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Abstract: A novel pipelined systolic array-based architecture 

for 4X4 matrix inversion is proposed. It is suitable for ASIC 

implementations as it is used for in Kalman filters. The 4X4 

matrix inversion is implemented in verilog language for 

enabling the user for different size of Kalman filters suitable for 

different applications. It is scalable for different matrix size and 

as such allows employing parameterization that makes it 

suitable for customization for application-specific needs. The 

proposed architecture consists of pipeline registers, an 

innovative logic control unit, and a segmented Look up Table 

division scheme. This new proposed architecture has an 

advantage of reduced processing element complexity. The ASIC 

implementation architecture is useful to enable the novel 

pipelined systolic array for the quickest operation of Kalman 

filter. The precision error resulted is in the allowable range and 

it does not affect the performance of the overall system. 
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1. Introduction 
   Many DSP algorithms such as Kalman filter involve 
several iterative matrix operations, the most complicated 
begin matrix inversion, which requires O (n²) 
computations (n is matrix size). This becomes the critical 
bottleneck of the processing time in such algorithms. 
Kalman filters have been widely used in many 
applications such as target tracking, navigation systems, 
adaptive control and many other dynamic systems. 
Kalman filter algorithm is based on minimizing the mean-
square error recursively. The algorithm of an adaptive 

Kalman filter involves several iterative matrix 
manipulations such as matrix inversion, multiplication, 
addition and subtraction.  Real-time  implementation  of  
Kalman  filters  is  hence  limited  by  the computationally  
extensive  nature  of  the  algorithm.  Many attempts have 
been made  to  employ  various  systolic architectures for 
VLSI implementation of Kalman filters [1],Systolic-
based  architectures  should be  modified  to  meet  
hardware  requirements  of  the  Field Programmable  Gate  
Array  (FPGA)  technology  [2].  This paper investigates 
the design and hardware implementation of a generic 
Kalman filter in verilog language where user is able to set 
the parameters to change the state number of the filter. 
Here for the 4X4 matrix has been implemented in verilog 
and speed and area are optimized.  
 
2. Kalman Filter 
The Kalman filter uses a system's dynamics model (e.g., 
physical laws of motion), known control inputs to that 
system, and multiple sequential measurements (such as 
from sensors) to form an estimate of the system's varying 
quantities (its state) that is better than the estimate 
obtained by using only one measurement alone. As such, 
it is a common sensor fusion and data fusion algorithm. 
Kalman filter is used  to remove noise from a signal, 
Many physical processes, such as a vehicle driving along 
a road, a satellite orbiting the earth, a motor shaft driven 
by winding currents, or a sinusoidal radio-frequency 
carrier signal, are the linear systems which uses the 
application of Kalman filter. The main feature is that only 
the previous state estimate and the new input data’s are 

https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/Sensor_fusion
https://en.wikipedia.org/wiki/Data_fusion


 

required to generate the new state estimate in each 
computation cycle, which results in a low memory 
requirement [7]. Kalman filter algorithm has two basic 
operations; prediction and filtering, both executing in a 
single cycle recursively 

 State equation: 

                   xk1AxkBukwk                                           (2.1) 

             Output Equation: 
   ykCxkzk                                                            (2.2) 

In the above equations A, B, and C are matrices; k is the 

time index; x is called the state of the system; u is a known 

input to the system; y is the measured output; and w and z 

are the noise. The variable w is called the process noise, 

and z is called the measurement noise. Thus, this paper 

concentrates on FPGA implementation of matrix 

inversion, matrix division which is in fact the “heart” of 

Kalman filter. In the above equations A, B, and C are 

matrices; k is the time index; x is called the state of the 

system; u is a known input to the system; y is the measured 

output; and w and z are the noise. The variable w is called 

the process noise, and z is called the measurement noise. 

Each of these quantities is (in general) vectors and 

therefore contains more than one element. The vector x 

contains all of the information about the present state of the 

system, but we cannot measure x directly. Instead, we 

measure y, which is a function of x that is corrupted by the 

noise z. knowing that the measured output is equal to the 

position, we can write our linear system equations as 

follows: 
 

   Xk+1      =          0   1       Xk     +       T                                    (2.3) 

                          1   T                  T2/2                     

   Yk         =   [1 0]    Xk   +    Zk                                         (2.4) 

Zk is the measurement noise due to such things as 

instrumentation errors. If we want to control the vehicle 

with some sort of feedback system, we need an accurate 

estimate of the position p and the velocity v. need a way to 

estimate the state x. This is where the Kalman filter is used. 

