

A Novel Pipelined Architecture for 4X4 Inversion Matrix of Kalman Filters Using

Verilog in ASIC
 V.K. Dinesh Prabu1

 Research Scholar, Anna University, Chennai, Tamil Nadu, India,

Assistant Professor, Department of Electrical & Electronics Engineering,

 S.K.P. Engineering College, Tiruvannamalai, Tamil Nadu, India.

E-mail: dineshprabuvk@yahoo.co.in. Contact Number: 9952656528
Dr.C.Kumar2

Director Academic, Senior Member IEEE, Department of Electrical & Electronics Engineering,

Sri Rangaboopathi College of Engineering, Gingee, Tamil Nadu, India.

E-mail:drchkumararima@gmail.com. Contact Number: 9443266567

Dr.P.Suresh3

Associate Professor, Department of ECE, Veltech Rangarajan Dr.Sakunthala R&D Institute of Science and Tech.Chennai-62.

Tamil Nadu. Contact No: 9940186845

Abstract: A novel pipelined systolic array-based architecture

for 4X4 matrix inversion is proposed. It is suitable for ASIC

implementations as it is used for in Kalman filters. The 4X4

matrix inversion is implemented in verilog language for

enabling the user for different size of Kalman filters suitable for

different applications. It is scalable for different matrix size and

as such allows employing parameterization that makes it

suitable for customization for application-specific needs. The

proposed architecture consists of pipeline registers, an

innovative logic control unit, and a segmented Look up Table

division scheme. This new proposed architecture has an

advantage of reduced processing element complexity. The ASIC

implementation architecture is useful to enable the novel

pipelined systolic array for the quickest operation of Kalman

filter. The precision error resulted is in the allowable range and

it does not affect the performance of the overall system.

Key words: Systolic Array, Kalman Filter, Look up Table,
Verilog, FPGA, ASIC, Floating Point Multiplier,

1. Introduction
 Many DSP algorithms such as Kalman filter involve
several iterative matrix operations, the most complicated
begin matrix inversion, which requires O (n²)
computations (n is matrix size). This becomes the critical
bottleneck of the processing time in such algorithms.
Kalman filters have been widely used in many
applications such as target tracking, navigation systems,
adaptive control and many other dynamic systems.
Kalman filter algorithm is based on minimizing the mean-
square error recursively. The algorithm of an adaptive

Kalman filter involves several iterative matrix
manipulations such as matrix inversion, multiplication,
addition and subtraction. Real-time implementation of
Kalman filters is hence limited by the computationally
extensive nature of the algorithm. Many attempts have
been made to employ various systolic architectures for
VLSI implementation of Kalman filters [1],Systolic-
based architectures should be modified to meet
hardware requirements of the Field Programmable Gate
Array (FPGA) technology [2]. This paper investigates
the design and hardware implementation of a generic
Kalman filter in verilog language where user is able to set
the parameters to change the state number of the filter.
Here for the 4X4 matrix has been implemented in verilog
and speed and area are optimized.

2. Kalman Filter
The Kalman filter uses a system's dynamics model (e.g.,
physical laws of motion), known control inputs to that
system, and multiple sequential measurements (such as
from sensors) to form an estimate of the system's varying
quantities (its state) that is better than the estimate
obtained by using only one measurement alone. As such,
it is a common sensor fusion and data fusion algorithm.
Kalman filter is used to remove noise from a signal,
Many physical processes, such as a vehicle driving along
a road, a satellite orbiting the earth, a motor shaft driven
by winding currents, or a sinusoidal radio-frequency
carrier signal, are the linear systems which uses the
application of Kalman filter. The main feature is that only
the previous state estimate and the new input data’s are

https://en.wikipedia.org/wiki/State_space_%28controls%29
https://en.wikipedia.org/wiki/Sensor_fusion
https://en.wikipedia.org/wiki/Data_fusion

required to generate the new state estimate in each
computation cycle, which results in a low memory
requirement [7]. Kalman filter algorithm has two basic
operations; prediction and filtering, both executing in a
single cycle recursively

 State equation:

 xk1AxkBukwk (2.1)

 Output Equation:
 ykCxkzk (2.2)

In the above equations A, B, and C are matrices; k is the

time index; x is called the state of the system; u is a known

input to the system; y is the measured output; and w and z

are the noise. The variable w is called the process noise,

and z is called the measurement noise. Thus, this paper

concentrates on FPGA implementation of matrix

inversion, matrix division which is in fact the “heart” of

Kalman filter. In the above equations A, B, and C are

matrices; k is the time index; x is called the state of the

system; u is a known input to the system; y is the measured

output; and w and z are the noise. The variable w is called

the process noise, and z is called the measurement noise.

