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Abstract-This paper presents a particle swarm
optimization efficient algorithm (PSO) for the solution
of the optimal power flow (OPF). The objective is to
minimize the total fuel cost of generating units with
optimal setting of control variables without violating
inequality constraints and satisfying equality constraint.
Control variables are both continuous and discrete. The
continuous control variables are unit active power
outputs and generator bus voltage magnitudes, while
the discrete variables are transformer tap settings and
reactive power of shunt compensators. The PSO
algorithm solution has been tested on the standard
IEEE 30-Bus test system with different cases of
objective function such as simple quadratic fuel cost,
simple fuel cost with voltage profile improvement with
both continuous and discrete control variables. The
results have been compared to other methods.

Key words-Optimal power flow (OPF), particle swarm
Optimization (PSO), voltage profile improvement.

I-Introduction

The main objective of the economic dispatch
(ED) of electric power generation or optimal
power flow (OPF) is to minimize a selected
objective function such as the fuel cost via the
optimal adjustment of the power system control
variables while at the same time satisfying various
equality and inequality constraints. The equality
constraints are the power flow balance equations,
while the inequality constraints are the limits on
the control variables and the operating limits of the
power system dependent variables. The problem
control variables include the generator real powers,
the generator bus voltages, the transformer tap
settings, and the reactive power of switchable
VAR sources, while the problem dependent
variables include the load bus voltages, the

generator reactive powers, and the power line flows.
Generally, the OPF problem is a large-scale highly
constrained nonlinear non convex and multimodal
optimization problem.
To solve the OPF problems, the optimization methods
are classified into classical and heuristic optimization
methods.
Classical optimization methods such as nonlinear

programming, quadratic programming, linear
programming, Newton-based techniques, and interior
point methods are highly sensitive to starting points
and frequently converge to local optimum solution or
diverge altogether in non-convex OPF problem.
Linear programming methods are fast and reliable but

their main disadvantage is associated with the
piecewise linear cost approximation. Nonlinear
programming methods are known to suffer from the
complex algorithms. The problem encountered in
Newton based algorithms resides in the fact that the
inequality constraints are added as quadratic penalty
terms to the problem objective, multiplied by
appropriate penalty multipliers [3]. Interior point (IP)
methods convert the inequality constraints to equalities
by the introduction of nonnegative slack variables. A
logarithmic barrier function of the slack variables is
then added to the objective function and multiplied by
a barrier parameter, which is gradually reduced to zero
during the solution process [15].

Most of these methods are based on the combination
of the objective function and the constraints by
Lagrange formulation and Kuhn Tucker condition and
applying sensitivity analysis and gradient-based
optimization algorithm [3].
Heuristic methods such as genetic algorithm [13],

evolutionary programming algorithm [9], particle
swarm optimization (PSO) [6], and differential
evolution (DE) [16] have been proposed for solving the



OPF problem. GA and DE are parallel and global
search techniques emulating natural genetic
operators such as selection, crossover and
mutation. A GA and DE methods is more likely to
converge toward the global solution because it,
simultaneously, evaluates many points in the
parameter space. The PSO algorithm is also a
global search method which explores search space
to get to the global optimum, the PSO is a
stochastic, population-based computer algorithm
modeled on swarm intelligence, PSO finds the
global minimum of a multidimensional,
multimodal function with best optimum. It does
not need to assume that the search space is
differentiable or continuous. In reference [6], a
particle swarm optimization method has been
proposed to minimize the total cost function with
continuous control variables.
In the present paper a PSO algorithm method is
used to improve the quality of solution, leading to
the global optimum in each generation with both
continuous and discrete control variables.
The continuous control variables are unit active

power outputs and generator bus voltage
magnitudes, while the discrete variables are
transformer tap settings and reactive power of
shunt compensators.

The control variables are multimodal and have
not an approximate value. To improve the quality
of solution you need to normalize vector of control
variables to the approximate values.
This method has been tested on the IEEE 30-bus
standard system with different type of objective
function such as total simple quadratic fuel cost
and total cost with voltage profile improvement
effect witch are multimodal optimization problem.
The results are compared with other methods with
both continuous and discrete control variables.

II-Problem Formulation
The OPF problem is considered as a general

minimization problem with constraints, and can be
written in the following form:

Minimize ),( uxf (1)

Subject to 0),( uxg (2)

and 0),( uxh (3)

Where ),( uxf is the objective function,

),( uxg and ),( uxh are respectively the set of

equality and inequality constraints, x is the vector

of state variables and u is the vector of control
variables.
The state variables are the load buses voltages and
angles, the generator reactive powers and the slack
active generator power.
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The control variables are the generator active power
outputs except active power of slack bus, the bus
voltages, the shunt capacitors/reactors and the
transformers tap-settings.
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Where NCNTN g ,, are the number of generators,

number of tap transformers and the number of shunt
compensators respectively.