First, the average value of the state estimate to be equal to 

the average value of the true state. That is why the estimate 

is to be biased one way or another. Mathematically, we 

would say that the expected value of the estimate should 

be equal to the expected value of the state. Second, we 

want a state estimate that varies from the true state as little 

as possible. That is, not only do we want the average of the 

state estimate to be equal to the average of the true state, 

but we also want an estimator that results in the smallest 

possible variation of the state estimate mathematically, we 

would say that we want to find the estimator with the 

smallest possible error variance. It so happens that the 

Kalman filter is the estimator that satisfies these two 

criteria. But the Kalman filter solution does not apply 

unless we can satisfy certain assumptions about the noise 

that affects our system. Remember from our system model 

that w is the process noise and z is the measurement noise. 

We have to assume that the average value of w is zero. 

 2.1 Kalman Gain Equations: 

Kk=APkCT    (CPkCT +Sz)-1                                            (2.5) 

Xk+1=(AXk+ BUk)+Kk(Yk+1- CXk)                                    (2.6) 

Pk+1=APkAT +Sw- APkCTSz
-1CPkAT                                    (2.7) 

That’s the Kalman filter. It consists of three equations, 

each involving matrix manipulation. In the above 

equations, a –1 superscript indicates matrix inversion and 

a T superscript indicates matrix transposition. The K matrix 

is called the Kalman gain, and the P matrix is called the 

estimation error covariance. Hence the implementation of 

this filter in hardware is a great bottle neck due to inversion 

operation; hence systolic array is used to overcome this 

problem. 

3. Floating Point Multiplier: 

Floating-point algorithms are used frequently in modern 

applications such as speech recognition, image processing 

and financial engineering because of its ability to represent 

a good approximation to the real numbers. The IEEE 754 

floating point standard [ANS85] has been widely accepted 

for representing floating point numbers. With this 

standard, the result and the error of each floating-point 

operation can be retained the same even if the platform of 

the computation is changed. The floating-point arithmetic, 

including addition, subtraction and multiplication is 

covered in this chapter. The rounding error imposed by 

using floating-point arithmetic will be discussed. The 

concepts of quantization error between IEEE standard and 

the variant used in this thesis will be introduced. 

   With the increasing size of FPGA devices, implementing 

floating point arithmetic on FPGAs are now possible. 

However, as the size of the FPGA is still limited, a 

carefully designed floating-point implementation is 

essential. In custom hardware designs, there is always 

trade-off between connecting requirements of 

performance, area and quantization error to be addressed. 

For example, area can usually be reduced if a larger 

quantization error is allowed for a hand-held application. It 

would be desirable to allow a program to automatically 

determine the minimum exponent and fraction sizes 

required for each signal to reach some user-specified 

quantization error. A floating point library called float is 

presented to enable users to optimize the design. In 

addition, a library, which can generate arbitrary sized 

floating-point adders and multipliers, was developed to 

facilitate the FPGA-based floating-point applications. The 

first section will discuss the software aspect of this system. 

An example using floating-point tools to develop and 

optimize a digital sine-cosine compiler is presented. To 



 

generate an arbitrary sized of floating point operator, a Perl 

program has been developed as a Verilog generation 

module. 

4. FPGA: 

Field Programmable Gate Arrays (FPGAs) can be used to 

implement just about any hardware design. One common 

use is to prototype a lump of hardware that will eventually 

find its way into an ASIC. However, there is nothing to say 

that the FPGA can't remain in the final product. Whether 

or not it does will depend on the relative weights of 

development cost and production cost for a particular 

project. (It costs significantly more to develop an ASIC, 

but the cost per chip may be lower in the long run. The cost 

tradeoff involves expected number of chips to be produced 

and the expected likelihood of hardware bugs and/or 

changes. This makes for a rather complicated cost analysis, 

to say the least.) 

The development of the FPGA was distinct from the 

PLD/CPLD evolution just described. This is apparent 

when you look at the structures inside. Figure 2 illustrates 

a typical FPGA architecture. There are three key parts of 

its structure: logic blocks, interconnect, and I/O blocks. 