Each of these quantities is (in general) vectors and

therefore contains more than one element. The vector x

contains all of the information about the present state of the

system, but we cannot measure x directly. Instead, we

measure y, which is a function of x that is corrupted by the

noise z. knowing that the measured output is equal to the

position, we can write our linear system equations as

follows:

 Xk+1 = 0 1 Xk + T (2.3)

 1 T T2/2

 Yk = [1 0] Xk + Zk (2.4)

Zk is the measurement noise due to such things as

instrumentation errors. If we want to control the vehicle

with some sort of feedback system, we need an accurate

estimate of the position p and the velocity v. need a way to

estimate the state x. This is where the Kalman filter is used.

First, the average value of the state estimate to be equal to

the average value of the true state. That is why the estimate

is to be biased one way or another. Mathematically, we

would say that the expected value of the estimate should

be equal to the expected value of the state. Second, we

want a state estimate that varies from the true state as little

as possible. That is, not only do we want the average of the

state estimate to be equal to the average of the true state,

but we also want an estimator that results in the smallest

possible variation of the state estimate mathematically, we

would say that we want to find the estimator with the

smallest possible error variance. It so happens that the

Kalman filter is the estimator that satisfies these two

criteria. But the Kalman filter solution does not apply

unless we can satisfy certain assumptions about the noise

that affects our system. Remember from our system model

that w is the process noise and z is the measurement noise.

We have to assume that the average value of w is zero.

 2.1 Kalman Gain Equations:

Kk=APkCT (CPkCT +Sz)-1 (2.5)

Xk+1=(AXk+ BUk)+Kk(Yk+1- CXk) (2.6)

Pk+1=APkAT +Sw- APkCTSz
-1CPkAT (2.7)

That’s the Kalman filter. It consists of three equations,

each involving matrix manipulation. In the above

equations, a –1 superscript indicates matrix inversion and

a T superscript indicates matrix transposition. The K matrix

is called the Kalman gain, and the P matrix is called the

estimation error covariance. Hence the implementation of

this filter in hardware is a great bottle neck due to inversion

operation; hence systolic array is used to overcome this

problem.

3. Floating Point Multiplier:

Floating-point algorithms are used frequently in modern

applications such as speech recognition, image processing

and financial engineering because of its ability to represent

a good approximation to the real numbers. The IEEE 754

floating point standard [ANS85] has been widely accepted

for representing floating point numbers. With this

standard, the result and the error of each floating-point

operation can be retained the same even if the platform of

the computation is changed. The floating-point arithmetic,

including addition, subtraction and multiplication is

covered in this chapter. The rounding error imposed by

using floating-point arithmetic will be discussed. The

concepts of quantization error between IEEE standard and

the variant used in this thesis will be introduced.

 With the increasing size of FPGA devices, implementing

floating point arithmetic on FPGAs are now possible.

However, as the size of the FPGA is still limited, a

carefully designed floating-point implementation is

essential. In custom hardware designs, there is always

trade-off between connecting requirements of

performance, area and quantization error to be addressed.

For example, area can usually be reduced if a larger

quantization error is allowed for a hand-held application. It

would be desirable to allow a program to automatically

determine the minimum exponent and fraction sizes

required for each signal to reach some user-specified

quantization error. A floating point library called float is

presented to enable users to optimize the design. In

addition, a library, which can generate arbitrary sized

floating-point adders and multipliers, was developed to

facilitate the FPGA-based floating-point applications. The

first section will discuss the software aspect of this system.

An example using floating-point tools to develop and

optimize a digital sine-cosine compiler is presented. To

generate an arbitrary sized of floating point operator, a Perl

program has been developed as a Verilog generation

module.

