

or reactive. Therefore, absolute values are used to 

compute the cost. The above two equations are put 

in one equation to obtain a comprehensive one. 

The RPP problem is subjected to the following 

equality and inequality constraints: 

(i) Real power balance Equation: 
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(ii) Reactive power balance Equation: 
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(iii) Slack bus real power generation limit: 
maxmin

sss PPP                         (11) 

(iv) Generator reactive power generation limit: 

  
maxmin

gigigi QQQ  iNPV                       (12) 

(v) Generator bus voltage limit: 

   
maxmin

gigigi VVV    iNB               (13) 

(vi) Capacitor bank reactive power generation 

limit: 
maxmin

cicici QQQ    iNc                              (14)                                           

(vii) Transformer tap setting limit: 

   
maxmin

kkk ttt 
   

  i   NT                (15)                     

(viii) Line flow limit:  

                         
max

ll
SS          l   Nl                   (16)

  
The reactive power planning problem is 
transformed into voltage stability constrained 
reactive power planning by including L

max
 in the 

contingency state as additional constraint in the 
problem formulation. Hence from the above 
formulation it is found that the VSC-RPP 
problem is a combinatorial non-linear 
optimization problem. Generator voltage 
magnitudes are represented as floating point 
numbers and the discrete variables appear in the 
form of transformer tap setting and reactive 
power generation of VAR sources. 

 
4. Proposed Differential Evolution 
 

Differential Evolution [14] is a population-based  

stochastic search algorithm  that works  in the  

general  framework of evolutionary  algorithms. 

Unlike traditional Evolutionary Algorithms, DE 

variants perturb the generation population members 

with the scaled difference of randomly selected and 

distinct population members. The optimization 

variables are represented as floating point numbers 

in the DE population. The proposed DE based 

algorithm is shown in Figure 1. It starts to explore 

the search space by randomly choosing the initial 

candidate solutions within the boundary. Differential 

evolution creates new off springs by generating a 

noisy replica of each individual of the population. 

The individual that performs better from the parent 

vector (target) and replica (trial vector) advances to 

the next generation. This optimization process is 

carried out with three basic operations namely, 

mutation, crossover and selection. In the proposed 

work, DE/randSF/1/bin strategy with self tuned 

parameter is used to solve the VSC-RPP problem. 

Here rand denotes randomly selected vector to be 

perturbed, 1 denotes the number of difference 

vectors considered for perturbation and bin stands 

for binomial type of crossover operator. This 

strategy remains the most competitive scheme based 

on accuracy and robustness of results. The details of 

these operators are given below:   

 

a. Initialization of parameter vectors: 

 

DE begins with a randomly initiated population of 

NP real parameter vectors known as 

genomes/chromosome which forms a candidate 

solution to multidimensional optimization problem 

and is expressed as: 

    Xi,G= GiDGiGiGi xxxx ,,,,3,,2,,1 ,....,,  

 

Where G is the generation number and D is the 

problem’s dimension. For each parameter of the 

problem, there will be minimum and maximum 

value within which the parameter should be 

restricted. Hence the jth component of  ith vector is 

initialized as follows: 

  
min,max,,min,0,, ].1,0[ jjjijij xxrandxx   

 (17) 

 

Where ]1,0[, jirand  is a uniformly distributed 

random number lying between 0 and 1. 

 

b. Mutation with Difference vectors: 

 

After the population is initialized, the mutation 

operator is in charge of introducing new parameters 

into the population. The mutation operator creates 

mutant vectors  by perturbing a randomly selected 

vector (Xr1) with the difference of two other 

randomly selected vectors (Xr2 and Xr3). All of these 



 

 

vectors must be different from each other, requiring 

the population to be of at least four individuals to 

satisfy this condition. To control the perturbation 

and improve convergence, the difference vector is 

scaled by a user defined constant. The process can 

be expressed as follows: 

     )( ,3,2,1, GrGrGrGi XXFXV                  (18) 

 

where F is scaling constant. 

 

 
      Figure 1. Flowchart of DE based algorithm 
 

In this work, DERANDSF (DE with Random 

Scale Factor) is used in which the scaled parameter 

F is varied in a random manner in the range (0.4,1) 

by using the relation: 

F=0.5 X (1+rand (0,1)                            (19) 

 

Where rand(0,1) is a uniformly distributed 

random number within the range [0,1]. This allows 

for the stochastic variations in the amplification of 

the difference vector and thus helps retain 

population diversity as the search progresses.  The 

difference vector based mutation is believed to be 

the strength of DE because of the automatic 

adaptation in improving the convergence of the 

algorithm which comes from the idea of difference 

based recombination operator ie., Blend crossover 

operator (BLX)[16]. 

