
FPGA IMPLEMENTATION OF A LOW POWER 64-POINT FFT

ARCHITECTURE USING MODIFIED RADIX-4 ALGORITHM

E. KONGUVEL, M. KANNAN, J. MADHUMITHA
Department of Electronics Engineering, Anna University - MIT Campus, Chennai - 600044, India.

konguart08@gmail.com, mkannan@annauniv.edu, sanjujsms@gmail.com

Abstract – This paper presents an area efficient

multiplier less parallel radix 4 Decimation in

Frequency – Fast Fourier Transform (DIF-FFT)

processor using Distributed Arithmetic Algorithm

(DAA). Many numbers of complex computations

involved in the radix-2 algorithm have driven to the

usage of higher radix algorithms such as radix 4 and

radix 8. DAA is an appropriate technique for

eliminating the complex multiplications in FFT/IFFT

processor by using look-up tables (LUTs) and shift-

accumulators. Higher radix FFT algorithm along

with DAA provides low area high-speed FFT/IFFT

processor. The proposed multiplier less 64 point

radix 4 FFT/IFFT processor using DAA algorithm is

designed, implemented and simulated in Altera DE2

EP2C35F672C6 device. Hardware implementation

of the proposed DAA based 64 point FFT processor

has a total of 2.77% FPGA utilization which is

36.62% lesser than conventional FFT/IFFT

processors and it operates at 46.30Gbps.

Keywords – FFT, IFFT, Distributed Arithmetic,

Multiplier-less, Radix 4.

1. Introduction

The Fast Fourier Transform (FFT) and its Inverse

(IFFT) plays a vital role in signal processing

applications. A number of FFT/IFFT algorithms have

been proposed such as Cooley-Tukey algorithm,

Prime factor algorithm, Bruun's algorithm, Rader's

algorithm and Bluestein's algorithm. Cooley-Tukey

algorithm is chosen in this research article for it’s

straightforward and efficient design and

implementation of the basic butterfly unit [1]. FFT

can be performed through radix-2, radix-4, radix-8

and other higher order radices too. For low speed

applications, radix-2 processor can be used. For the

high-speed processor, higher order radices are

required [2]. Even though the number of

computations in higher radix algorithms is reduced,

the internal complexity is so higher that becomes

difficult for implementation and debug. Therefore,

radix-4 butterfly structure is utilized, since it

provides a greater trade-off between the operational

speed and design complexity [3].

FFT/IFFT computations can be performed using

sequential, parallel or pipelined architecture.

Sequential architecture involves round implementing

the butterfly structures one after the other [4].

Therefore, sequential architecture increases the delay

in processing the input data bits and thus results in

the reduction of speed. In pipeline algorithms, each

and every operation is processed simultaneously [5].

The FFT/IFFT computation process includes fetching

complex input data points, and butterfly

computations are performed after which Distributed

Arithmetic based Look-Up-Table (DA-LUT) is used

for complex multiplications, and then the complex

output data is processed [6]. Pipeline architecture has

two primary disadvantages. First, a non-pipelined or

a parallel processing unit executes the instruction at

an instance. This technique prevents branch delays

and does not cause either any pipeline stalls.

Consequently, the non-pipelined design is simpler

and cheaper to manufacture. Second, the instructional

latency in a parallel processor is lower than pipelined

mechanism, since it requires additional flip flops for

its intermediary data paths. Another type of

architecture is parallel processors are in which more

than one processors are running in parallel [7]. A

dedicated hardware will be used for the specific

tasks. Hence, parallel processors compensate both the

speed and pipeline delays.

The primary shortcoming of the conventional

FFT/IFFT algorithm is the requirement of much

more hardware components to perform the complex

multiplications involved. The Distributed Arithmetic

Algorithm (DAA) is to carry out the same complex

multiplications in a distributed approach through

addition, subtraction and shift-accumulation process.

DAA can be implemented by various techniques

such as look-up table (LUT) based DA, offset binary

DA, exploit the symmetric property and Hybrid DA

[8] which practices carry save adder for computation.