A-Objective Function
The objective function for the OPF reflects the

costs associated with the system power generation. The
quadratic cost model is used where the objective
function for the entire power system can then be
written as the sum of the generators quadratic cost
models:
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1- Simple quadratic fuel cost model
In this case a cost of unit i take a simple quadratic

form:

2)( giigiiigii PcPbaPC  (8)

Where gN the number of units, Pgi is the generator

active power at unit i and ai, bi and ci are the cost
coefficients of the ith unit.

B-Equality Constraint
The equality constraint g(x,u) of the OPF problem is

represented by the power balance equation, where the
total power generation must cover the total power
demand and the power losses:

http://en.wikipedia.org/wiki/Stochastic
http://en.wikipedia.org/wiki/Swarm_intelligence
http://en.wikipedia.org/wiki/Function_(mathematics)


LDG PPP  (9)

This equation is solved by nonlinear load flow
method to calculate the active power of slack bus
and active power loss.

C-Inequality Constraints
The inequality constraints h(x,u) reflect the

limits on physical devices in the power system as
well as the limits created to ensure system security:
Upper and lower bounds on the active and reactive
power of generations:

maxmin gigigi PPP  (10)

maxmin ggig QQQ 
gNi ,...,1 (11)

Upper and lower bounds on the bus voltage
magnitudes of all buses:

maxmin iii VVV  Ni ,..,1 (12)

Upper and lower bounds on the transformers tap
ratios:

maxmin iii TTT 
TNi ,..,1 (13)

Upper and lower bounds on the compensators
reactive powers:

maxmin ccc QQQ  cNi ,....,1 (14)

Where N is the number of buses, NT is the number

of Transformers, cN is the number of shunt

reactive compensators,
Security constraints describe the maximum
capability of transmission line, then the power
flow of each line does not exceed its limit then we
have:

maxii LfLf  Nbri ,...,1 (15)

Where Nbr is the number of transmission lines in

the power network and iLf is the maximum power.

In PSO search algorithm all control variables stand
in there limits except active power in slack bus
By adding the inequality constraints to the
objective function, the augmented form to be
minimized becomes:
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where VP  , are the penalty factors and both penalty

factors are large positive constants; NL is a number of
load buses.
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The equality constraint and reactive power inequality
constraints are of generators is handling in solution of
load flow problem.
In problem of OPF with voltage profile improvement
the objective is to minimize the load bus voltage
magnitude deviation from 1.0 per unit. Then the
objective function can be expressed as:
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where  is a weighting factor and weighting factor is
large positive constant; NL is the number of load
buses.

III- Overview of PSO
Particle Swarm Optimization was introduced by R,

Eberhart and J, Kennedy in 1995 [2], inspired by social
behavior of bird flocking or fish schooling. It is a part
of modern heuristic optimization algorithm, it work on
population or group in witch individuals called
particles move to reach the optimal solution in the
multidimensional search space. Differ as the genetic
algorithm PSO use directly a real value of control
variables .The number of particles in the group is Np.
the initial population of a PSO algorithm is randomly
generated within the control variables bounds. Each
particle adjusts its position through its present velocity,
previous positions and the positions of its neighbors.
In d dimensional search space the position and velocity
of particle i are represented as the vectors
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respectively where Npi , and d is the number

of members in a particle, it represent in general
the number of control variables in the objective
function .

Let ),...x(xXpbest best
id

best
ii 1 the best previous

position of particle i, and

),....x(xXgbest gbest
d

gbest
1 the best particle among

all the particles in the swarm. The updated velocity
of particle i is modified under the following
equation:
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where
K
iVt : velocity of particle i at iteration k;

ω : inertia weight factor ;

21,cc : acceleration constant;

k : current iteration;

21 rand,rand : random numbers between 0 and 1;
k
iXpbest :best position of particle i until iteration

k;
kXgbest : best position of the swarm until

iteration k;
Each particle changes its current position to the
new position by adding the modified velocity (18)
using the following equation:
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In general inertia weight factor  decreases

linearly from max to min according to the

following equation:
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where maxk is the maximum number of iterations.

IV- implementation of the OPF PSO algorithm:

IV-1 Initialization:
Initial value of each particle is generated randomly

between  maxmin ,uu ),....,x(xX i,ji,i
00

1
0  then

),urandom(ux ,j,ji,j
maxmin0  .

