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Abstract: In this paper, period doubling bifurcation of a 
Permanent Magnet Direct Current (PMDC) motor is 
identified mathematically using Poincare map and 
Floquet theory or Monodromy matrix method. 
Derivative of the Poincare map gives Jacobian matrix 
(J-matrix) and Floquet theory calculates Monodromy 
matrix (M-matrix). The period doubling operation is 
identified when one of the eigen values of the matrix 
exceeds unity along the negative real axis. Poincare 
map identifies the period doubling bifurcation for 
various parametric conditions and the results obtained 
agrees with results of the Monodromy matrix method. 
In this work, calculation of eigen values is performed 
with J-matrix and compared with M-matrix under 
various proportional gains, supply voltages and load 
torques. Also the numerical calculation is verified by 
means of MATLAB Simulink outputs of speed and 
current waveform. In order to control the bifurcation 
behavior, an Extended Time Delay Auto 
Synchronization (ETDAS) controller is used. This 
controller controls bifurcation and extends the normal 
period-1 operation of the drive. This analysis is useful 
in identifying the stable operating region of the system. 
Also period doubling operation further leads to chaotic 
behaviour, the controller helps to avoid such chaos in 
the operation of the drive system.  
 
Keywords: Bifurcation, Chaos, Eigen value, ETDAS, 
PMDC, Poincare map, Monodromy matrix. 
 
1. Introduction 
 
 Nowadays due to the increasing air pollution, 
electric vehicles (EVs) and hybrid electric vehicles 
(HEVs)  are becoming popular. Large rating 
PMDC drive is preferred in some HEVs. In some 
vehicles, small rating PMDC motors are used in 
operating the wiper system. So analyzing the 
PMDC motor is essential while considering EVs. 
When operating the electric vehicle, it is necessary 
to change the speed, load and some other 
parameters of the drive system. In some varying 
parametric conditions, irregular chaotic vibrations 
are produced in the motor drive system. These 
unwanted vibrations create safety hazards to the 

vehicle and also disturbance to the driver. In such 
conditions the small wiper motor also experiences 
vibration and jerks. In this paper, chaos present in 
the PMDC drive is identified. If a chaotic 
controller is included in the system, stability can 
be improved.  
 Electric drives are usually operated by power 
electronic switching devices and are more prone to 
nonlinearity and hence show chaotic behavior in 
its operation [1]. All the real life problems can 
only be modeled by nonlinear systems. Nonlinear 
phenomena and computation of Poincare map are 
studied [2]. Different analysis methods to find out 
bifurcation, chaos and subharmonics occurring in 
DC motor drive are discussed here. Eigen value 
analysis is performed to identify the dynamic 
bifurcation occurring in a current mode controlled 
DC chopper fed PMDC drive [3]. Chaos 
developed through quasi periodic orbits is detailed 
in a voltage mode and current mode controlled DC 
drive [4]. Analysis and compensation of chaos in 
DC motor drive are also studied in [5]. 
Coexistence of period-1 and period-3 behavior of a 
DC drive operated by a full bridge converter is 
identified using Monodromy matrix method [6]. 
Analysis of bifurcation and chaos in DC motor 
drive is reported in [7]. Anti-control of chaos in 
PMDC motor is performed in vibratory 
compactors [8]. Modeling of sub harmonic and 
chaotic behavior in DC drives is performed [9]. 
Equivalent circuit based analysis of chaos is 
explained for a DC motor [10]. Sub harmonics and 
chaos analysis for switched reluctance motors are 
presented in [11]. 
 Chaos present in an automotive wiper system is 
identified by means of Poincare map, time 
responses and frequency spectra [12]. The work 
stated in [13] considered a BLDC motor for the 
synchronization of chaos. Chaos identified in a 
PMSM is controlled using non-linear feedback 
control method [14]. ETDAS control of 
automotive wiper system operated by a PMDC 



 

motor is analyzed [15]. Monodromy matrix and 
eigen value are derived for PMDC and SRM and 
the period doubling bifurcation is identified [16]. 
Various chaos control, anti control and 
synchronization methods are discussed [17-20].  
 In the present work, both J-matrix and M-
matrix of the PMDC model are derived in a step 
by step manner. The parameters considered here 
for variation are proportional gain, supply voltage 
and load torque. Then the eigen values of the 
matrices are tabulated for comparison. This 
numerically identified bifurcation is observed in 
simulation also using MATLAB simulink. Phase 
plots are also drawn to confirm the existence of 
period doubling bifurcation. Finally to control the 
bifurcation and to extend the normal periodic 
operation, ETDAS controller is introduced in the 
simulation work. Output speed and current 
waveforms are presented with and without 
controller.  
 
