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Abstract: This paper presents an intelligent control 
method for the maximum power point tracking (MPPT) of 
a photovoltaic system under variable temperature and 
irradiance conditions. This paper presents a Genetic 
Algorithm (GA) to meet the maximum power operating 
point whatever the climatic conditions are from 
simulation results, it has been found that GA method is 
highly competitive for its better convergence 
performance. 
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Nomenclature 
 

q         Electronic charge 
k         Voltzmann’s constant 
η         Diode ideality factor 
G        Insulation  level 
T        Cell temperature  
Rs       Cell series resistance 
Rsh      Cell Shunt resistance 
Io        Reverse saturation current 
ID       Diode current 
IL        Photo current 
Isc       Short-circuit. 
Voc      The open circuit 
Vk       Current velocity  
N        Population size  
PC      Crossover probability  
PM      Mutation probability 
Kmax   Maximum number of iterations  
K       Current number of iterations, 
 

1. Introduction 
Photovoltaic energy is a technique, which coverts 

directly the sunlight into electricity. It is modular, quit, 
non-polluting and requires very little maintenance, for this 
reason a powerful attraction to photovoltaic systems is 
noticed. By having a quick glance on both the current-
voltage and the power-voltage characteristics of PV 
arrays, we see clearly the dependence of the generating 

power of a PV system on both insulation and temperature. 
[1]. 

In this study, we present an application of a Gentec 
Algorithm Optimization (GA) on a photovoltaic system, 
which helps to catch the Maximum Power Operating Point 
(MPOP). This latter change instantaneously with changing 
radiation and temperature, what implies a continuous 
adjustment of the output voltage to achieve the transfer of 
the maximum power to the load. The justification of this 
application lies in the fact the I-V and P-V characteristics 
are non linear because of the nonlinearity of the 
photovoltaic systems from one hand and because of the 
instantaneous change of both insulation and temperature 
from the other hand, what makes the two previous plot in 
fact fluctuating instead of the simulated smooth ones (Fig. 
1 and 2). [2] 
 
Therefore, the adoption of this novel adaptive GA 

technique offers the possibility of dealing accurately with 
these optimization problems and to overcome the 
incapacities of the traditional numerical techniques. 
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Fig. 1. I-V characteristics when insulation is changing. 
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Fig. 2. P-V characteristics when insulation is changing. 

 
The proposed approach is employed in fitting both the I-V 
and P-V characteristics of a solar module referenced as 
Solarex MSX 60  with the characteristics shown in the 
index. 
 
2. Modeling of the photovoltaic generator 

Thus the simplest equivalent circuit of a solar cell is a 
current source in parallel with a diode. The output of the 
current source is directly proportional to the light falling 
on the cell (photocurrent  Iph). During darkness, the solar 
cell is not an active device; it works as a diode, i.e. a p-n 
junction. It produces neither a current nor a voltage. 
However, if it is connected to an external supply (large 
voltage) it generates a current ID, called diode (D) current 
or dark current. The diode determines the I-V 
characteristics of the cell. 

 
 

 
 
 
 
 

 
Fig. 3. Circuit diagram of the PV model. 

 
Increasing sophistication, accuracy and complexity can be 
introduced to the model by adding in turn [3]:  
• Temperature dependence of the diode saturation current 

I0.  
• Temperature dependence of the photo current IL.  
• Series resistance  RS, which gives a more accurate shape 

between the maximum power point and the open circuit 
voltage. This represents the internal losses due to the 
current flow.  

• Shunt resistance Rsh, in parallel with the diode, this  
corresponds to the leakage current to the ground and it 
is commonly neglected  

• Either allowing the diode quality factor n  to become a 
variable parameter (instead of being fixed at either 1 or 

2) or introducing two parallel diodes with  
independently set saturation currents.  

In an ideal cell Rs = Rsh = 0, which is a relatively common 
assumption [4]. For this paper, a model of moderate 
complexity was used. The net current of the cell is the  
difference of the photocurrent, IL and the normal diode 
current I0: 
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The model included temperature dependence of the photo-
current IL and the saturation current of the diode I0.  
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A series resistance RS was included; witch represents the 
resistance inside each cell in the connection between cells.                
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The shunt resistance Rsh is neglected. A single shunt diode 
was used with the diode quality factor set to achieve the 
best curve match. This model is a simplified version of the 
two diode model presented by Gow and Manning [5]. The 
circuit diagram for the solar cell is shown in Figure 3. 
The I-V characteristics of the module can be expressed 
roughly by the Eq. 1-8. the model requires three point to 
be measured to define this curve: [6]. 