4. FPGA:

Field Programmable Gate Arrays (FPGAs) can be used to

implement just about any hardware design. One common

use is to prototype a lump of hardware that will eventually

find its way into an ASIC. However, there is nothing to say

that the FPGA can't remain in the final product. Whether

or not it does will depend on the relative weights of

development cost and production cost for a particular

project. (It costs significantly more to develop an ASIC,

but the cost per chip may be lower in the long run. The cost

tradeoff involves expected number of chips to be produced

and the expected likelihood of hardware bugs and/or

changes. This makes for a rather complicated cost analysis,

to say the least.)

The development of the FPGA was distinct from the

PLD/CPLD evolution just described. This is apparent

when you look at the structures inside. Figure 2 illustrates

a typical FPGA architecture. There are three key parts of

its structure: logic blocks, interconnect, and I/O blocks.

The I/O blocks form a ring around the outer edge of the

part. Each of these provides individually selectable input,

output, or bi-directional access to one of the general-

purpose I/O pins on the exterior of the FPGA package.

Inside the ring of I/O blocks lies a rectangular array of

logic blocks. And connecting logic blocks to logic blocks

and I/O blocks to logic blocks is the programmable

interconnect wiring.

The logic blocks within an FPGA can be as small and

simple as the macrocells in a PLD (a so-called fine-grained

architecture) or larger and more complex (coarse-grained).

However, they are never as large as an entire PLD, as the

logic blocks of a CPLD are. Remember that the logic

blocks of a CPLD contain multiple macrocells. But the

logic blocks in an FPGA are generally nothing more than

a couple of logic gates or a look-up table and a flip-flop.

Because of all the extra flip-flops, the architecture of an

FPGA is much more flexible than that of a CPLD. This

makes FPGAs better in register-heavy and pipelined

applications. They are also often used in place of a

processor-plus-software solution, particularly where the

processing of input data streams must be performed at a

very fast pace. In addition, FPGAs are usually denser

(more gates in a given area) and cost less than their CPLD

cousins, so they are the de facto choice for larger logic

designs.

5. Hardware Design and Development:

 The process of creating digital logic is not unlike the

embedded software development process you're already

familiar with. A description of the hardware's structure and

behavior is written in a high-level hardware description

language (usually VHDL or Verilog) and that code is then

compiled and downloaded prior to execution. Of course,

schematic capture is also an option for design entry, but it

has become less popular as designs have become more

complex and the language-based tools have improved. The

overall process of hardware development for

programmable logic is shown in Figure 3 and described in

the paragraphs that follow.

 Perhaps the most striking difference between hardware

and software design is the way a developer must think

about the problem. Software developers tend to think

sequentially, even when they are developing a

multithreaded application. The lines of source code that

they write are always executed in that order, at least within

a given thread. If there is an operating system it is used to

create the appearance of parallelism, but there is still just

one execution engine. During design entry, hardware

designers must think-and program-in parallel. All of the

input signals are processed in parallel, as they travel

through a set of execution engines-each one a series of

macrocells and interconnections-toward their destination

output signals. Therefore, the statements of a hardware

description language create structures, all of which are

"executed" at the very same time. (Note, however, that the

transference from macrocell to macrocell is usually

synchronized to some other signal, like a clock.)

Fig 5.1 Programmable logic design process

Typically, the design entry step is followed or

interspersed with periods of functional simulation. That's

where a simulator is used to execute the design and

confirm that the correct outputs are produced for a given

set of test inputs. Although problems with the size or

timing of the hardware may still crop up later, the designer

can at least be sure that his logic is functionally correct

before going on to the next stage of development.

Compilation only begins after a functionally correct

representation of the hardware exists. This hardware

compilation consists of two distinct steps. First, an

intermediate representation of the hardware design is

produced. This step is called synthesis and the result is a

representation called a netlist. The netlist is device

independent, so its contents do not depend on the

particulars of the FPGA or CPLD; it is usually stored in a

standard format called the Electronic Design Interchange

Format (EDIF).

The second step in the translation process is

called place & route. This step involves mapping the

logical structures described in the netlist onto actual

macrocells, interconnections, and input and output pins.

This process is similar to the equivalent step in the

development of a printed circuit board, and it may

likewise allow for either automatic or manual layout

optimizations. The result of the place & route process is a

bit stream. This name is used generically, despite the fact

that each CPLD or FPGA (or family) has its own, usually

proprietary, bit stream format. Suffice it to say that the bit

stream is the binary data that must be loaded into the

FPGA or CPLD to cause that chip to execute a particular

hardware design.