Parallel look-up table based distributed arithmetic

(DA-LUT) architecture is proposed for its efficient

managing of latency and area [9]. The binary scaling

technique is incorporated along with DAA for

floating point calculation of twiddle factors to

maximize the performance of the FFT/IFFT

processing element [10]. Implementation of

https://en.wikipedia.org/wiki/Prime-factor_FFT_algorithm
https://en.wikipedia.org/wiki/Bruun%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Rader%27s_FFT_algorithm
https://en.wikipedia.org/wiki/Bluestein%27s_FFT_algorithm

Maximum Power Point Tracking (MPPT) using

fuzzy logic on Xilinx Virtex - II Field Programmable

Gate Array (FPGA) for photovoltaic applications are

discussed in [11]. A comparative study of efficient

FFT/IFFT algorithms and architectures for Multiple

Input Multiple Output - Orthogonal Frequency

Division Multiplexing (MIMO-OFDM) based

applications were presented in [12]. Prototype of

radix-2 and radix-4 optimized butterflies are

implemented in Altera Quartus - II FPGA device

were presented in [13].

This research article is organized as follows. After

this introduction, section 2 deals about the proposed

Distributed Arithmetic Algorithm (DAA) based

radix-4 64-point FFT/IFFT processor. Section 3 deals

with the FPGA implementation and simulation

results of the proposed radix-4 64-point parallel FFT

computations as well as the performance analysis and

comparison with conventional and modified booth

multiplier based FFT/IFFT methodologies. Quite a

few concluding observations are acknowledged in

section 4.

2. Distributed Arithmetic based FFT

architecture

2.1 Modified Distributed Arithmetic Algorithm

(DAA)

The proposed method presents a parallel FFT/IFFT

processor using DAA look-up table implementation.

The architectural flow of the proposed FFT/IFFT

processor is shown in fig 1. Distributed arithmetic

algorithm (DAA) comprises of three essential

components, namely shift register, accumulator and

look-up table.

Fig. 1. Multipliers replaced by LUTs & Shift Accumulator

The complex input data is given to the processing

element and multiplied with twiddle factor (retrieved

from the look-up table), which carries the pre-

computed partial products. The twiddle factor values

are stored in a Read Only Memory (ROM). The

obtained complex output is then applied to a complex

parallel adder, and the same is stored in an

accumulator-register. The scaled value of

accumulator output is the second complex input to

the adder. The course of multiplication is being

replaced by the successive of retrieval data from the

look-up table, addition, and shift accumulation.

The Distributed Arithmetic Algorithm (DAA) can be

formulated by assuming multiply and accumulate

operation that can be represented mathematically as,





K

k

kk xAy
1

 (1)

Where Ak is a constant and xk is N-bit scaled two's

complement number,







1

1

0 2
N

n

n

knkk bbx (2)

Where bk0 is the sign bit.

On substituting equation (2) in equation (1),













K

k

N

n

n

knk

K

k

kk bAAby
1

1

11

0 2)()((3)

By re-arranging equation (3),

n
N

n

K

k

knk

K

k

kk bAbAy 


 

  







 2)(

1

1 11

0
 (4)

From equation (4), it is evident that each of the

components 



K

k

kk bA
1

0)(and 










K

k

knkbA
1

 are to

be stored in the look-up table to replace the

multiplication with successive addition and shift

accumulation. It is also apparent that each term

requires 2K vales. Therefore, 2 * 2K look up tables

sizes are needed to accumulate the data from two

multiplication components in equation (4).

2.2 Proposed Radix 4 64 point FFT architecture

In radix-4 decomposition, the four complex input

data points are processed at a time. For single radix

FFTs, the transform size must be a power of the

radix. The FFT length is 4N, where N is the number

of stages and 4 represents the appropriate radix

decomposition. The DAA based radix-4 butterfly

algorithm is shown in figure 2.

The output of the each term in radix 4 algorithm can

be represented mathematically as,

  kn

NN

N

n

WW
N

nx
N

nx
N

nxnxkX 4/

0
14/

0 4

3

24
)4(








































 (5)

  kn

N

n

N

N

n

WW
N

njx
N

nx
N

njxnxkX 4/

14/

0 4

3

24
)14(








































(6)

  kn

N

n

N

N

n

WW
N

nx
N

nx
N

nxnxkX 4/

2
14/

0 4

3

24
)24(








































 (7)

  kn

N

n

N

N

n

WW
N

njx
N

nx
N

njxnxkX 4/

3
14/

0 4

3

24
)34(








































 (8)

Where
kn

NNWW 4/

0

 to
kn

N

n

N WW 4/

3

 in equation (5) to (8)

are the twiddle factors of the FFT computation whose

values are known. These twiddle factors are to be

multiplied with the respective complex input data

points to form the partial products.

Fig. 2. Proposed DAA based radix-4 butterfly.