Also initials values of velocity of each particle is

generated randomly between  maxmin ,VtVt

),vtrandom(vtvt i,ji,ji,j
maxmin0 

)/Nvu(uVtvt j,ji,ji,j
maxmaxminmax  Where Nv is an

integer value representing the number of intervals.

where ,..d,j,..Ni P 11  and minmax
jj ,uu are

maximum and minimum values of control variables
respectively.

IV-2 Algorithm OF OPF-EPSO
The steps of the proposed algorithm are listed as

follow:
Step 1: give PSO parameters and k=1 ; Np; min, max ,
kmax, c1,c2, d=dimension of vector of control
Variables U.
Step 2: Initialize at random Np particles within
their limits, and initialize the velocities of each particle
within their limits.
Step 3: Calculate fitness function of each initial

particle 0
iX using objective function F giving in (16)

or (17).

Step 4: set 0
ii XXpbest  as a previous Xi and

Xgbest to the best a particle have the best fitness of all

particles iXpbest

Step 5: set iteration K=1;
Step 6: update velocity of each particle using equation

(18), If min
i,ji,j vtvt  then min

i,ji,j vtvt  , or if

max
i,ji,j vtvt  then min

i,ji,j vtvt 

Step 7: adjusts the position of each particle using
equation (19) if the element of vector of particle Xi
exceeds its limits, enforce it in within boundary.
Step 8: calculate new fitness function of each particles
Xi using objective function F.
Step 9: if the evaluation value of each particle is

better than previous iXpbest , the current is set to be

iXpbest if the best particle of all iXpbest is better

than Xgbest , the current is set to Xgbest .

Step 10: if k < Kmax set K=K+1 and go to step 6,
otherwise go to step 11.



Step 11: take XgbestU best  and running load

flow to calculate real slack power, and other
elements of state variables.

To evaluate fitness function of each particle iX

set the vector of control variables iXU  and

running load flow to evaluate real slack power, and
other elements of state vector.

If the values of the control variables have not an
approximate value; for affecting their values to the
particle it may be normalized by the operators:
multiplying or dividing to constant values. To
extract the values from particle to control variables
you must inverse the operators.

IV-3- Handling of discrete Variables:
The discrete control variables are adjusting by

0.01 step size. Then each transformer tap setting
is rounded to its nearest decimal integer value of
0.01, by utilizing the rounding operator. The same
principle applies to the discrete reactive power
injection of shunt compensators.

V- Numerical Results
The PSO algorithm has been tested on the

IEEE 30-bus, 41 branch system [6]. It has a total of
24 control variables as follows: 5 unit active power
outputs, 6 generator-bus voltage magnitudes, 4
transformer-tap settings, and 9 bus shunt reactive
compensators.

The security constraints considered are the
voltage magnitudes of all buses, the reactive power
limits of the shunt VAR compensators and the
transformers tap settings limits. The variables
limits are listed in Table 1. The transformer taps
and the reactive power source installation are
discrete with the changes step of 0.01.

TABLE 1
VARIABLES LIMITS IN PU

Vmin Vmax Tmin Tmax Qc
max Qc

max

0.95 1.1 0.9 1.1 0 0.05

The power limits and cost coefficients of
generators buses are represented in Table2 and
Table 3 respectively. Generators buses are: PV
buses 2,5,8,11,13 and slack bus is 1.the others are
PQ-buses.
The PSO population size is taken equal to 10, the
maximum number of generations is 100,
acceleration factors C1=C2=2, maximum and
minimum inertia factors are max=0.9,min=0.1,

both penalty factors in (16) are chosen,

1000 vP  and weighting factor in (17) is

.1000 .
The complete algorithm has been implemented in

Delphi oriented object programming, 10 runs have
been performed for each type of objective function and
the results which follow are the best solution of these
10 runs.

TABLE 2
Generators power Limits in Mw and Mvar

TABLE 3
Cost coefficients of the IEEE 30-bus system

Case A: simple quadratic fuel cost function
The optimal settings of the control variables are

given in table 4 case A. The total fuel cost was initially
901.88 $/H and it has been reduced by the proposed
PSO to 799.374 $/H, the active power losses is 8.758
Mw.
This solution is improved than the optimal fuel cost
obtained by the other heuristic methods reported in the
literature with both continuous and discrete control
variables such improved genetic algorithm IGA[13]
(see table 5) with 800.805 $/h of fuel cost .
System of voltage profile for all bus in this case as
shown in Figure 1. We notice that all control variables
are within their limits.