2. Modeling of PMDC motor 

 
 Fig.1 shows the block schematic diagram of a 
closed loop PMDC drive considered in this paper. 
DC Supply voltage (Vin) is given to the Chopper. 
The motor is supplied by the DC-DC chopper 
which gives controlled DC output voltage. The 
controlled DC output from the chopper can be 
obtained by means of operating it using a PWM 
generator. PWM generation is based on the 
magnitudes of ramp (Vramp) and control signals 
(Vcon) [3].Control signal (Vcon) is the difference 
between actual and reference speed amplified by a 
proportional controller with gain Kp. It is 
expressed as, 

( ) ( ( ))con p refV t K t  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 1. Block diagram for PMDC motor drive 

 
 

Ramp signal (Vramp) is generated in a ramp 
generator and it is compared with the control 
signal for the generation of PWM pulses. Ramp 
voltage is expressed as, 

( ) ( )ramp L U L

t
V t V V V

T
    

Here VL and VU are the lower and upper 
thresholdvoltages of the ramp signal expressed in 
volts. T-is the total time period of ramp signal in 
seconds. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.Generation of PWM pulses 

 

 When ramp conV V , pulses are applied to the 

chopper switch to turn ON.  When ramp conV V , 

pulses are not applied to the chopper switch and 

turned OFF.  Fig.2 shows the comparison of 

control and ramp voltages and PWM pulses 

generated. In this manner, the closed loop drive 

performs voltage mode controlled DC motor 

operation [9]. 

 The PMDC motor supplied by a voltage mode 

controlled chopper with a proportional controller 

can be represented by a state space model [9].The 

state variables are, ( )
( )

( )

t
X t

i t

 
  
 

 

Where, 

ω- speed of the motor in rad/ sec  

i- motor phase current in amperes  

 

During switch ON (Vramp>Vcon) the state equation 

is,                                      
( )

( )

( ) ( )

t L

ine

K Td t B

tdt JJ J

di t i t VK R

dt LL L




    

      
       
       
        

             (1) 
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The state matrix is common for both the ON and 

OFFstate of operation and is given by, 

t

e

KB

J J
A

K R

L L

 
 

  
 
 
  

 

Here, 

B- friction coefficient in Nm-sec/rad; 

J-inertia in Nm-sec2/rad; 

Kt-torque constant in Nm/A;  

Ke-EMF constant in V-sec/rad;  

R-winding resistance in Ω; 

L-winding inductance in H; 

TL-load torque in Nm; 

 

The above equation means that the supply voltage 

circulates current through the phase winding of the 

motor.  

When the switch is turned OFF (Vramp < Vcon), 

the state equation is as given below. There is no 

supply current but the current flows due to 

inductive effect through the freewheeling diode 

[12]. 

 

( )

( )

( ) ( )
0

t
L

e

Kd t B
T

tdt J J
J

di t i tK R

dt L L




  
                            

            (2) 

 
3. Methodology used in the analysis 

In this paper, two different analytical methods 

called Poincare map and Monodromy matrix 

method are discussed. In Poincare map, a 

switching surface is considered where switching of 

the power converter operating the motor is 

performed. This means that the switching surface 

separates the ON and OFF states of the DC 

chopper. This surface is considered as the Poincare 

plane. This mapping technique checks the flow of 

the system state variables across the surface. Each 

crossing across the plane is considered as a point. 

If a state variable is periodic with period ‘T’, the 

instantaneous state of the variable for one 

complete period (T) gives a set of crossing points. 

On connecting these points, a state trajectory is 

obtained. Solution of the state equation is used to 

find the trajectory of each state variable at every 

instant of time. Using the solution, this mapping 

function derives the present state of the system 

variable in terms of its past state. Differentiating 

the mapping function gives Jacobian matrix. Eigen 

value calculated for this Jacobian matrix 

determines the system's bifurcation condition. 

Among the many types of bifurcation methods, 

period doubling or flip bifurcation is considered 

here. 

The second method discussed in this paper is 

the Monodromy matrix method in which solution 

of state equation is used. The Poincare map 

calculates the system behavior during the flow of 

the state around the trajectory but the transition 

from one state to other state is not included. This 

method includes not only the system behavior 

during flow of the trajectory in one particular state 

but also the transition from one state to other.Eigen 

values are found out for the Monodromy matrix to 

show the bifurcation point. Using both these 

methods, flip or period doubling bifurcation is 

confirmed.  

These results help in improving the 

performance of a particular drive system by 

avoiding the bifurcation conditions in sensitive 

applications like servo motors, robots, etc. Also 

the methods can be extended to any drive system 

for analysis if the state equations are known.In the 

following sections, both the methods are explained 

under various operating conditions.  

