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Abstract: Recently the operation of power system 

strategies has changed significantly due to the 

introduction of deregulation in electricity markets. The 

power systems are being operated with high stress, 

hence sufficient voltage stability margin and reactive 

power support are necessary to be managed to ensure 

secure operation of the power system. This paper 

proposes a Support Vector Regression (SVR) along with 

Fuzzy Logic Controller (FLC) based tool for online 

voltage stability monitoring and estimation of VAR 

support requirement at the critical load buses of power 

system for improving voltage stability margin at different 

operating conditions. The SVR input vector is in the form 

of bus voltage angle and reactive power load. The 

voltage stability margin index (VSMI) and voltage 

stability factor (VSF) of the most vulnerable bus is used 

as target for SVR. The proposed tool successfully 

estimates the voltage stability margin and VAR support 

for various transactions in deregulation environment 

and also under N-1 contingency. This method has been 

successfully applied to the IEEE 14 bus and IEEE 30 bus 

test systems and the results of SVR are compared with 

Artificial Neural Networks (ANN) based methods.The 

results obtained using SVR is better than that of ANN in 

terms of mean squared error and execution time.Which 

are chosen as performance indices. 
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1.  Introduction 

The electrical power system is continuously expanding 

in size and growing in complexity all over the world 

with the increase of population and modernization. 

Therefore the governments have been changing their 

rules and regulations by allowing the private sectors into 

the power generation, transmission and distribution 

(Deregulated Power System) [1]. Because of less 

regulation in power flow patterns and more intensive use 

of available transmission facilities through bilateral and 

multilateral transactions in deregulated power systems, 

the systems are operated closer to the voltage stability 

boundaries [2].Voltage stability refers to the ability of a 

power system to maintain acceptable voltages at all 

buses both under normal operating conditions and after 

being subject to a disturbances [3]. A power system 

enters a state of voltage instability when disturbingit, 

which results in a progressive and an uncontrollable 

voltage decline leading to voltage collapse[4,5].  Many 

utilities around the world have experienced major 

blackouts caused by voltage instabilities and insufficient 

reactive power supports [4].In order to prevent the 

occurrence of voltage collapse, it is essential to 

accurately predict the operating condition of a power 

system. So, Independent System Operator (ISO) needs a 

fast and accurate voltage stability index to help them for 

monitoring the system condition. Many authors have 

proposed the voltage stability indices based on repeated 

power flow analysis [6-8]. The main difficulty in these 

methods is that Jacobian matrix of power flow equation 

becomes singular at voltage the stability limit. 

Singularity in the Jacobian matrix can be avoided by 
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slightly reformulating the power flow equations using 

continuation power flow (CPF) technique [9-10]. 

     CPF technique isfairly accurate for voltage stability 

analysis, but hampered by the fact of taking longer 

computational time for large-scale power systems.  For 

online applications, there is a need for quick detection of 

the potentially dangerous situations of voltage instability 

so that necessary actions may be taken to avoid the 

occurrence of voltage collapse in a power system. In 

recent years, the machine learning techniques such as 

ANN, fuzzy logic controller (FLC), support vector 

machine (SVM), etc. have been used for power system 

voltage stability analysis. The ANN has been emerged as 

a powerful tool due to its ability to map complex 

nonlinear problem offline with selective training, which 

can lead to a sufficiently accurate online response.  

     In reference [11], the authors have investigated 

voltage magnitudes and the phase angles are the best 

predictors of online voltage stability margin (VSM) 

assessment. The phase angles and load reactive power 

are used as the best predictors of online VSM assessment 

in [12]. A comparative study of various voltage stability 

indices for the estimation of loadability margin is 

presented in reference [13]. Usually, ANN is a powerful, 

flexible method known for performing nonlinear 

regression. But, ANN suffers from larger training time 

and cannot find the global minima parameters.  

 Nowadays, SVM is a powerful new machine learning 

technique and widely used in power system to predict 

the VSM. A new SVM model for online prediction of 

loadability margin for power system leading to fast 

voltage stability assessment and analysis of various 

regression models is presented in [14]. A new SVR 

methodology is trained to predict the VSM in a short 

period of time even for a large power system and proved 

that   -SVR gives less mean square error compared to  

 -SVR in[`15]. A Genetic Algorithm based SVM 

approach for online monitoring of long-term voltage 

stability using voltage stability margin index has been 

proposed in [16]. 

 In power system, voltage and reactive power support 

are linked to each other. The main reason of voltage 

instability tends to occur from lack of reactive power 

supports. In the deregulated power markets, reactive 

power management is under the responsibility of ISO. 