 

c. Crossover: 

The crossover operator creates the trial vectors 

which are used in the selection process. A trial 

vector is a combination of mutant vector and a 

parent vector based on different distributions like 

uniform distribution, binomial distribution, 

exponential distribution is generated in the range 

[0,1] and compared against a user defined constant 

referred to as the crossover constant. In this work, 

binomial crossover is performed on each of the D 

variables. If the value of the random number is less 

or equal to the value of the crossover constant, the 

parameter will come from the mutant vector, 

otherwise the parameter comes from the parent 

vector. The crossover operation maintains diversity 

in the population preventing local minima 

convergence. The crossover constant must be in the 

range from 0 to 1. If the value of crossover constant 

is one then the trial vector will be composed of 

entirely mutant vector parameters. If the value of 

crossover constant is zero then the trial vector will 

be composed of entirely parent vector. Trial vector 

gets at least one parameter from the mutant vector 

even if the crossover constant is set to zero. 

The scheme may be outlined as follows: 
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Where  q is randomly chosen  index in the D 

dimensional space. 

             CR  is crossover constant 

    Xi,j(G) is parent vector 

            V i,j(G) is mutant vector 

d.Selection 

 

To keep the population size constant over 

subsequent generations, the selection process 

determines which one of the target vector and trial 

vector will survive in the next generation and is 

outlined as follows: 
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Where f(X) is the objective function to be 

minimized. So if the new trial vector yields a better 

value of the fitness function, it replaces its target in 

the next generation; otherwise the target vector is 

retained in the population.  

 This process is continued until the 



 

convergence criterion is satisfied. The termination 

condition is satisfied when the best fitness of the 

population does not change appreciably over 

successive iterations.  

 
5.  Differential Evolution Implementation  

The following issues are addressed in the 

implementation of DE in VSC-RPP problem: 

 

A.Problem Representation: 

Generator bus voltages (Vgi), transformer tap 

positions (tk) and reactive power generation of VAR 

sources (Qci) are the optimization variables for the 

VSC-RPP problem. The generator bus voltages are 

represented as floating point numbers, whereas the 

transformer tap position and the reactive power 

generation of VAR sources are represented as 

integers. The transformer tap setting with tapping 

ranges of  10% and a tapping step of 0.025 p.u is 

represented from the alphabet (0,1,…8) and the 

VAR sources with limits of 1 and 5 p.u and step size 

of 1 p.u is represented from the alphabet (0,1,...5). 

With this representation, a typical chromosome of 

the RPP problem will look like the following:  

 

0.981   0.970  .. 1.05    4   3   … 1    -2    +1  … +3  

V1              V2              Vn      Qc1  Qc2  Qcn     t1     t2       tn 

B. Evaluation  Function 

In the reactive power optimization problem under 

consideration, the objective is to minimize the 

objective function which comprises the total cost of 

energy loss and VAR source installments of the 

system satisfying a number of equality and 

inequality constraints (5-12). For each individual, 

the equality constraints are satisfied by running the 

Newton Raphson power flow algorithm. The 

inequality constraints on the control variables are 

taken into account in the problem representation 

itself, and the constraints on the state variables are 

taken into consideration by adding a quadratic 

penalty function to the objective function.  

 With the inclusion of penalty function the new 

objective function becomes, 
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Here, SP,VPj ,QPj and LPj are the penalty terms for 

the reference bus generator active power limit 

violation, load bus voltage limit violation, reactive 

power generation limit violation and line flow limit 

violation respectively. These quantities are defined 

by the following equations: 
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    where, Ks, Kv, Kq and Kl are the penalty factors. 

The success of the penalty function approach lies in 

the proper choice of these penalty parameters. Using 

the above penalty function approach, one has to 

experiment to find a correct combination of penalty 

parameters Ks, Kv, Kq and Kl. In contingency state, 

voltage stability indicator, L
max

 is included as 

additional constraint in the evaluation function and 

weightage is given to voltage stability rather than 

VAR cost and helps to improve the voltage security 

of the system. Since DE maximizes the fitness 

function, the minimization objective function f is 

transformed to a fitness function to be maximized as, 

                               Fitness = 
f

k
                      (27)               

         

 where k is a large constant. 