A. Poincare map 

A detailed analysis of Poincare map based 

derivation of J-matrix and stability analysis are 

carried out in this section. To perform Poincare 

map in the above model, solution of the state 

equation is to be found [3]. The total time period is 

divided into two intervals including OFF-time (t0 

to t1) and ON-time (t1 to t2). Solving the state 

equation (2) during OFF-time (t0 to t1), 
1

0

1 1 0 0 1 2( ) ( ) ( ) ( )

t

t

X t t t X t t V d                   (3) 

Here, 

0

0

0

( )
( )

( )

t
X t

i t

 
  
 

isthe initial state of the system and 

2

0

LT

V J

 
 
 
  

. 

 

Substituting 1 0( )
1 0( )

A t t
t t e 
  in equation (3) and 

integrating the second term, 
1 0( )1 1

1 2 0 2( ) ( ( ) )
A t t

X t A V e X t A V
                 (4) 

 

 

 



 

Similarly the solution of equation (1) during the 

interval (t1, t2) is, 
2

1

2 2 1 1 2 1( ) ( ) ( ) ( )

t

t

X t t t X t t V d                   (5) 

Here X(t1) is calculated from equation (4). 

Substituting 2 1( )

2 1( ) A t tt t e   and
1

L

in

T

J
V

V

L

 
 

  
 
  

in 

equation (5) and integrating the second term, 
2 1

2

( )1 1
1 1 1( ) ( ( ) )

A t t
X t A V e X t A V

    
            

(6) 

Generalizing equations (4) and (6), 

0( )1 1
0( ) ( ( ) )

A T t
k kX t A V e X t A V

      

where, Vk (for k=1 or 2) is the input vector depends 

on whether switch is ON or OFF and X(t0) is the 

initial state vector at t=t0.The final solution X(t2) is 

a function of the initial state X(t0). Using the above 

general equation, Poincare map of the drive system 

is derived for any state m. State(m+1) is expressed 

as the mapping function of mth state of the system 

as, 

Xm+1=P (Xm)                                       (7) 

  

The map P(Xm) given in equation (7) is 

divided into two portions as per the switch 

operation. During the first interval (t= t0 to t1), the 

state variable changes its state from X(t0) to X(t1).  

Here t1is the time equal to δ times the total time 

i.e., t1 =δT, where (δ=1-d); d-duty ratio. And in the 

second part of the total period (t= t1 to t2), the state 

variable changes its state from X(t1) to X(t2). So the 

mapping function in equation (7) can be expressed 

as, 
 

X(t1)= P(X(t0)) and X(t2)= P(X(t1))                            (8) 

 

Therefore,  

    2 1A(t t )1 1

2 1 1 1X t  A V  e X t A V
      

    1 0A(t  t )1 1

1 2 0 2X t A V  e X t  A V
      

Substituting X(t1) expression in X(t2), 

     1 02 1 A(t  t )A(t t )1 1 1 1

2 1 2 0 2 1X t A V  e  A V e X t  A V A V
         

                                                                             
(9) 

   2 0 2 02 1 2 1A(t  t ) A(t t )A(t t ) A(t t )1 1 1 1

2 1 2 0 2 1X t   A V  e A V   e  X t  e  A V  A V  e
          

                                                   (10) 

 

 

 

After simplification,  
2 0 2 1( ) ( )1 1 1

2 0 1 0 2 1 2( ) ( ( )) ( ( ) ) ( )
A t t A t tX t P X t A V e X t A V e A V V

         

                           (11) 

The Poincare map is obtained by the above 

equation from which the state equation at the 

second state is expressed as a function of the initial 

state. Differentiating the above mapping function, 

 

2 0 2 1( ) ( )
0 1 2 2

0

( ( )) ( )
( )

A t t A t t d
DP X t e e V V t

dX t

 
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(12) 

 

The switching surface [9] is defined as, 

                                                   (13) 

To find  
0( )

d

dX t


 , the switching hyper surface 

expression in equation (13) is used.  

   

Now,  

0 0( ) ( )

dh dh d

dX t d dX t




              (14) 

 

Therefore,  
1

0 0( ) ( )

d dh dh

dX t d dX t






 

  
 
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1
A(t  t ) A(t  t )1
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0

=   K  0  e ( ) ( ) K 0  e
( )

U L

d
X t A V At V V

dX t

 
          

                                                          

                                                                           

(15) 

 

Substituting equation (15) in equation (12) and 

expanding the matrices,  

 

  2 0 1 0 1 02 1
1

( ) A(t  t ) A(t  t )( )
0 2 1 2 p 0 2 2 p( ( )) ( ) K  0  e ( ) ( ) K 0  e

A t t A t t
U LDP X t e e V V t AX t V t V V


    

             
 

                                                                           
(16) 