The I/O blocks form a ring around the outer edge of the 

part. Each of these provides individually selectable input, 

output, or bi-directional access to one of the general-

purpose I/O pins on the exterior of the FPGA package. 

Inside the ring of I/O blocks lies a rectangular array of 

logic blocks. And connecting logic blocks to logic blocks 

and I/O blocks to logic blocks is the programmable 

interconnect wiring. 

The logic blocks within an FPGA can be as small and 

simple as the macrocells in a PLD (a so-called fine-grained 

architecture) or larger and more complex (coarse-grained). 

However, they are never as large as an entire PLD, as the 

logic blocks of a CPLD are. Remember that the logic 

blocks of a CPLD contain multiple macrocells. But the 

logic blocks in an FPGA are generally nothing more than 

a couple of logic gates or a look-up table and a flip-flop. 

Because of all the extra flip-flops, the architecture of an 

FPGA is much more flexible than that of a CPLD. This 

makes FPGAs better in register-heavy and pipelined 

applications. They are also often used in place of a 

processor-plus-software solution, particularly where the 

processing of input data streams must be performed at a 

very fast pace. In addition, FPGAs are usually denser 

(more gates in a given area) and cost less than their CPLD 

cousins, so they are the de facto choice for larger logic 

designs. 

5. Hardware Design and Development: 

 The process of creating digital logic is not unlike the 

embedded software development process you're already 

familiar with. A description of the hardware's structure and 

behavior is written in a high-level hardware description 

language (usually VHDL or Verilog) and that code is then 

compiled and downloaded prior to execution. Of course, 

schematic capture is also an option for design entry, but it 

has become less popular as designs have become more 

complex and the language-based tools have improved. The 

overall process of hardware development for 

programmable logic is shown in Figure 3 and described in 

the paragraphs that follow. 

    Perhaps the most striking difference between hardware 

and software design is the way a developer must think 

about the problem. Software developers tend to think 

sequentially, even when they are developing a 

multithreaded application. The lines of source code that 

they write are always executed in that order, at least within 

a given thread. If there is an operating system it is used to 

create the appearance of parallelism, but there is still just 

one execution engine. During design entry, hardware 

designers must think-and program-in parallel. All of the 

input signals are processed in parallel, as they travel 

through a set of execution engines-each one a series of 

macrocells and interconnections-toward their destination 

output signals. Therefore, the statements of a hardware 

description language create structures, all of which are 

"executed" at the very same time. (Note, however, that the 

transference from macrocell to macrocell is usually 

synchronized to some other signal, like a clock.) 

 

Fig 5.1 Programmable logic design process 

Typically, the design entry step is followed or 

interspersed with periods of functional simulation. That's 

where a simulator is used to execute the design and 

confirm that the correct outputs are produced for a given 

set of test inputs. Although problems with the size or 

timing of the hardware may still crop up later, the designer 

can at least be sure that his logic is functionally correct 

before going on to the next stage of development. 

Compilation only begins after a functionally correct 

representation of the hardware exists. This hardware 

compilation consists of two distinct steps. First, an 



 

intermediate representation of the hardware design is 

produced. This step is called synthesis and the result is a 

representation called a netlist. The netlist is device 

independent, so its contents do not depend on the 

particulars of the FPGA or CPLD; it is usually stored in a 

standard format called the Electronic Design Interchange 

Format (EDIF). 

The second step in the translation process is 

called place & route. This step involves mapping the 

logical structures described in the netlist onto actual 

macrocells, interconnections, and input and output pins. 

This process is similar to the equivalent step in the 

development of a printed circuit board, and it may 

likewise allow for either automatic or manual layout 

optimizations. The result of the place & route process is a 

bit stream. This name is used generically, despite the fact 

that each CPLD or FPGA (or family) has its own, usually 

proprietary, bit stream format. Suffice it to say that the bit 

stream is the binary data that must be loaded into the 

FPGA or CPLD to cause that chip to execute a particular 

hardware design. 

Increasingly there are also debuggers available 

that at least allow for single-stepping the hardware design 

as it executes in the programmable logic device. But those 

only complement a simulation environment that is able to 

use some of the information generated during the place & 

route step to provide gate-level simulation. Obviously, 

this type of integration of device-specific information into 

a generic simulator requires a good working relationship 

between the chip and simulation tool vendors. 