Increasingly there are also debuggers available

that at least allow for single-stepping the hardware design

as it executes in the programmable logic device. But those

only complement a simulation environment that is able to

use some of the information generated during the place &

route step to provide gate-level simulation. Obviously,

this type of integration of device-specific information into

a generic simulator requires a good working relationship

between the chip and simulation tool vendors.

6. Look up Division Scheme:A. Division with

multiplication:Scalar division represents the most critical

arithmetic operation within a processing element in terms

of both resource utilization and propagation delay. This is

particularly typical for FPGAs, where a large number of

logic elements are typical used to implement division. For

the efficient implementation of division, which still

satisfies accuracy requirements, an approach with the use

of LUT and an additional multiplier has been proposed

and implemented. The numerical result of a divided by b

is the same as a multiplied by 1/b, the FPGA built-in

multiplier can be used to calculate the division if an LUT

of all possible values of 1/b is available in advance. FPGA

device provide a limited amount of memory, which can

be used for LUTs. Due to the fact that 1 and b can be

considered integers, the value of 1/b falls into decreasing

hyperbolic curve, while b tends to one, and so the value

difference between two consecutive numbers of 1/b

decreases dramatically. To reduce the size of LUT, the

inverse value curve can be segmented into several

sections with different mapping ration. This can be

achieved by storing in inverse value, the median of the

group of consecutive values of b. on an altera APEX

device, when combining the LUT and multiplier into a

single division module, a 16 bit by 26 bit multiplier

consumes 838 logic elements, operating at 25MHz clock

frequency and total memory consumption of 53248

memory bits for the specific target FPGA device. The

overall speed improvement achieved through using the

DLM method is 3.5 times when compared to using a

traditional divider. Because of the extra hardware

required for efficiently addressing the LUT, the

improvement in terms of LEs is rather modest. The

hardware-based divider supplied by altera, configured as

16 bit by 26 bit, consumes 1123 Les when it is synthesized

for the same APEX device.

A. Optimum Segmentation Approach:Since b is a 16-

bit number in 1.15 format, there are totally (2
15

 – 1)

= 32767 different values of 1 / b. Table 2 presents the

mapping ratios for five different segmentation

methods, namely Seg-1 to Seg-5. Since the value of 1 / b

retrieved from the LUT is then multiplied by a, any

precision error will be magnified. Therefore, it is

important to consider the worst-case error. Table 5.1

presents a comparison of the various mapping schemes in

Table 5.2. Table 5.1.Segmentation of 1/b

Name Segmentation Mapping ratio

Seg 1 No segmentation 1:8

Seg 2

1 - 1023

1024 – 2047

2048 – 4095

4096 – 8191

8192 – 32767

1:1

1:2

1:4

1:8

1:16

Seg 3

1-511

512 – 1023

1024 – 2047

2048 – 4095

4096 – 8191

8192 – 16383

16384 – 32767

1:1

1:2

1:4

1:8

1:16

1:32

1:64

Seg 4

1-511

512 – 1023

1024 – 2047

2048 – 4095

4096 – 8191

8192 –16383

16384 – 24575

24575-32767

1:1

1:2

1:4

1:8

1:16

1:32

1:64

1:128

Seg 5 1-511

512 – 1023

1024 – 2047

2048 – 4095

4096 – 8191

8192 – 9362

9363 – 13107

13108 – 21845

21846 – 32767

1:1

1:2

1:4

1:8

1:16

map to constant

value 1/4

map to constant

value 1/3

map to constant

value 1/2

map to constant

value 1

Table 5.2 Comparison of the Segmented 1/b

 Seg1 Seg2 Seg3

Average

error

0.13% 0.78% 0.07%

Worst case

error

300% 3.03% 0.21%

Resource(bit) 53248 81920 53248

Figures in Table 5.2 suggest Seg-3 would be the natural

choice for composition of the LUT. The LUT holds 4096

inverse values with a 26-bit word length in 16.10 data

format.
6. Systolic Array:
Systolic architecture represents a network of processing
elements (PEs) that rhythmically compute and pass data
through the system. This PEs is regularly pump data in
and out such that a regular flow of data. As a result,
systolic systems feature modularity and regularity, which
are important properties of VLSI design.

 Figure 6.1: Basic systolic array

Systolic architectures are designed by using linear
mapping techniques on regular dependence. A
dependence graph (DG) is said to be regular if the
presence of an edge in a certain at any node in the DG
represents presence of an edge in the same direction at all
nodes in the DG.