Case B: Fuel cost with voltage profile optimization
The optimal setting of control variables are shown

in table 4 case B, the total fuel cost is 802.738 $/h,
active power loss is 9.616 Mw. The system voltage
profile of this case is compared to that of case A as
shown in figure 1, it is clear that the voltage of load

Bus N° Pgmin Pgmax Qgmin Qgmax

1 50 200 -20 200
2 20 80 -20 100
5 15 50 -15 80
8 10 35 -15 60
11 10 30 -10 50
13 12 40 -15 60

Bus N° a($/h) b( $/Mwh) c($/(Mw)2h)

1
2
5
8
11
13

0
0
0
0
0
0

2.00
1.75
1.00
3.25
3.00
3.00

0.00375
0.01750
0.06250
0.00834
0.02500
0.02500



buses profile is greatly improved compared to that
of case A, and their values are near to 1 PU.

TABLE 4
Simulation results of different cases

Case A Case B Case C Case D
Pg1(mw)
Pg2

Pg5

Pg8

Pg11

Pg13

V1(pu)
V2

V5

V8

V11

V13

T4,12

T6,9

T6,10

T28,27

Q10(pu)
Q12

Q15

Q17

Q20

Q21

Q23

Q24

Q29

177.726
48.599
21.077
20.846
11.91
12
1.1
1.088
1.06
1.069
1.1
1.1
0.98
1.02
0.90
0.97
0.00
0.03
0.03

0.02
0.05
0.05
0.01
0.01
0.04

176.810
48.729
21.578
21.165
12.734
12

1.055
1.036
1.004
1.005
1.032
1.024

0.98
1.01
0.92
0.96
0.02
0.00
0.03

0.03
0.02
0.03
0.02
0.03
0.03

176.658
49.444
21.287
21.117
11.565
12
1.1
1.088
1.064
1.071
1.094
1.100
1.021
1.072
0.900
0.988
0.027
0.00
0.05
0.018
0.016
0.05
0.05
0.039
0.018

176.231
49.187
21.39
21.703
12.455
12
1.055
1.034
1.000
1.005
1.013
1.038
1.015
0.984
0.953
0.965
0.047
0.015
0.039
0.024
0.045
0.02
0.009
0.04
0.034

Cost
($/H)

799.374 802.738 799.25 799.63

loss(mw) 8.758 9.616 8.67 9.566

Case C: Fuel costs with continuous variables
In this case the control variables are all

continuous. The optimal settings of the control
variables are given in table 4 case C, The total fuel
cost has been reduced by the proposed PSO to
799.25 $/H, the active power losses is 8.67 Mw.

A comparison between the results of fuel cost
obtained by the proposed PSO approach and those
reported in the literature; with the same control
variable limits, initial conditions, and other data,
the problem was solved using gradient method
[11], particle swarm optimization algorithm [6]
and differential evolution [16] with optimal fuel
cost respectively of 804.583 $/h , 800.41$/h,and
799.2891 $/h respectively. The results of this
comparison are given in Table 5.
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Fig. 1. Voltage Profile Solution (case A and B)

TABLE 5
Comparison of fuel cost for different methods

Method Cost($/h)
Gradient based approach(11)
Improved genetic algorithm(13)
Particle swarm optimization(6)
Differential Evolution (16)
Efficient Particle swarm optimization

804.853
800.805
800.41
799.2891
799.25

These results show that the optimal power flow
solutions determined by EPSO lead to good optimum
fuel cost, which confirms that the EPSO is well
capable of determining the global or near-global
optimum dispatch solutions.

Case D: fuel cost with voltage profile improvement
and continuous variables

In this case the results of simulation is given in
table 4 case D with optimal control variables, the total
fuel cost is greater then case C ; that is 799.63$/h
In PSO [6] the total fuel for this case is 806.38 $/h with
all control variables are continuous.
The system of voltage profile of this case is compared

to that of case c as shown in figure 2, it is clear that the
voltage profile of load buses is greatly improved
compared of case C, and their values are near to 1 PU.
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Fig. 2. Voltage profile solution (Case C and D)

VI- Conclusion

In this paper, a PSO solution to the OPF
problem has been presented. The main advantages
of the PSO to the OPF problem are optimization of
convex or non-convex objective function, real
coded of both continuous and discrete control
variables, and easily handling nonlinear
constraints. The proposed algorithm has been
tested on the IEEE 30-bus system to minimize the
total fuel cost with different type of objective
functions. The optimal setting of control variables
are obtained in both continuous and discrete
values. The results were compared with the other
heuristic methods such as GA, DE and PSO
algorithm reported in the literature. These results
demonstrate that EPSO converges to the global
optimum or near global optimum and succeeds in
keeping the variables within their limits.
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