6. Look up Division Scheme:A. Division with 

multiplication:Scalar division represents the most critical 

arithmetic operation within a processing element in terms 

of both resource utilization and propagation delay. This is 

particularly typical for FPGAs, where a large number of 

logic elements are typical used to implement division. For 

the efficient implementation of division, which still 

satisfies accuracy requirements, an approach with the use 

of LUT and an additional multiplier has been proposed 

and implemented. The numerical result of a divided by b 

is the same as a multiplied by 1/b, the FPGA built-in 

multiplier can be used to calculate the division if an LUT 

of all possible values of 1/b is available in advance. FPGA 

device provide a limited amount of memory, which can 

be used for LUTs. Due to the fact that 1 and b can be 

considered integers, the value of 1/b falls into decreasing 

hyperbolic curve, while b tends to one, and so the value 

difference between two consecutive numbers of 1/b 

decreases dramatically. To reduce the size of LUT, the 

inverse value curve can be segmented into several 

sections with different mapping ration. This can be 

achieved by storing in inverse value, the median of the 

group of consecutive values of b. on an altera APEX 

device, when combining the LUT and multiplier into a 

single division module, a 16 bit by 26 bit multiplier 

consumes 838 logic elements, operating at 25MHz clock 

frequency and total memory consumption of 53248 

memory bits for the specific target FPGA device. The 

overall speed improvement achieved through using the 

DLM method is 3.5 times when compared to using a 

traditional divider. Because of the extra hardware 

required for efficiently addressing the LUT, the 

improvement in terms of LEs is rather modest. The 

hardware-based divider supplied by altera, configured as 

16 bit by 26 bit, consumes 1123 Les when it is synthesized 

for the same APEX device. 

A. Optimum Segmentation Approach:Since  b  is  a  16-

bit  number  in  1.15  format,  there  are  totally (2
15

 – 1) 

= 32767 different values of 1 / b. Table 2 presents the  

mapping  ratios  for  five  different  segmentation  

methods, namely Seg-1 to Seg-5. Since the value of 1 / b 

retrieved from the LUT is then multiplied by a, any 

precision error will be magnified. Therefore, it is 

important to consider the worst-case error. Table 5.1 

presents a comparison of the various mapping schemes in 

Table 5.2. Table 5.1.Segmentation of 1/b 

Name Segmentation Mapping ratio 

Seg 1 No segmentation 1:8 

 

 

Seg 2 

1       -  1023 

1024 – 2047  

2048 – 4095  

4096 – 8191  

8192 – 32767 

1:1 

1:2 

1:4 

1:8 

1:16 

 

 

 

 

 

Seg 3 

1-511 

512 –   1023  

1024 –   2047  

2048 –   4095  

4096 –   8191  

8192 – 16383       

16384 – 32767 

1:1 

1:2 

1:4 

1:8 

1:16 

1:32 

1:64 

 

 

 

 

Seg 4 

1-511 

512 –   1023  

1024 –   2047  

2048 –   4095  

4096 –   8191  

8192 –16383        

16384 – 24575 

24575-32767 

1:1 

1:2 

1:4 

1:8 

1:16 

1:32 

1:64 

1:128 



 

Seg 5 1-511 

512 –   1023  

1024 –   2047  

2048 –   4095  

4096 –   8191 

8192 –   9362  

9363 – 13107  

13108 – 21845  

21846 – 32767 

1:1 

1:2 

1:4 

1:8 

1:16 

map to constant 

value  1/4  

map to constant 

value  1/3  

map to constant 

value  1/2  

map to constant 

value  1 

Table 5.2 Comparison of the Segmented 1/b 

 Seg1 Seg2 Seg3 

Average 

error 

0.13% 0.78% 0.07% 

Worst case 

error 

300% 3.03% 0.21% 

Resource(bit) 53248 81920 53248 

Figures in Table 5.2 suggest Seg-3 would be the natural 

choice for composition of the LUT.  The LUT holds 4096 

inverse values with a 26-bit word length in 16.10 data 

format. 
6. Systolic Array: 
Systolic architecture represents a network of processing 
elements (PEs) that rhythmically compute and pass data 
through the system. This PEs is regularly pump data in 
and out such that a regular flow of data. As a result, 
systolic systems feature modularity and regularity, which 
are important properties of VLSI design. 
 