 Fig.6.2: Systolic Array
7. Discussion of Results:
A. RTL Schematic of Systolic Array:

A systolic array which reduces the complexity of

O(2n) from O(n2), where n is size of the matrix. Designing

of the triangular systolic array with boundary cell and

internal cell for 2x2 matrixes. The RTL schematic of array

has five internal cells and two boundary cells. RTL

schematic of systolic array

 Fig 7.1 RTL of systolic array

B. RTL of Internal Cell:

The RTL schematic of internal cell is shown

below with four inputs and clock. One input which filter

coefficient P is fixed in internal cells. The two inputs are

from the preceding boundary cell or internal cell. And

another input is array input which is from the matrix for

the two cases this will act according to the condition. The

internal cells has two outputs which is regarded has sum,

carry and next stage input is fed into the internal cells.

PP P P P

H

Fig 7.2: RTL schematic of internal cell

B.RTL Schematic of Boundary Cell:

 The RTL schematic of boundary cell is shown bellow.

It has two inputs. One of the inputs is filter coefficient and

the one is feed from the previous stage or matrix input.

There two outputs, one of the input is regarded as sum and

another one is carry. These outputs are fed into the input

of the internal cell.

7.3 RTL schematic of boundary cell

8. Analysis:

A. Timing Analysis Report:

 The systolic array structure is working with in time

slack of 500ps.hence the operation speed is increasing by

using the new hardware structure for matrix inversion

Timing analysis:
===

===================

 Generated by: Encounter(r) RTL

Compiler v06.10-p003_1

 Generated on: OCT 17 2017 11:08:23

PM

 Module: newarray

 Technology library: tsmc18 1.0

 Operating conditions: fast

(balanced_tree)

 Wireload mode: enclosed

===

===================

 Pin Type Fanout Load

Slew Delay Arrival

 (fF)

(ps) (ps) (ps)

(clock clk) launch

0 R

(in_del_1) ext delay

+2000 2000 F

a2[0] in port 30 142.7

0 +0 2000 F

int1_1/x[0]

 a1/b[0]

 g4421/A +0

2000

 g4421/Y NAND2X4 4 33.9

94 +45 2045 R

 g4388/AN +0

2045

 g4388/Y NOR2BX4 2 22.4

82 +85 2130 R

 g329/B0 +0

8848

 g329/Y OAI21X2 1 8.1

108 +42 8890 R

 add_24_6/Z[15]

 g852/A +0

8890

 g852/Y NAND2X2 1 3.9

86 +16 8906 F

 g834/B +0

8906

 g834/Y NAND2X1 1 3.3

61 +56 8962 R

 z_reg[15]/D DFFRXL

+0 8962

 z_reg[15]/CK setup 0

+38 9000 R

-

- - - - - - - - - -

(clock clk) capture

9500 R

Timing slack : 500ps

Start-point : a2[0]

End-point : int1_1/z_reg[15]/D

B. Power analysis report:

 The total number of cells which is used has the low

power requirement compared to other hardware

structures.

Power analysis
===

===================

 Generated by: Encounter(r) RTL

Compiler v06.10-p003_1

 Generated on: OCT 17 2017

05:07:46 PM

 Module: newarray

 Technology library: tsmc18 1.0

 Operating conditions: fast

(balanced_tree)

 Wireload mode: enclosed

===

===================

 Leakage Internal

Net Switching Instance Cells

Power(nW) Power(nW) Power(nW)

Power(nW)