Equation (16) gives the 2x2 matrix which is 

the Jacobian matrix, J. The initial state vector X(t0) 

is unknown in this equation. Since the solution is 

periodic, X(t2)=X(t0). Using this condition in 

equation (10), 

   2 0 2 02 1 2 1A(t  t ) A(t t )A(t t ) A(t t )1 1 1 1

0 1 2 0 2 1X t   A V  e A V   e  X t  e  A V  A V  e
          

                                                                          
(17) 

Simplifying,  

  2 0 2 02 1 2 1A(t  t ) A(t t )A(t t ) A(t t )1 1 1 1 1

0 1 2 2 1X t   ( e  ) ( A V  e A V   e  A V  A V  e )I
           

                                                                       
(18) 

where, I-identity matrix (2x2). 

     1 0A(t  t )1 1

1 p 2 0 2 ref ramph(t )  K 0 A V e X t  A V 0 V ( )T         



 

Substituting equation (18) in equation (13), the 

equation for switching surface is obtained only in 

terms of δ. Now solving the switching surface 

equation using Newton Raphson method, the value 

of δ is obtained. Then t1 can be calculated from 

t1=δT (where total time,T=t2, and initial time, 

t0=0). Substituting δ value in equation (18) gives 

the initial state vector X(t0) to be substituted in 

equation (16) to find the J-matrix. The above 

procedure is given in the flow diagram in Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flow diagram for Poincare map 

B. Monodromy matrix approach 

To find the stability, the Monodromy matrix 

is calculated around the trajectory of the system 

state. The matrix explaining the flow of the 

trajectory in one particular state is called saltation 

matrix, S and the matrix determining the transition 

operation is named state transition matrix, Φ. To 

find out the entire operation of the system during 

one complete cycle, the saltation matrix and state 

transition matrix must be multiplied which 

becomes Monodromy matrix, M. 

 

 2 2 1 1M S S                    (19) 

Here, 2 1,S S  are the saltation matrices and 

2 1,   are the state transition matrices for the OFF 

and ON states respectively. The saltation matrix 

1S can be expressed as, 

 1
21

1 0

1
S

S

 
  
 

                  (20) 

Here,              

21
2 1 1 1( ) ( )

in

t L U L

V

LS
K X t BX t T V V

J T


   

 
 

                (21) 

The second saltation matrix S2 is given by, 

 

2

1 0

0 1
S

 
  
 

                  (22) 

The state transition matrices are given by, 

   

                        (23) 

 

               
2 1( )

2
A t t

e 
                                          

(24) 

Substituting equations (20) to (24) in 

equation (19), the Monodromy matrix (2x2 matrix) 

is obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig.4. Flow diagram for Monodromy matrix method 

 

Fig.4 explains the procedure involved in this 

Monodromy matrix method. 

 

4. Control method and improvement of stability 
  

To improve the performance of the drive and 

to avoid bifurcation, a controller has to be 

incorporated in the circuit. The control action must 

provide stable operation of the drive system even 

for varying parameter conditions. The time 

delayed feedback control (TDFC) and extended 

time-delay auto-synchronization (ETDAS) control 

are two methods that follow time delay feedback 

1 0( )
1

A t t
e 



Differentiate the mapping function 

to find J matrix 

Differentiate the switching hypersurface,  

dh dh d
.

dX d dX




  
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dX

  
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Find Eigen values of J 

matrix  

Solve the state equations and derive 

Poincare map 

Find Monodromy matrix 

1 1 2 2M S S      

Find State transition matrices 1 2

1 2;A t A te e    

and Saltation matrices S1 and S2 of the system 

Calculate duty ratio δ 

using NR method  

Calculate eigen Values of M 

matrix    

Compare eigen Values of M- matrix, 

with eigen Values of J matrix  



 

technique. Both these feedback controls compare 

the present and previous states of the feedback 

signal [12]. If there exists a difference in the two 

states of the signal due to bifurcation, control 

action is applied. If there is no such behavior and 

the system works under normal periodic operation, 

there is no difference found in the comparison and 

the control action is not necessary. Thus the 

controller maintains the normal period-1 stable 

operation by means of comparison and control 

action.  

 

Among the two methods, ETDAS is found 

better and is incorporated here. So in this paper the 

results obtained after including ETDAS controller 

are also presented. 

 

4.1 ETDAS control 

  

Extended time-delay auto-synchronization 

(ETDAS) is applied for a DC drive system and 

stabilization is achieved in [12]. Speed feedback 

𝛚(t)of the PMDC model is taken as the input to 

the controller. As per the principle of ETDAS 

controller, F(t) is the perturbation term added to 

Vcon(t) and the expressions are presented in 

equation (25) and (26). 