 
5. Simulation Results  

 
The proposed DE-based approach for contingency 

constrained VAR planning model incorporating 

voltage stability is applied in IEEE 30- bus and 

IEEE 57-bus test systems. The real and reactive 

loads are scaled up according to predetermined 

weighting factors to analyze the system under 

stressed condition. Generator excitation, switchable 

VAR compensators and transformer tap settings are 

considered as control variables for reactive power 

planning problem. The load buses are considered as 



 

 

candidates for VAR installation. The program was 

written in MATLAB and executed on a PC with 

2.4GHz Intel Pentium IV processor. The results of 

the simulation are presented below: 

Case 1:IEEE 30-Bus System 

The IEEE 30-bus system has 6 generators, 24 

load buses and 41 transmission lines of which four 

branches (6-9), (6-10), (4-12) and (28-27) are with 

the tap changing transformer. Buses 30,29,26,25 and 

24 are identified for reactive power injection based 

on maximum L-indices of load buses. The network 

and its datas are taken from [2]. The load voltage 

limits are 0.95 and 1.05 pu respectively.  
Table 1. Controller Settings for Under Base Case for  

IEEE  30 Bus System 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generator voltage magnitudes are treated as 

continuous variables whereas transformer tap-

settings and shunt capacitor banks are treated as 

discrete variables with 9 levels and 6 levels 

respectively. The DE- based algorithm was tested 

with different parameter settings and the best results 

are obtained with the following setting: 

    Population size : 30 

   Crossover Rate  : 0.7 

   Scaled Parameter :variable random tuned  

                                     value 

   Number of generations: 150 

      
 Table 2 .Comparison of Fuel Cost 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Convergence of DE-RPP algorithm for IEEE 

30 bus system 

 

The proposed approach took 184.75 secs to reach the 

optimal solution and is shown in Figure 2. Two sets 

of control variables are obtained for base case and 

contingency case. The optimal values of the control 

variables from the proposed algorithm along with  
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initial control variable setting are given in Table 1. 

The algorithm reached a minimum loss of 4.543 

MW and the total cost is 2.3878  x 10
6
 $/hr. As 

indicated in Table 2, this total cost is less than the 

value reported in the literature for the IEEE 30-bus 

system under similar operating condition. For 

comparison, the RPP problem was solved using 

Modified Genetic Algorithm and it took 196.30 secs 

to reach the optimal solution.  From this table, it is 

evident that the proposed Improved DE algorithm is 

more effective in reaching the optimal solution than 

the other evolutionary approaches.  

Next contingency analysis was conducted on 

the system under base load condition. From the 

contingency analysis, line outages 28-27, 27-30 and 

27-29 have been identified as severe cases with the 

L
max

 values of 0.4165, 0.2352 and 0.2146 

respectively. The L-indices of all the load buses are 

computed and is found that L
max

 =0.1978. The 

contingency state L
max

 values were incorporated as 

additional constraints in the RPP problem and the 

DE/randSF/1/bin scheme based algorithm was 

applied to solve the VSC-RPP problem. The result 

of the VSC-RPP problem is given in Table 3. Under 

line outage 28-27, the maximum L-index has 

decreased from 0.4165 to 0.3836, a reduction of 

about 3.3% and the minimum voltage of the system 

has increased from 0.6721 to 1.0, an improvement of 

about 31%. 

The real power savings and annual energy cost 

savings are calculated as follows: 

 Psave (%)= 100

init

loss

opt

loss

init

loss

P

PP
 

 )(. opt

loss

init

lossl

save

C PPdhW   

 

 

Table 3. Results of Optimization Under Contingency 

State for IEEE 30-Bus System   

 

The real power savings from Improved DE is 8.46% 

and annual energy cost savings is $ 227584.8 of 

those from evolutionary programming [15] in 

normal operating conditions. The comparison of 

voltage profile of the system before and after the 

application of improved DE and modified GA 

algorithms at the load buses for the contingency 28-

27 are displayed in Figure 3. Improvement in the 

voltage profile of the system with the VSC-RPP 

algorithm is evident from this diagram. Further, 

before the application of the algorithm voltage 

violations were present in a few buses but they are 

corrected after the application of the proposed 

algorithm. Improvements in voltage stability and 

voltage profile have been achieved for the other 

contingency cases also. This shows the effectiveness 

of the proposed algorithm for voltage security 

improvement. 