Since the first multiplicand values (twiddle factor)

are known, all the products for possible second

multiplicand values (both real and imaginary input

data points) are stored in the LUTs as pre-computed

values. When the complex input is fetched from the

input buffer, the real and imaginary values are

mapped with the LUTs; respective pre-computed

values are given as inputs for the complex adders.

Fig. 3. Radix 4 64 point FFT architecture

By using Distributed Arithmetic Algorithm, pre-

calculated partial products are accumulated in the

LUTs, which eliminate the complex multipliers.

Since no multipliers are used, that reduces the area

occupied the multiplying units as well as it reduces

the power usage. This look-up table (LUT) based

multiplier less radix-4 butterfly is used in the DIF

based flow diagram for 64 points FFT architecture

which is shown in figure 3. Radix 4 64 point FFT

flow requires three stages with 16 butterfly units each

which are represented as BU1 to BU 16 for all the

stages. The twiddle factor values are given to the

respective LUTs in the butterflies employing a ROM.

3. Experimental Results

The proposed distributed arithmetic algorithm based

radix-4 64 point FFT processor is designed,

implemented and simulated in Altera Quartus II DE2

EP2C35F672C6 device. The experimental results

that are obtained from the simulations are discussed

in detail below.

3.1 Synthesis Report

Fig. 4. RTL schematic of proposed FFT processor

The RTL of the proposed distributed arithmetic

algorithm based radix-4 64 point FFT processor is

shown in figure 4. The proposed system achieves low

utilization of about 2.77% which includes 770

registers and 2778 combinational slices.

3.2 Timing and Power Analysis

The proposed distributed arithmetic based 64 point

FFT algorithm achieves a maximum clock set up

time of 5.479nS, worst case propagation delay of

10.516nS, combinational delay of 8.802nS at a clock

speed of 182.52MHz. The proposed system has a

core static power dissipation of 80.10mW and IO

thermal power dissipation of 83.16mW under the

final models of EP2C35F672C6 FPGA device for 64

points FFT. The proposed system has a core static

power dissipation of 70.24mW and IO thermal power

dissipation of 74.36mW under the final models of

EP2C35F672C6 FPGA device for 16 points FFT.

Fig. 5. Simulation Output

3.3 Simulation Output

The input samples are specified for a period cycle,

and the outputs are generated at the second positive

triggered edge. The clock is given to the design as

input through the pin clk, the complex input data

points are given through ip1_re to ip64_re for the

real part and ip1_im to ip64_im for the imaginary

part. The generated complex output data points can

be viewed from op1_re to op64_re and op1_im to

op64_im. The simulation waveforms for the

proposed system are shown in figure 5. The chip

planner view is shown in figure 6 which shows the

utilization area, fan-ins, and fan-outs of the proposed

system.

Fig. 6. Chip planner view

3.4 Performance analysis and comparison

The performance comparisons of conventional FFT,

modified Booth multiplier based FFT and proposed

DAA based FFT are presented in Table 1. In the

conventional method, both radix-2, radix-4 based

FFT implementation results and in modified Booth

multiplier based FFT and proposed DAA based FFT,

radix 4 16 and 64 points are presented for the

comparative analysis.

The proposed FFT processor utilizes 1.52% of

registers and 3.98% of combinational slices which is

lesser than the conventional and modified Booth

multiplier based methods. The setup time for the

proposed system is lesser than the other two methods

since its area is reduced which is shown in figure 7

for radix 4 16 point FFT architecture. Similarly, the

operating frequency of the proposed system is

222.60MHz for 16-point FFT is higher than the

operating frequencies of the other two given systems.

From figure 8, it is clear that throughput of the

proposed system is improved by 4.18Gbps than the

conventional FFT and 3.06Gbps than modified Booth

multiplier based FFT method. It is acknowledged in

figure 8; the power consumption of multiplier less

radix 4 64 point FFT architecture is lesser than the

conventional and modified Booth multiplier based

FFT architectures.

Fig.7: FPGA utilization and setup time comparison

4. Conclusion

In this paper, we have presented FPGA

implementation of multiplier less radix-4 64-point

FFT/IFFT processor which achieves a maximum

throughput of 68Gbps is presented. The multiplier

less design is attained by the usage of modified

Distributed Arithmetic Algorithm (DAA). The circuit

is designed, implemented and simulated in Altera

Quartus II DE2 EP2C35F672C6 FPGA device.