1

1

( ) (1 ) ( ) ( )q
c c

q

F t K R R t q t  






 
    
 
 

           (25) 

              
*( ) ( ) ( )con conV t F t V t                        

(26) 

Where Rc is the regressive parameter that ranges 

from 0 to 1. 

 

Fig.5 explains the ETDAS control logic 

applicable for the PMDC drive system. A time 

delay(τ) is included in the speed output of the 

motor 𝛚(t), before it enters into the comparator. 

After the inclusion of the controller in the PMDC 

drive, the output waveforms are given in the 

subsequent sections. When a periodic signal x(t) 

with period ‘T’ undergoes period doubling, the 

period of oscillation becomes ‘2T’. At this 

condition, the difference x(t-τ)-x(t) is calculated in 

the controller which produces the error between 

the period-1 and period-2 signals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5. ETDAS control logic 

 

The error is controlled by proper selection of 

controller gain ‘K’. The controlled output F(t) is 

added with the original signal to reduce the error 

value. The control action is repeated infinite times 

in the controller until the error is completely 

eliminated. This means that the period doubled 

waveform becomes period-1 after control. So by 

proper selection of time delay ‘τ’ value and gain 

‘K’ value, we can make the signal to oscillate in 

the desired period. Period doubling will get 

eliminated. Now there is no control required and 

the control action becomes zero.  

Time delay (τ) of 0.01 second, K=0.1 and 

Rc=0.85 are used here. Now the same parameter 

variations are carried out after the inclusion of 

controller. 

 
5. Simulation Results  
  

In this section, eigen value calculated using J-
matrix is compared with M-matrix and tabulated. 
Calculation of M-matrix for various Kp and Vin for 
the PMDC model was already presented by Nelson 
Okafor in his thesis [16]. In this work, both M-
matrix and J-matrix are derived and numerically 
presented for various Kp, Vin and TL. Analytical 
calculation of eigen values is performed using 
MATLAB coding (.m file). MATLAB Simulink 
model (.mdl) is constructed for the PMDC model.  
 
       The simulation parameters shown in table 1 
are utilized for MATLAB simulation. In the 
subsequent sections, the results obtained from 
calculation and simulation waveforms are 
presented. For various parameter changes, speed 
and current output waveforms are taken. 
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Table 1  
Simulation Parameters 

 
 

5.1 Effect of proportional gain Kp on Eigen 

values 

 

In the PI controller used in the drive system, 

proportional gain is increased in response to the 

increase in error between the reference and actual 

speed. It provides a smooth control action on the 

system until the speed error is made zero. In this 

paper, speed error is processed by the PI-

controller. Gain of the controller is varied to 

identify the bifurcation behavior. 

 

 
Fig .6 Speed and Current output waveforms for TL=0.39 Nm; 

Vin=100 V; R=3.5 Ω; Kp=1.2 

 
 
In Fig. 6, the speed and current waveforms are 
periodic with period 0.004 s for Kp=1.2. Due to 
period doubling bifurcation at Kp=2.4, time period 
of these waveforms get doubled (0.008s) as 
observed clearly in Fig. 7. The waveforms agree 
with the analytical results given in table 2. 

 
 

 

 
Fig .7 Speed and Current output waveforms for TL=0.39 Nm; 

Vin=100 V; R=3.5 Ω; Kp=2.4 

 
 

 
(a) 

 
   (b) 

 Fig. 8 Comparisons of Eigen Tracing for      

(a) Speed and (b) Current for various Kp values 
  
 
Eigen value loci for change in proportional gain 
values using Poincare mapping and monodromy 
method are presented in fig.8. Eigen values 
corresponding to speed and current vectors are 
separately plotted in the complex plane as shown 
in Fig. 8 (a) and (b). Eigen values crossing (-1, 0) 
is clearly shown in Fig. 8(b). Any one Eigen value 
crossing unit circle is sufficient for the occurrence 
of flip bifurcation. It is seen from the tabulated 
values that the increase in gain value from 1.2 to 
2.4 increases the eigen values along the negative 
real axis. At Kp=2.4, the eigen value crosses unity 
in the negative direction showing bifurcation 
behavior. It is seen that eigen values calculated 
using both the methods are approximately same as 
in table 2. 
  