newa 56749 15994.652 200740657.572

146195430.012 346936087.585

int 8350 2689.544 31124197.183

20596695.649 51720892.832 a 2771

1362.033 15718497.163 9050443.340

24768940.504 add76 98 52.196

572022.309 236104.130 808126.439

adddd74 86 52.087 477953.595

214453.721 692407.316 add72 96

50.333 590474.967 221107.620

811582.587

add60 17 49.457 441485.089

56707.606 498192.695

add56 24 49.335 469194.415

75579.431 544773.846

addinc_add6 17 47.914 271723.274

44110.381 315833.654 addinc_add5 17

47.798 221014.771 38038.661

259053.432

add52 17 47.301 468169.456

59279.388 527448.844

addinc_add5 17 46.441 244519.323

46886.024 291405.347

addinc_add82 107 46.051 573222.147

280196.869 853419.016

add48 17 45.848 472034.305

56897.745 528932.050

add80 109 45.403 565195.762

280639.874 845835.635

add68 86 44.709 478448.790

198314.414 676763.204

addinc_add50 17 44.326 188885.740

47652.462 236538.202

addinc_add86 117 44.226 588185.784

280273.316 868459.100

addinc_add70 86 43.786 476716.225

198353.618 675069.843

addinc_add78 110 43.628 476937.324

261221.152 738158.476

add44 17 42.229 486347.928

54209.331 540557.259

addinc_add4 21 41.886 171761.175

51446.429 223207.604

add40 17 41.350 477275.334

57121.208 534396.542

addinc_add66 31 41.112 291790.461

83506.480 375296.941

add84 121 39.252 549697.013

290288.958 839985.971

add64 40 39.249 431338.643

114279.660 545618.303

add36 28 38.291 453463.634

52989.107 506452.740

add88 98 33.584 441432.094

235834.602 677266.696

C. Area analysis report:
 The total area analysis report is shown below. The five

internal cell and two boundary cell occupies the area of 56749

cells.
Area

===

===================

 Generated by: Encounter(r) RTL

Compiler v06.10-p003_1

 Generated on: OCT 17 2017

05:07:06 PM

 Module: newarray

 Technology library: tsmc18 1.0

 Operating conditions: fast

(balanced_tree)

 Wireload mode: enclosed

===

===================

Instance Cells Cell Area

Net Area Wireload

newarray 56749 860244

0 <none>

 int1_2 11085 152492

0 <none>

 a1 5343 72213

0 <none>

 int1_1 11094 152289

0 <none>

 a1 5422 73088

0 <none>

 int1_3 10992 151877

0 <none>

 a1 5245 72253

0 <none>

 int1_4 8350 132078

0 <none>

 a1 2771 52231

0 <none>

 int1_5 8308 130847

0 <none>

 a1 2657 51509

0 <none>

 bound2 3465 70486

0 <none>

 a3 2321 50318

0 <none>

 bound1 3455 70174

0 <none>

 a3 2307 49959

0 <none>

D.Gate Summary:

Gate summary
===

===================

 Generated by: Encounter(r) RTL

Compiler v06.10-p003_1

 Generated on: Oct 17 2017

05:07:31 PM

 Module: newarray

 Technology library: tsmc18 1.0

 Operating conditions: fast

(balanced_tree)

 Wireload mode: enclosed

===

===================

 Gate Instances Area Library

-

ADDFHX1 295 22569.624 tsmc18

ADDFHX2 127 14363.395 tsmc18

ADDFHX4 8 931.392 tsmc18

ADDFHXL 7 512.266 tsmc18

ADDFX1 362 25287.293 tsmc18

ADDFX2 484 33809.530 tsmc18

ADDFXL 1 69.854 tsmc18

ADDHXL 35 1280.664 tsmc18

AND2X1 8 106.445 tsmc18

AND2X2 601 7996.666 tsmc18

Type Instances Area Area %

sequential 453 26977.104 3.1

inverter 17236 124024.824 14.4

buffer 299 3991.680 0.5

logic 38761 705250.022 82.0

total 56749 860243.630 100.0

E. Array Summary

 The systolic array which is implemented in the

hardware structure which does not violated the max

transition design rule and max capacitance rule. The

summary of the analysis report is shown below:
Array summary
===

===================

 Generated by: Encounter(r) RTL

Compiler v06.10-p003_1

 Generated on: Apr 18 2007

05:08:49 PM

 Module: new array

 Technology library: tsmc18 1.0

 Operating conditions: fast

(balanced_tree)

 Wire load mode: enclosed

===

===================

 Timing

 Slack Endpoint Cost Group

--

 +500ps int1_5/z_reg[15]/D default

 Area

Instance Cells Cell Area Net Area

Wire load

New array 56749 860244 0

<none>

 Design Rule Check

Max_transition design rule: no violations.

Max_capacitance design rule: no

violations.

Hence the result which is obtained by using the systolic

array is compared with the direct implementation of the

matrix inversion. Hence the complexity of O(n2)

O(2n).The hardware implementation of the systolic array

is done by using the cadence tool. The timing analysis,

power analysis, area analysis results are shown which are

much reduced then applying the direct inversion.