 
 

        Figure 3.Voltage profile improvement for line  

              outage 28-27 using proposed approach 

 

 

 

 

 

 

 

 

 

 

 
Line outage 28-27  

(125% Loaded condition) 

Line outage 27-30 

(125% Loaded condition) 

Line outage 27-29 

(125% Loaded condition) 

Before 

optimization 

After 

optimization 

Before 

optimization 

After 

optimization 

Before 

optimization 

After 

optimization 

L
max 

0.4165 0.3553 0.2352 0.1737 0.2146 0.1601 

V
min 

0.6721 0.9817 0.9565 0.9820 1.0201 1.0434 

Base Case Loss 4.8549 MW 

Var installation 

cost 

2.5518 X 10
6
 $/hr 



 

 

Case 2:IEEE 57 Bus Test System 

The IEEE 57-bus system was chosen as the 

second test system to demonstrate the method’s 

usefulness on a large system. The details of the 

IEEE 57-bus system are given below: 

 No of generators  : 4 

 No of synchronous condensers : 3 

 No of load buses  : 50 

 No of transmission lines  : 80 

 No of tap changing transformers : 16 

 

      The base load of the system is 1272 MW and 

298 MVAR. The upper and lower bus voltage limits 

are 0.96 and 1.04 pu respectively. The proposed DE 

was applied to solve the RPP problem under base 

load condition and has brought the total cost to 

1.005 x 10
7
 $/hr. To analyze the system under 

disturbance condition, contingency analysis was 

conducted at 1.25 times the base load condition. 

From the contingency analysis, line outage 46-47 is 

found to be the most severe case with the L
max

 value 

of 0.4598. From the weak bus ranking, buses 

30,32,31,33 and 34 were selected for reactive power 

injection. In contingency state, the voltage stability 

indicator, L
max

 was incorporated in the RPP problem 

as an additional constraint and the proposed DE-

based approach was applied to solve the VSC-RPP 

problem. As in the previous case, generator voltages, 

shunt capacitors and on load tap changing 

transformer  were used as the control variables for 

improving the voltage security.  
 

Table 4. Results of optimization under contingency 

state for IEEE 57 Bus test system 

 

The optimal control variable setting after the 

application of the algorithm for the contingency is 

summarized in Table 4. From this table, it is found 

that the value of L
max

 decreases after the application 

of the algorithm. The real power savings from 

Improved DE is 45.8% when compared to modified 

genetic algorithm and annual energy cost savings is 

$10659186 in critical contingency state (46-47) in 

125% loaded condition. The voltage profile of the 

system before and after the application of the 

algorithm under contingency 46-47 are displayed in 

Figure 4. Improvement in voltage profile of the 

system after the application of the algorithm is 

evident from this result. The minimum voltage of the 

system has been increased by 22% by proposed DE. 

Hence the improvement in voltage profile of the 

system after the application of the proposed 

algorithm is evident from this result. 

 

   
         Figure 4 Voltage profile improvement for IEEE  

           57 bus system for line outage (46-47) 

 

6. Conclusion 

In this paper, Improved Differential Evolution 

algorithm with self tuned parameter has been 

applied to solve voltage stability constrained 

reactive power planning in power systems. The 

weak buses in the system were selected for 

reactive power injection. A multiobjective 

formulation of RPP problem has been developed 

in which candidate solutions are selected to reduce 

the reactive power installation cost and 

transmission loss while improving the voltage 

profile of the system. To improve the efficiency of 

the     Differential Evolution algorithm in the search 

process, the optimization variables were represented 

in natural form. Further, of variable random scale 

vector to find the true global optimum in addition to 

binomial crossover and differential mutation vector 

is used. The simulation results of IEEE 30 bus 

 
Line outage 28-27  

(125% Loaded condition) 

Before 

optimization 

After 

optimization 

(GA) 

After 

optimization  

(DE) 

Lmax 0.9066 0.6065 0.4729 

Vmin 0.7581 0.8007 0.9820 

Reactive 

power 

additional 

Cost 

($/hr) 

4.3979 x 10
7
   2.3654 x 10

7
  1.2731 x 10

7
   

Ploss 

(MW) 

83.38  44.26 23.9878 



 

system and IEEE 57 bus test system shows that the 

proposed algorithm is effective in reducing the VAR 

installation cost and improving the voltage security 

of the system.  
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