 

 
Table 2  

S.No. Parameter Symbol  Value Unit 

1 Supply voltage Vin 100 V 

2 
 
Winding resistance R 3.5 Ω 

3 
 
Winding inductance L 36 mH 

4 Torque constant Kt 0.1324 Nm/A 

5 EMF constant Ke 0.1356 V-sec/rad 

6 Inertia J 0.000971 
Nm-
sec2/rad 

7 Friction coefficient B 0.000564 Nm-sec/rad 

8 Load torque TL 0.39 Nm 

9 Reference speed ωref 100 rad/sec 

10 Ramp lower level VL 0 V 

11 Ramp higher level VH 2.2 V 

12 Switching frequency f 250 Hz 

  

(a) (b) 

 

 

(a) (b) 



 

Variation of proportional gain to find bifurcation 
 

Kp Δ  J Matrix Eigen values of  
J-matrix 

M-matrix Eigen values of  
M-matrix 

1.2 0.7439 0.3841 0.2362

4.1662 0.7942

 
 
    

-0.2051 + 0.7982i 
-0.2051 - 0.7982i 

0.3841 0.2354

4.1661 0.7936

 
 
    

-0.2048 + 0.7963i 
-0.2048 - 0.7963i 

1.5 0.7443 0.2755 0.1978

4.9134 1.0591

 
 
    

-0.3918 + 0.7255i 
-0.3918 - 0.7255i 

0.2755 0.1969

4.9134 1.0585

 
 
    

-0.3915 + 0.7230i 
-0.3915 - 0.7230i 

1.8 0.7446 0.1786    0.1634

5.5812 1.2959

 
 
    

-0.5586 + 0.6069i 
-0.5586 - 0.6069i 

0.1786    0.1626

5.5812 1.2954

 
 
    

-0.5584 + 0.6035i 
-0.5584 - 0.6035i 

2.2 0.7449 0.0644    0.1229

6.3687 1.5752

 
 
    

-0.7554 + 0.3324i 
-0.7554 - 0.3324i 

0.0644    0.1221

6.3687 1.5747

 
 
    

-0.7551 + 0.3253i 
-0.7551 - 0.3253i 

2.3 0.7449 0.0381    0.1136

6.5490 1.6390

 
 
    

-0.8005 + 0.2013i 
-0.8005 - 0.2013i 

0.0380    0.1127

6.5489 1.6385

 
 
    

-0.8002 + 0.1889i 
-0.8002 - 0.1889i 

2.4 0.7450 0.0128    0.1046

6.7244 1.7014

 
 
    

-0.6671 
-1.0215 

0.0128    0.1038

6.7244 1.7008

 
 
    

-0.6534 
-1.0347 

 

This section concludes that if the proportional gain 

is increased for tuning the system, bifurcation 

occurs for higher values of Kp. This leads to 

unwanted oscillations in the speed and current 

waveforms. This is confirmed by the phase plot 

presented in fig. 9 where period-1 and period-2 

plots are depicted clearly. 

 

 

 
(a) (b) 

Fig. 10. Speed and Current for Kp=2.4 with ETDAS controller 

Fig 9. Phase plot for proportional gain variation (Kp=1.2 for  
period-1; Kp=2.4 for period-2) 

 
 

 

Fig. 10 and 11 shows the speed and current 

waveforms for Kp=2.4 and 3.8 respectively. 

Without controller, when the proportional gain is 

increased, period doubling occurs at Kp=2.4. But 

with the use of ETDAS controller, period-1 is 

extended till Kp=3.8 and beyond that period-2 

appears. If controller is not used, further increase 

in proportional gain beyond Kp=2.4 leads to chaos. 

Use of the controller extends the bifurcation to 

Kp=3.8. So normal period-1 behavior is extended 

to larger gain compared to the operation without 

controller. This improves the system performance 

if proportional gain is increased. 
 
 

Fig. 11. Speed and Current for Kp=3.8 with ETDAS controller 

 

5.2 Effect of input voltage (Vin) on Eigen values 

  

Now supply voltage is varied and the same 

behavior is observed. Speed of the motor is 

directly proportional to the supply voltage. It is 

necessary to change the supply voltage to control 

the speed of the motor. Table 3 shows the eigen 

values calculated for various supply voltages 

ranging from 85 V to 115 V.  
 
        Fig. 12 and Fig. 13 give the speed and current 
waveforms obtained for  Vin=85 V and Vin=115 V 
from MATLAB simulink. When Vin=115 V, the 
system shows a period doubling bifurcation. 

 
(a) (b) 



 

Because at this voltage, eigen values of both the 
matrices exceed unity in the negative real axis. The 
eigen value loci are presented in fig. 14. It is 
observed that the eigen values cross unity along 
the negative real axis in fig. 14(b). 

 

Fig 12. Speed and Current output waveforms for TL=0.39 Nm; 

Vin=85 V; R=3.5 Ω; Kp=2 

 

Fig 13. Speed and Current output waveforms for TL=0.39 Nm; 

Vin=115 V; R=3.5 Ω; Kp=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 14. Comparisons of Eigen tracing for (a) speed and (b) 

current for various Vin values 

 

Period doubling occurs if any one of the 

eigen values cross unity in the negative real axis. 