 
 
 
 
 
 
            Figure 6.1: Basic systolic array 
 
Systolic architectures are designed by using linear 
mapping techniques on regular dependence. A 
dependence graph (DG) is said to be regular if the 
presence of an edge in a certain at any node in the DG 
represents presence of an edge in the same direction at all 
nodes in the DG. 

 
                           Fig.6.2: Systolic Array 
7. Discussion of Results:  
A. RTL Schematic of Systolic Array: 

A systolic array which reduces the complexity of 

O(2n) from O(n2), where n is size of the matrix. Designing 

of the triangular systolic array with boundary cell and 

internal cell for 2x2 matrixes. The RTL schematic of array 

has five internal cells and two boundary cells. RTL 

schematic of systolic array 

 

     
           Fig 7.1 RTL of systolic array 

B. RTL of Internal Cell: 

The RTL schematic of internal cell is shown 

below with four inputs and clock. One input which filter 

coefficient P is fixed in internal cells. The two inputs are 

from the preceding boundary cell or internal cell. And 

another input is array input which is from the matrix for 

the two cases this will act according to the condition. The 

internal cells has two outputs which is regarded has sum, 

carry and next stage input is fed into the internal cells. 

 

PP P P P

H



 

                             
Fig 7.2: RTL schematic of internal cell 

B.RTL Schematic of Boundary Cell: 

 The RTL schematic of boundary cell is shown bellow. 

It has two inputs. One of the inputs is filter coefficient and 

the one is feed from the previous stage or matrix input. 

There two outputs, one of the input is regarded as sum and 

another one is carry. These outputs are fed into the input 

of the internal cell. 

 
7.3 RTL schematic of boundary cell 

 

8. Analysis: 

A. Timing Analysis Report: 

 The systolic array structure is working with in time 

slack of 500ps.hence the operation speed is increasing by 

using the new hardware structure for matrix inversion 

Timing analysis: 
=========================================

=================== 

  Generated by:           Encounter(r) RTL 

Compiler v06.10-p003_1 

  Generated on:      OCT 17 2017  11:08:23 

PM 

  Module:                 newarray 

  Technology library:     tsmc18 1.0 

  Operating conditions:   fast 

(balanced_tree) 

  Wireload mode:          enclosed 

=========================================

=================== 

 

     Pin          Type     Fanout  Load 

Slew Delay Arrival    

                                   (fF) 

(ps)  (ps)   (ps)     

-----------------------------------------

-------------------- 

(clock clk)      launch                                  

0 R  

(in_del_1)       ext delay                   

+2000    2000 F  

a2[0]            in port       30 142.7    

0    +0    2000 F  

int1_1/x[0]  

  a1/b[0]  

    g4421/A                                     +0    

2000    

    g4421/Y      NAND2X4        4  33.9   

94   +45    2045 R  

    g4388/AN                                    +0    

2045    

    g4388/Y      NOR2BX4        2  22.4   

82   +85    2130 R  

     

    g329/B0                                     +0    

8848    

    g329/Y       OAI21X2        1   8.1  

108   +42    8890 R  

  add_24_6/Z[15]  

  g852/A                                        +0    

8890    

  g852/Y         NAND2X2        1   3.9   

86   +16    8906 F  

  g834/B                                        +0    

8906    

  g834/Y         NAND2X1        1   3.3   

61   +56    8962 R  

  z_reg[15]/D    DFFRXL                         

+0    8962    

  z_reg[15]/CK   setup                     0   

+38    9000 R  

- - - - - - - - - - - - - - - - - - - - - 

- - - - - - - - - - 

(clock clk)      capture                              

9500 R  

-----------------------------------------

-------------------- 

Timing slack :     500ps  

Start-point  : a2[0] 

End-point    : int1_1/z_reg[15]/D 



 

 

B. Power analysis report: 

 The total number of cells which is used has the low 

power requirement compared to other hardware 

structures. 
 