So ISO should take appropriate actions to provide VAR 

support for ensuringvoltage stability. A multi-objective 

genetic algorithm is used for voltage stability 

enhancement using rescheduling of the generator and 

optimal placement of FACTS devices briefed in [17]. A 

reactive power control approach based on fuzzy sets 

theory, for voltage stability enhancement by monitoring 

L-index has been presented in [18].The ANN and fuzzy 

based online tool to determine the minimum VAR 

support required for the projected load demand with a 

view to ensure voltage stability in a power system based 

on VAR support injected in the critical bus and 

remaining load buses of the system had been developed 

in [19].  

  From the observation of vast literature shows that the 

researchers have considered assessment of voltage 

stability or VSM estimation or VAR support estimation 

separately in the monopoly power system. This paper 

employs bus voltage angle (θL) and load reactive power 

(QL) as input attributes and two output voltage stability 

indices VSMI
CB

 and VSF
CB

 to predict the VSM and 

determine the minimum VAR support required for 

enhancing voltage stability margin in restructured power 

system.  It also presents the development of Support 

vector regression and fuzzy logic controller based tool 

for online voltage stability monitoring as well as 

estimation of adequate VAR support provided in the 

critical buses for enhancing VSM at different loading 

and system configurations in restructured power system. 

  The rest of this paper is organized as follows. 

Section 2 describes the voltage stability indices and 

calculation of VSMI
CB 

and VSF
CB 

using CPF. The design 

of the proposed tool by using ANN or SVR along with 

the FLC is presented in section 3. Section 4 describes the 

algorithm of the proposed approach. The simulation 

results and the effect of VAR support are discussed in 

section 5 and section 6 provides the conclusion about the 

proposed work. 

 

2. Voltage Stability Indices 

     The following two  indices are used to predict the 

condition of VSM. 

2.1 Voltage Stability Factor 

The differential change in voltage magnitude at each bus 

for a given differential change in total active power 

demand is defined as Voltage stability factor (VSF).  

VSF  i

i

dV

dPTotal



(1) 

Where, TotaldP and  are respectively total active 

demand change and per unit voltage magnitude change 

at i
th

 bus in the system. The bus with the highest VSF 

can be treated as the most critical bus in the system, 

hence the VSF at the most critical bus is given in Eq. (2). 

CBVSF  i

Total

dV
Maximum

dP

 
  

 

 (2) 

The index value of the most critical load bus is adequate 

for voltage stability margin assessment, because the 

most critical bus is the one that is nearest to experiencing 

voltage collapse. So it is a recognized fact that the 

voltage stability assessment at the most critical bus is 

treated as an assessment for the entire power system[19]. 

idV



2.2 Voltage Stability Margin Index 

The VSM is defined as a megawatt distance between the 

current operating point(
i ) and maximum loading 

condition  (
max ) according to the system loading 

parameter (  ) as illustrated graphically in Fig.1. The 

max is correlated to the voltage collapse point of the 

mostcritical load bus.The VSM of the most critical bus, 

can be calculated as 

maxVSM= i  (3) 

The VSM Index for the most critical load bus(VSMI
CB

 ) 

is given by 

CB max

max

VSMI i 




 (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.Definition of VSM
T
, Pre-VSM and Post-VSM. 

 

VSMI
CB 

is an indicator that determines the voltage 

collapse point. The VSMI
CB

 varies in a range between 1 

(no load) and 0 (maximum loadability). The VSF
CB

 and 

VSMI
CB

 are computed by using CPF method. CPF is a 

powerful algorithm to trace the power flow solutions, 

starting from a base case load level and leading up to the 

steady state voltage stability limit. The λ –V curve 

obtained from the CPF of the most critical load bus is 

shown in Fig.1. Pre-VSM is VSM with no contingency 

in the system. Post-VSM is VSM after N-1 contingency 

in the system. VSM for the post-contingency (
max

c ) is 

less than that of pre-contingency (
max ) due to N-1 

contingency. Threshold Value of VSM (VSM
T 

)to be 

kept in the system for voltage stability. 
 

3. Proposed system 

The block diagram representation of the proposed 

system is shown in Fig. 2. Which conceptually provides 

the structure and process involved in the proposed online 

system. It is developed by using a SVR, FLC and VAR 

limit controller. ANN can also be used in the place of 

SVR for comparative analysis. A multi-output SVR 

model evaluate the voltage stability  of the power system 

from the values of VSMI
CB

 and VSF
CB 

under the 

different system configurations by monitoring the 

system 
L and 

LQ . When the power system operating 

conditions are closer to voltage instability, a FLC along 

with VAR limit controller computes the required VAR 

support to be provided to enhance the voltage stability of 

the system. The design of ANN, SVR and FLC are 

described in the next sections. 