Phase plots confirm the normal and period 

doubling occurrence at Vin=85V and Vin=115V 

respectively as illustrated in fig. 15. 

 

 
 

Fig 15. Phase plot for input voltage (Vin=85V for  

period-1;Vin=115V for period-2) 

 

Speed control is essential for industrial drives 

based on the load requirement. In such case, 

supply voltage is controlled by means of adjusting 

PWM pulses. From the results obtained in this 

section, it is clear that if supply voltage is 

increased, it leads to bifurcation. This produces 

losses and unwanted errors if the motor drive is 

operating sensitive loads. If voltage is increased 

from 85V and at 115V period doubling occurs. If 

we increase further chaotic behavior arises causing 

unstable operation. But with the inclusion of 

ETDAS controller we can apply up to 200 V input 

voltage within period-1 operation. This means that 

period-1 operation appears till 200 V input 

voltage, the stable operation gets extended.  

 

 
(a) (b) 

 
Fig 16. Speed and Current for Vin=115 V with ETDAS 

controller 

 
Fig 17. Speed and Current for Vin=200 V with ETDAS 

controller 
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Table 3  

Variation of supply voltage to find bifurcation  
 

  

 

Vin Δ J Matrix Eigen Values using 

Poincare map 
M-matrix Eigen values using 

Monodromy matrix 
85 0.6998 0.1134    0.1567

5.0835 1.0254

 
 
    

-0.4560 + 0.6874i 

-0.4560 - 0.6874i 
0.1134    0.1559

5.0835 1.0248

 
 
    

-0.4557 + 0.6844i 

-0.4557 - 0.6844i 

90 0.7165 0.1158    0.1514

5.3855 1.1641

 
 
    

-0.5241 + 0.6371i 

-0.5241 - 0.6371i 
0.1158    0.1505

5.3855 1.1635

 
 
    

-0.5239 + 0.6337i 

-0.5239 - 0.6337i 

95 0.7313 0.1176    0.1466

5.6865 1.3019

 
 
    

-0.5921 + 0.5745i 

-0.5921 - 0.5745i 
0.1176    0.1458

5.6865 1.3014

 
 
    

-0.5919 + 0.5707i 

-0.5919 - 0.5707i 

100 0.7448 0.1197    0.1425

5.9887 1.4405

 
 
    

-0.6604 + 0.4946i 

-0.6604 - 0.4946i 
0.1196    0.1416

5.9887 1.4400

 
 
    

-0.6602 + 0.4901i 

-0.6602 - 0.4901i 

105 0.7569 0.1212    0.1387

6.2900 1.5784

 
 
    

-0.7286 + 0.3874i 

-0.7286 - 0.3874i 
0.1212    0.1379

6.2899 1.5778

 
 
    

-0.7283 + 0.3815i 

-0.7283 - 0.3815i 

115 0.7780 0.1241    0.1322

6.8928 1.8541

 
 
    

-0.6058 

-1.1242 
0.1241    0.1314

6.8928 1.8536

 
 
    

-0.5968 

-1.1327 

  

The speed and current waveforms for Vin=115V 

and 200V showing normal period-1 are shown in 

fig. 16 and 17 respectively. Period-2 is exhibited 

only after Vin=200 V. Thus the controller allows 

the larger supply voltage variation within stable 

operating limit. 

 

5.3 Effect of Load torque on Eigen values 

 

If variable load is applied to the motor drive 

under consideration, load torque can also be taken 

as the bifurcation parameter. In this subsection, 

load torque is decreased from 0.39 to 0.05 Nm and 

corresponding eigen values are calculated. The 

calculated eigen values are given in table 4. Since 

current is directly proportional to torque, decrease 

in torque decreases the armature current linearly. 

Fig. 18 and 19 shows the normal and bifurcation 

outputs obtained from Simulink model.  
 

  
(a) (b) 

Fig 18. Speed and Current output waveforms for TL=0.2 Nm; 

Vin=80 V; R=3.5 Ω; Kp=2 

 

 

  
(a) (b) 

 
Fig 19. Speed and Current output waveforms for TL=0.02 Nm; 

Vin=80 V; R=3.5 Ω; Kp=2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                Fig 20. Comparisons of Eigen tracing for  

                   (a) speed and (b) current for various TL values 

 

 

 
(a)) 

 
 (b) 

 

 

 

(a) 

(b) 



 

Table 4  

Variation of load torque to find bifurcation 

 

Fig. 20 illustrates the eigen value plot for 

various load torques. At a magnitude of 0.05 Nm 

load torque, one of the eigen values cross unit 

circle showing bifurcated eigen value locus. Fig. 