9. Simulation Results:

A. Systolic Array Output:

 In the following fig shows the simulation output of

systolic array. The array a1, a2, b1, b2 are stored in a file

or given as a input while using for the filter. The filter

coefficient P is given as a input to all the cells. And hence

the output e1 is obtained in the 6 clock cycle and e2 is

obtained in the 7 clock cycle. And hence the output PA-1

is obtained by the systolic array method

 Fig.9.1 output of systolic array

B. Boundary Cell Output:

Fig. 9.2 Boundary Cell Output

C. Internal cell output:

 Fig. 9.3 Internal Cell Output

D. Synthesis report:

The systolic array is downloaded to the Xilinx

Spartan iii, in which it occupies most of the area. But the

flip flop and the clock is used very low and hence the

other clocks are wasted. And hence we are going for the

ASIC implementation of the structure which uses very

low area.

Synthesis report :

Device utilization summary:

Selected Device: 4vfx12sf363-11

 Number of Slices: 5984 out of 6144

97%

 Number of Slice Flip Flops: 1051 out of 12288

8%

 Number of 4 input LUTs: 10896 out of 12288

88%

 Number of bonded IOBs: 225 out of 240 93%

 Number of GCLKs: 1 out of 32 3%

10. Conclusion:

A customizable structure for an n-state Kalman filter has

been designed in verilog and partly implemented in an

Altera APEX device with smaller logic resource space. By

applying Fadeev’s algorithm, matrix manipulations can

be performed via the Schur complement. This paper

presented a generic Pipeline Systolic Array structure with

an advantage of reduced resource consumption,

compared to the conventional in fixed-size systolic array

structures reported in the literature. The precision error is

allowable and within a range. The estimated area of

proposed architecture for 4x4 matrixes with an ASIC in

0.35µm CMOS technology is about 125mm2. By applying

state-of-the-art CMOS technology at the 100nm node, the

ASIC area can be reduced to about 20mm2.

References:

[1] S. Haykin, Adaptive Filter Theory, 4th Edition, Prentice

Hall, USA, 2002.

[2] S-G. Chen, J-C. Lee and C-C. Li, “Systolic Implementation

of Kalman Filter”, Circuits and Systems, APCCAS '94, IEEE

AsiaPacific Conference, pp 97-102, 1994.

[3] C.J.B. Fayomi, M. Sawan and S. Bennis, “Parallel

VLSI Implementation of A New Simplified Architecture of

Kalman Filter”, Electrical and Computer Engineering, 1995.

Canadian Conference, Vol 1, pp 117 – 119, 1995.

[4] Z. Salsic and C.R. Lee, “Scalar-based direct algorithm

mapping FPLD implementation of a Kalman filter”, Aerospace

and Electronic Systems, IEEE Transactions on, Volume: 36

Issue: 3, pp 879-888, 2000.

[5] D.C. Swanson, Signal Processing for Intelligent Sensor

Systems, Marcel Dekker Inc., New York, 2000.

[6] S.V. Vaseghi, Advanced Digital Signal Processing and

NoiseReduction, 2nd edition, John Wiley & Sons Ltd., 2000.

[7] E.W. Kamen, and J.K. Su, Introduction to Optimal

Estimation,Springer, UK, 1999.

[8] El-Amawy, “A Systolic Architecture for Fast Dense

MatricInversion”, IEEE Transactions on Computers, Vol. 38,

NO. 3, March 1989.

[9] G.W., Irwin, “Parallel algorithms for control”, Control

Eng.Practice, Vol 1, no 4, 1993.

[10] C.R. Lee, “FPLD Implementation and Customisation in

Multiple Target Tracking Applications”, Engineering PhD

Thesis, The University of Auckland, 1998.

[11] D. Lawrie and P., Fleming, “Fine-grain parallel

processing implementations of Kalman filter algorithms”,

Control '91., International Conference , Vol 2, pp 867 – 870,

1991.

[12] Walter T. HigginsArizona State University Tempe, Ariz.

85281”A Comparison of Complementary and Kalman

Filtering” IEEE Transactions on Aerospace and Electronic

Systems (Volume: AES-11, Issue: 3, May 1975)

 321 - 325 May 1975 Print ISSN: 0018-9251

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Walter%20T.%20Higgins.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=7
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=4101405