Performance comparisons show that the proposed

method is balanced in parameters such as area,

power, and throughput. The future work includes the

application of modified Distributed Arithmetic

Algorithm (DAA) for higher data point FFT/IFFT

algorithms which make the system more suitable for

MIMO-OFDM broadband based applications such as

WiMax or LTE.

Table 1: Performance comparisons of different FFT processors.

Fig. 8: Throughput and Power vs. different FFT processors

5. References

[1]. J. W. Cooley and J. Tukey, “An algorithm for

machine calculation of complex Fourier series,”

Math. Comput., vol. 19, pp. 297–301, Apr. 1965.

[2]. H. S. Kang, S. H. Chang, I. K. Hwang and J. K.

Lee. (2016). A design and implementation of 32-

paths parallel 256-point FFT/IFFT for optical

OFDM systems. 18th International Conference on

Advanced Communication Technology, South

Korea, 1-1.

Parameter Conventional FFT

Modified

Booth based

FFT

Proposed DAA based FFT

Radix/FFT Point 2/16 4/16 4/16 4/16 4/64

Total Pins

(475)

449

(94.52%)

449

(94.52%)

449

(94.52%)

449

(94.52%)

463

(97.47%)

Flip-flops

(33216)

1040

(3.13%)

553

(1.66%)

559

(1.68%)

507

(1.52%)

770

(2.31%)

Combinational

Elements

(33216)

2044

(6.15%)

1910

(5.75%)

2346

(7.06%)

1333

(3.98%)

2778

(8.36%)

Frequency

(MHz)
139.68 202.88 206.23 222.60 182.52

Clock Setup Time

(nS)
7.159 4.929 4.849 4.492 5.478

Power

(mW)
155.79 151.55 154.36 144.60 163.26

Throughput

(Gbps)
44.50 64.26 65.38 68.44 46.30

[3]. R. Neuenfeld, M. Fonseca and E. Costa. (2016).

Design of optimized radix-2 and radix-4 butterflies

from FFT with decimation in time. IEEE 7th Latin

American Symposium on Circuits & Systems,

Florianopolis, 171-174.

[4]. P. A. Sophy, R. Srinivasan, J. Raja and M. Avinash.

(2015). Analysis and design of low power radix-4

FFT processor using pipelined

architecture. International Conference on

Computing and Communications Technologies,

Chennai, 227-232.

[5]. S. Singh & J. Kedia. (2015). Pipelined FFT

architectures: A review. International Conference

on Electrical, Electronics, Signals, Communication

and Optimization, Visakhapatnam, 1-5.

[6]. Sunil P. Joshi & Roy Paily. (2014). Distributed

Arithmetic based Split-Radix FFT, Journal of

Signal Processing Systems, 2014(75), 85-92.

[7]. Eleanor Chu & Alan George (2000). Inside the FFT

Black Box: Serial and Parallel Fast Fourier

Transform Algorithms. Florida, CRC press LCC.

[8]. Nagakishore Bhavanam. S, Keerthi. M, Vasujadevi

Midasala & JeevanReddy. K. (2012). FPGA

Implementation of Distributed Arithmetic For FIR

Filter. International Journal of Engineering

Research & Technology, 1(9), 1-8.

[9]. Nisha Laguri & N. Anusudha. (2014). VLSI

implementation of efficient split radix FFT based

on distributed arithmetic, International Conference

on Green Computing, Communication and

Electrical Engineering, Coimbatore, 1-5.

[10]. Augusta Sophy, R.Srinivasan & J.Raja, (2014) Low

power reconfigurable FP-FFT core with an array of

folded DA butterflies. Eurasip Journal of Advances

in Signal Processing, 2014(144).

[11]. F.Chekired, C.Larbes, D.Rekioua & F. Haddad

(2011) Implementation of a MPPT fuzzy controller

for photovoltaic systems on FPGA circuit, Energy

Procedia, 6, 541 – 549.

[12]. E. Konguvel & M. Kannan, (2018), A Survey on

FFT/IFFT Processors for Next Generation

Telecommunication Systems, Journal of Circuits,

Systems and Computers, 27 (3), 1830001.

[13]. B. R. Manuel, E. Konguvel and M. Kannan, 2017,

An area efficient high speed optimized FFT

algorithm, 2017 Fourth International Conference

on Signal Processing, Communication and

Networking (ICSCN), Chennai, pp. 1-5.

https://www.worldscientific.com/doi/10.1142/S0218126618300015
https://www.worldscientific.com/doi/10.1142/S0218126618300015
https://www.worldscientific.com/doi/10.1142/S0218126618300015