20 (a) shows the eigen values for speed state 

vector and fig. 20 (b) shows the eigen values for 

current state vector. The unity crossing in the 

negative real axis confirms the occurrence of 

period doubling bifurcation. 
Fig 21. Phase plot for load torque variation (TL=0.2 Nm for 

period-1, TL=0.02 for period-2) 

 

The same behavior can be clearly shown in 

the phase plot presented by fig. 21 also. It is 

inferred that when the motor is lightly loaded, load 

torque gets reduced which leads to bifurcation. If 

we reduce the torque from 0.39 to 0.02 Nm, flip 

bifurcation occurs. Introduction of controller 

produces period-1 operation even for 0.01 Nm. 

These behaviors can be visualized in the 

simulation waveforms presented in fig. 22 and 23. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
(a) (b) 

 

 

Fig 22. Speed and Current for TL=0.01 Nm with ETDAS 

controller 

 
(a) (b) 

 
Fig 23. Speed and Current for TL=0.02 Nm with ETDAS 

controller 

 

So the performance of the motor is improved and 

normal operation gets extended. If the motor is 

used in specified application performing parameter 

variation, chaos can be avoided for larger variation 

of parameter. Thus the system becomes reliable 

and efficient. 

From the above results, it is possible to find 

the stable operating parametric condition of the 

PMDC motor drive system. If the motor drive is 

TL δ J Matrix Eigen Values using 

Poincare map 

M-matrix Eigen values using 

Monodromy matrix 

0.39 0.7451 0.1197   0.1425
 

5.9887 1.4405

 
 
    

-0.6604 + 0.4946i 

 -0.6604 - 0.4946i 
0.1196   0.1416

 
5.9887 1.4400

 
 
    

-0.6602 + 0.4901i 

-0.6602 - 0.4901i 

0.3 0.7685 0.1775    0.1550

6.1937 1.5732

 
 
    

-0.6979 + 0.4400i 

-0.6979 - 0.4400i 
0.1775    0.1542

6.1937 1.5727

 
 
    

-0.6976 + 0.4351i 

-0.6976 - 0.4351i 

0.2 0.795 0.2452    0.1715

6.4475 1.7349

 
 
    

-0.7448 + 0.3544i 

-0.7448 - 0.3544i 
0.2452    0.1708

6.4474 1.7344

 
 
    

-0.7446 + 0.3486i 

-0.7446 - 0.3486i 

0.1 0.8214 0.3166    0.1910
 

6.7301  1.9122

 
 
    

-0.7978 + 0.2087i 

-0.7978 - 0.2087i 
0.3165    0.1903

 
6.7301  1.9118

 
 
    

-0.7976 + 0.1992i 

-0.7976 - 0.1992i 

0.05 0.8346 0.3539    0.2020

6.8841  2.0079

 
 
    

-0.7640 

-0.8900 
0.3539    0.2014

6.8841  2.0075

 
 
    

-0.7392 

-0.9144 

0.02 0.8425 0.3769    0.2090 

6.9807  2.0675

 
 
    

-0.6589 

-1.0318 
0.3769    0.2084 

6.9807  2.0672

 
 
    

-0.6492 

-1.0411 



 

operated in this stable region, performance can be 

improved. Though chaos cannot be predicted, it 

can be extended by properly including the 

controller in the system. This work can be 

extended to identify the period doubling 

bifurcation with some other parameter variation. 

Also control techniques like Fuzzy logic, ANN, 

ANFIS or some other evolutionary algorithms can 

be applied to control bifurcation and extend the 

stable operation. 

 
6. Conclusion 
  

In this paper, chaos present in the PMDC 

drive is analyzed using both Poincare mapping and 

Monodromy matrix methods. The analysis is based 

on the Eigen values of the system Jacobian and 

Monodromy matrix. Closed loop control of the 

motor drive is taken for the analysis and the 

methodology used are derived in detail. Eigen 

values are tabulated for different parametric 

conditions for comparison of the two methods. 

Though these two methods identify the nature of 

the system, there is a small difference in the point 

of bifurcation. It shows the sensitivity of the 

system and this analysis is useful in determining 

the stable operating region of the system. Further 

this calculation is verified using MATLAB 

Simulink with the same parameter values. The 

simulation results confirm with the tabulated Eigen 

values. A graphical representation of Eigen values 

is also presented in the form of Eigen value plot. If 

the motor drive is operated in the stable parameter 

range, occurrence of chaos can be eliminated. 

Though these two methods involve in different 

procedure for calculating the Eigen values, the 

results obtained are approximately same. An 

ETDAS controller is incorporated in the system to 

extend the normal period-1 operation of the drive 

under parameter variations. The speed and current 

waveforms of the drive after the inclusion of 

controller is also presented. All the results and 

graphs shown are used for finding the stable 

operating points of the system. This gives us clear 

information about the stable operating region of 

the system and it is possible to avoid chaos.  
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