Power analysis 
=========================================

=================== 

  Generated by:           Encounter(r) RTL 

Compiler v06.10-p003_1 

  Generated on:           OCT 17 2017  

05:07:46 PM 

  Module:                 newarray 

  Technology library:     tsmc18 1.0 

  Operating conditions:   fast 

(balanced_tree) 

  Wireload mode:          enclosed 

=========================================

=================== 

                   Leakage     Internal        

Net        Switching    Instance     Cells 

Power(nW)   Power(nW)     Power(nW)     

Power(nW)    

-----------------------------------------

------------------------- 

newa         56749 15994.652 200740657.572 

146195430.012 346936087.585  

int          8350  2689.544  31124197.183  

20596695.649  51720892.832  a            2771  

1362.033  15718497.163   9050443.340  

24768940.504  add76         98    52.196    

572022.309    236104.130    808126.439  

adddd74       86    52.087    477953.595    

214453.721    692407.316 add72         96    

50.333    590474.967    221107.620    

811582.587  

add60         17    49.457    441485.089     

56707.606    498192.695  

add56         24    49.335    469194.415     

75579.431    544773.846  

addinc_add6   17    47.914    271723.274     

44110.381    315833.654 addinc_add5   17    

47.798    221014.771     38038.661    

259053.432  

add52         17    47.301    468169.456     

59279.388    527448.844  

addinc_add5   17    46.441    244519.323     

46886.024    291405.347  

addinc_add82 107    46.051    573222.147    

280196.869    853419.016  

add48         17    45.848    472034.305     

56897.745    528932.050  

add80        109    45.403    565195.762    

280639.874    845835.635  

add68         86    44.709    478448.790    

198314.414    676763.204  

addinc_add50  17    44.326    188885.740     

47652.462    236538.202  

addinc_add86 117    44.226    588185.784    

280273.316    868459.100  

addinc_add70  86    43.786    476716.225    

198353.618    675069.843  

addinc_add78 110    43.628    476937.324    

261221.152    738158.476  

add44         17    42.229    486347.928     

54209.331    540557.259  

addinc_add4   21    41.886    171761.175     

51446.429    223207.604  

add40         17    41.350    477275.334     

57121.208    534396.542  

addinc_add66  31    41.112    291790.461     

83506.480    375296.941  

add84        121    39.252    549697.013    

290288.958    839985.971  

add64         40    39.249    431338.643    

114279.660    545618.303  

add36         28    38.291    453463.634     

52989.107    506452.740  

add88         98    33.584    441432.094    

235834.602    677266.696  

 

C. Area analysis report: 
 The total area analysis report is shown below. The five 

internal cell and two boundary cell occupies the area of 56749 

cells. 
Area  

=========================================

=================== 

  Generated by:           Encounter(r) RTL 

Compiler v06.10-p003_1 

  Generated on:           OCT 17 2017 

05:07:06 PM 

  Module:                 newarray 

  Technology library:     tsmc18 1.0 

  Operating conditions:   fast 

(balanced_tree) 

  Wireload mode:          enclosed 

=========================================

=================== 

Instance                  Cells   Cell Area   

Net Area     Wireload 

-----------------------------------------

------------------------------- 

newarray                  56749      860244          

0       <none>  

  int1_2                  11085      152492          

0       <none>  

    a1                     5343       72213          

0       <none>  

  int1_1                  11094      152289          

0       <none>  

    a1                     5422       73088          

0       <none>  

  int1_3                  10992      151877          

0       <none>  

     a1                    5245       72253          

0       <none>  



 

  int1_4                   8350      132078          

0       <none>  

     a1                    2771       52231          

0       <none>  

  int1_5                   8308      130847          

0       <none>  

     a1                    2657       51509          

0       <none> 

  bound2                   3465       70486          

0       <none>  

     a3                    2321       50318          

0       <none>  

  bound1                   3455       70174          

0       <none>  

     a3                    2307       49959          

0       <none>  

 

D.Gate Summary: 
 

Gate summary  
=========================================

=================== 

  Generated by:           Encounter(r) RTL 

Compiler v06.10-p003_1 

  Generated on:           Oct 17 2017  

05:07:31 PM 

  Module:                 newarray 

  Technology library:     tsmc18 1.0 

  Operating conditions:   fast 

(balanced_tree) 