• The voltage of the open circuit Voc. 
• The current of short-circuit Isc. 
• The point of optimum power (Iopt, Vopt). 

 
3. Genetic Algorithm optimization approach 
Genetic Algorithms (GA) are search algorithm based on 
mechanics of natural selection and natural genetic [7]. The 
laws of coincidence take advantage of pre information in 
order to derive improvement from it. 
GA are algorithm for optimization based on the principal 
of biological search algorithm in the sense that they 
simultaneously consider many points in the search space. 
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They work not with the parameters themselves but with 
string of numbers representing the parameter set. And hey 
are probabilistic rules to guide their search. By 
considering many points in the search space 
simultaneously reduce the change of converging to local 
minimal. 
The process of GA follows this pattern [8]. 
1) Create an initial population (usually randomly 

generated string). 
2) Evaluate all of the individuals (apply some function 

or formula to the individuals). 
3) Select a new population from the old population 

based on the fitness of the individuals as given by the 
evaluation function. 

4) Apply some genetic operators (mutation & crossover) 
to members of the population to create new solutions. 

5) Evaluate these newly created individuals. 
6) Repeat steps 3-6 (one generation) until the 

termination criteria has been satisfied (usually 
perform for a certain fixed number of generations). 

The concept of implementation sequence is the survival of 
the fittest. The reproductive success of a solution is 
directly tied to the fitness value, which is assign during 
evaluation. The least fit solution may not reproduce at all. 
The major advantage of GA lies in their computational 
simplicity, and their powerful search ability to obtain the 
global optimum. The further attraction of GA is that they 
are extremely robust with respect to complexity of the 
problem. 

 
4. Application of GA to MPOP 

The goal is to solve some optimization problem where 
we search for an optimal solution in terms of the variables 
of the problem (current and voltage) by imposing the 
constraints on  the current and the voltage which should 
be both bigger than zero.  
To minimize F is equivalent to getting a maximum fitness 
value in the searching process. The objective of GA has to 
be changed to the maximization of fitness to be used as 
follows: 
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The power given by (9) is a non-linear function of 
current and voltages which are a function of control 
variables. The maximization problem is subjected to the 
following equality and inequality constraints: 

V < Vmax and P < Pmax 
The above steps and how GA evolves are depicted by 

the flow chart of Fig. 4. It should be noted that all the 
parameters involved in the genetic algorithm can be pre-
defined subject to the nature of the problem being solved, 
which is the controlled equipment, is encoded to binary 
digits, and then they are located on a string. The number 
of string length will be chosen. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.  Flow chart of genetic algorithm. 

 

5. Simulation Results and Discussion 
The program has been developed and executed under 

MATLAB system. The program was written and executed 
on Pentium 4 having 2.4 GHZ 1GB DDR RAM. 

In all the experiment the following GA was adopted 
and held constant. 
N = 50, PC = 0.9, PM = 0.03, Kmax = 50. 

The resulted values of this optimization problem are 
Show in simulation 1-2. These simulation results of many 
sample runs of the GA technique. We see clearly the 
variation of the MPOP with respect to either insulation or 
temperature and both of them with great accuracy (Fig. 9-
12). 
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G = 100 Wm -2 T = 30 
Popt = 5.3068 W Iopt = 0.3818 A Vopt = 13.900 V

G = 150 Wm -2 T = 45 C° 
Popt = 5.8991 W Iopt = 0.6171 A Vopt= 9.5600 V 

G = 250 Wm -2 T = 40 C°  
Popt = 13.7663 W Iopt = 0.9178 A Vopt = 15 V

G = 350 Wm -2 T= 45 C°  
Popt= 18.5830 W Iopt= 1.3331 A Vopt= 13.9400 V 

G = 500 Wm -2 T = 25 C° 
Popt = 29.7523 W Iopt= 1.7668 A Vopt = 16.8400 V

G = 700 Wm -2 T = 20 C° 
Popt = 25.2606 W Iopt = 2.6479 A Vopt = 9.5400 V

 
Fig. 5.  Convergence of GA under different conditions 
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Fig. 6.  the convergence properties for various population size 
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The convergence of optimal solution using GA is 

shown in Fig. 5 and 7, where only about 25 iterations 
were needed to find the optimal solution. However, GA 
may be allowed to continue the search in the 
neighborhood of the optimal point to increase the 
confidence in the result. GA stops after 50 iterations and 
returns the optimal value. 

 
In order to simulation the system, it is necessary to use 

the irradiance data for a specific location over 24 a hour 
period of time, any location will be sufficient to test the 
model. I chose to use data from Golden, Colorado on 
March 14, 2010 and July 14, 2009 because the data is 
easily available, and I can be reasonably confident about 
the accuracy [9]. The data for July 14, 2009 appears to be 
a pretty good example of a typical sunny day, while  
March 14, 2010 is good worst case scenario ( refer to fig. 
8 and 9). Both of these days can be useful for simulation 
purposes. 
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Fig. 8. Irradiance and Temperature data for sunny day 

simulation purposes. 
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Fig. 9. Irradiance and Temperature data for cloudy day 

simulation purposes. 
 
Simulation 1 : Sunny day conditions. 
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Fig. 10. Power optimal for sunny day simulation purposes. 
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Fig. 11. Current and Voltage optimal for sunny day 

simulation purposes. 
 

Simulation 2 : Cloudy day conditions. 
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Fig. 12. Power optimal for cloudy day simulation 

purposes. 
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Fig. 13. Current and Voltage optimal for cloudy day 

simulation purposes. 
Obviously, the system works much better under sunny 

conditions. The data used for the cloudy day dropped the 

power maximal of PV array by about 80 % , indicating 
that the maximum of two consecutive cloudy days can be 
handled by the system. 

However given the significant decrease in energy 
produced by the PV array, there may have been another 
factor (snow for example) that would not have been such 
an issue at a lower latitude. Therefore, I would 
recommend that simulations be run for several more 
cloudy day scenarios. Also, a simulation in which cloudy 
day is followed by a sunny day may give us an idea of 
haw quickly the system would be able to rebound back to 
normal condition. 
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Fig. 14. compares the PV array characteristics with 

insulation. 
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Fig. 15. compares the PV array characteristics with 

temperature. 
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Fig. 16. compares the PV array characteristics with 

insulation and temperature. 
 

The Fig. 14 -16 compares the PV array P-V 
characteristics obtained from using the proposed MPPT 
with GA and the classical MPPT P&O algorithm. From 
this figure, it can be seen that by using the proposed 
MPPT algorithm, the operating point of PV array is much 
closer to the MPP compared to the using the classical  
P&O algorithm.  

 
6. Conclusion 

This paper introduces a new solution approach based 
on Genetic Algorithm, which calculates instantaneously 
the MPOP of a PV module in order to maximize the 
profits in terms of the power issued from the PV module. 
Because of the P-V characteristics this heuristic method is 
used to seek the real maximize power and to avoid the 
wrong values of local maxima. The obtained results of this 
investigation and depicted in Fig. 10-13.  

The usefulness of a model for a GA technique should 
prove to be significant. It is not difficult to simulate a 
variety of conditions or make change to parameters in the 
system. It is easy to probe values from any point on the 
model in order to better understand the relationships 
between different components. Despite some minor 
difficulties, however the model performs beautifully, and 
is not overly difficult to use. 

The optimal Power solutions determined by GA is well 
capable of determining the global or near global 
maximum power operating point. 

Major drawback of GA, is that it lacks somewhat a 
solid mathematical foundation for analysis to be overcome 
in the future. 
 

Appendix  
  
Appendix 1 : Solarex MSX 60 Specifications (1kW/m2, 
25°C) 

Characteristics SPEC. 
Typical peak power (Pm) 60W 
Voltage at peak power (Vm) 17.1V 
Current at peak power (Im) 3.5A 
Short-circuit current (ISC) 3.8A 
Open-circuit voltage (VOC) 21.1V 
Temperature coefficient of open-circuit 
voltage (α) 

-73 mV/°C 

Temperature coefficient of short-circuit 
current (β) 

3 mA/°C 

Approximate effect of temperature on power -0.38W/°C 
Nominal operating cell temperature (NOCT2) 49 °C 
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