  Wireload mode:          enclosed 

=========================================

===================                             

   Gate   Instances     Area     Library   

-----------------------------------------

- 

ADDFHX1         295   22569.624    tsmc18  

ADDFHX2         127   14363.395    tsmc18  

ADDFHX4           8     931.392    tsmc18  

ADDFHXL           7     512.266    tsmc18  

ADDFX1          362   25287.293    tsmc18  

ADDFX2          484   33809.530    tsmc18  

ADDFXL            1      69.854    tsmc18  

ADDHXL           35    1280.664    tsmc18  

AND2X1            8     106.445    tsmc18  

AND2X2          601    7996.666    tsmc18  

 

 
Type       Instances    Area      Area %  

--------------------------------------- 

sequential       453  26977.104    3.1  

inverter       17236 124024.824   14.4  

buffer           299   3991.680    0.5  

logic          38761 705250.022   82.0  

--------------------------------------- 

total          56749 860243.630  100.0  

 

E. Array Summary 

 The systolic array which is implemented in the 

hardware structure which does not violated the max 

transition design rule and max capacitance rule. The 

summary of the  analysis report is shown below: 
Array summary 
=========================================

=================== 

  Generated by:           Encounter(r) RTL 

Compiler v06.10-p003_1 

  Generated on:           Apr 18 2007 

05:08:49 PM 

  Module:                 new array 

  Technology library:     tsmc18 1.0 

  Operating conditions:   fast 

(balanced_tree) 

  Wire load mode:          enclosed 

=========================================

=================== 

 Timing 

 ------ 

 

 Slack       Endpoint      Cost Group  

-----------------------------------------

-- 

 +500ps int1_5/z_reg[15]/D default     

 

 Area 

 ---- 

Instance Cells   Cell Area   Net Area     

Wire load 

-----------------------------------------

--------------- 

New array  56749      860244          0       

<none>  

 Design Rule Check 

 ----------------- 

Max_transition design rule: no violations. 

 

Max_capacitance design rule: no 

violations. 

Hence the result which is obtained by using the systolic 

array is compared with the direct implementation of the 

matrix inversion. Hence the complexity of O(n2) 

O(2n).The hardware implementation of the systolic array 

is done by using the cadence tool. The timing analysis, 

power analysis, area analysis results are shown which are 

much reduced then applying the direct inversion. 
 

 

9. Simulation Results: 

A. Systolic Array Output: 

 In the following fig shows the simulation output of 

systolic array. The array a1, a2, b1, b2 are stored in a file 

or given as a input while using for the filter. The filter 

coefficient P is given as a input to all the cells. And hence 

the output e1 is obtained in the 6 clock cycle and e2 is 



 

obtained in the 7 clock cycle. And hence the output PA-1
 

is obtained by the systolic array method 

 

 
                   

                Fig.9.1 output of systolic array 

 

B. Boundary Cell Output: 

 
Fig. 9.2 Boundary Cell Output 

 

C. Internal cell output: 

 

                 Fig. 9.3 Internal Cell Output 

D. Synthesis report: 

The systolic array is downloaded to the Xilinx 

Spartan iii, in which it occupies most of the area. But the 

flip flop and the clock is used very low and hence the 

other clocks are wasted. And hence we are going for the 

ASIC implementation of the structure which uses very 

low area. 

Synthesis report : 

Device utilization summary: 

--------------------------- 

Selected Device: 4vfx12sf363-11  

 Number of Slices:                          5984  out of   6144    

97%   

 Number of Slice Flip Flops:          1051  out of  12288     

8%   

 Number of 4 input LUTs:             10896  out of  12288    

88%   

 Number of bonded IOBs:              225  out of    240    93%   

 Number of GCLKs:                        1  out of     32     3%   

10. Conclusion:  

A customizable structure for an n-state Kalman filter has 

been designed in verilog and partly implemented in an 

Altera APEX device with smaller logic resource space. By 

applying  Fadeev’s  algorithm,  matrix  manipulations  can  

be  performed  via  the  Schur  complement.  This  paper  

presented  a generic Pipeline Systolic Array structure with 

an advantage of  reduced  resource  consumption,  

compared  to  the  conventional  in fixed-size systolic array 

structures reported in the literature. The precision error is 

allowable and within a range. The estimated area of 

proposed architecture for 4x4 matrixes with an ASIC in 

0.35µm CMOS technology is about 125mm2.  By applying 

state-of-the-art CMOS technology at the 100nm node, the 

ASIC area can be reduced to about 20mm2.
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