 

3.1. Support vector regression 

SVM is a machine learning method that is widely used 

for data analyzing and pattern recognizing first 

developed by Vapnik [20] in 1995. The merits of SVM 

over ANN are global optimum solution and robustness 

[21].SVM works on the principle of structural risk 

minimization seeking to minimize an upper bound of the 

generalization error, rather than minimize the training 

error. With the introduction of Vapnik’s e-insensitive 

loss function, SVM has been extended to solve nonlinear 

regression estimation problems [22]. 

     Recently, the studies of SVR mainly focus on the 

single output regression. However, the multi-output SVR 

problems often meet in our real life. The basic idea of 

Multi-output SVR is to map the data of multivariate 

input space into a multivariate output space via a 

nonlinear mapping and to do linear regression in this 

space [23]. Consider a training set for regression as 

follows. 

 

1 1 2 2{( , ),( , ).......( , )}l lD x y x y x y
(5)      

with   R , Rn m

i ix y   

Where, ix input attribute vector is consist of 
L  and 

LQ  

fori
th

operating point of the n samples.
iy are associated 

target values of  VSM
CB 

and VSF
CB

 corresponds to the m 

size of the training data. Multi-output SVRdesigns at 

predicting an output vector Rm

iy  from a given input 

vector  Rn

ix   and takes the form. 

( ) ,f x w x b    (6) 
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Fig.2.The block diagram representation of the proposed system.
 

 

Where 

( ) :f x Output function
 

w : Weight vector
 

x : Input 

b : Bias threshold 

< . , . >: Dot products in the feature space.
 

The objective is to find the values of the weight vector 

( w ), bias ( b ) such that the values ofx can be 

determined by minimizing the following objective 

function with constraints:  

Minimize 

2

1 1

1
( , , ) ( )

2

l m

ij ij ij ij

i j

L w w C      

 

    (7)                                  

Where, C is a pre-specified value, and ,  
  are slack 

variables that measure the error of the up and down 

sides, respectively and ϵ is the insensitive loss function 

 

Subjected to 

( ) ,    1,.....,

( ) ,    1,.....,

, 0,   1,.....,

i i i

i i i

i i

y w x b i l

w x b y i l

i l

  

  

 





 

     

     

 

 

 

The  slack  variables  and  
  deal  with  infeasible  

constraints  of the  optimization  problem  by  imposing  

the  penalty  to  the  excess deviations  which  are  larger  

than  ε.To solve the optimization problem Eq. (7), we 

can construct a Lagrange function from the objective 

function with Lagrange multipliers as follows: 

 

2

1 1 1 1

1 1 1 1

1
( ) ( , )

2

( , ) ( )

l m l m

ij ij ij ij ij i j i

i j i j

l m l m

ij ij ij i j i ij ij ij ij

i j i j

L w C y w x b

y w x b

    

      

   

   

     

   

         

        

 

 

 

(8)

 

 

Where, 

, ,  0,( 1,...., ,  j=1,....,m)ij ij ij ij i l        
 

Differentiating the Lagrangian function with respect to 

w,b, and  
,we can derive the dual problem of the 

Eq. (7) as follows: 

 

 

1 , 1

1 , 1 1 , 1

1
( )( )( . )max

2

( ) ( )

l m

ik ik jk jk i j

k i j

l m l m

ik ik ik ik ik

k i j k i j

x x

y

 

   

    

 

   

 

   

   

  

   



  ( 9) 
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Once the solutions of  and   
in the Eq. (9) are 

determined, we can obtain the linear regression function 

1

( ) ( )( . )
l

i j i

i

f x x x b  



   (11)

 

 
Eq. (11) can map the training vectors to target values 

allowing some errors, but it cannot handle the nonlinear 

SVR case. In order to extend linear to the nonlinear case, 

we applied the following kernel trick. 

 

( ) , ( , )if x w k x x b    (12) 

Here, ( , )ik x x is a kernel function which gives the dot 

product ( ( ) . ( ) )i jx x  in the higherdimensional 

space. The nonlinear multi-output SVR can be obtained 

by resolving the Eq.(8) 

 

1 , 1

1 , 1 1 , 1

1
( )( ) ( . )max

2

( ) ( )

l m

ik ik jk jk i j

k i j

l m l m

ik ik ik ik ik

k i j k i j

k x x

y

 

   

    

 

   

 

   

   

  

   



 
(13) 

Subjected to 

1

( ) 0,

0 , ,   1,...., ,   1,....,

l

i i

i

i i C i l j m

 

 

 



 

 

   


(14)

 

Finally,we can obtain the SVR function ( )f x  using the 

kernel function.

 

1

( ) ( ) ( . )
l

i j i

i

f x k x x b  



  
 
(15)

  
     

3.2. Performance Measure 

To evaluate the performance of SVR or ANN for the 

testing data, Mean Square Error (MSE) is used. The 

expression for calculating MSE is given in Eq. (16). 

0

1

MSE =
n

i

i

y y

n




(16)

Where, 0y  is the target 

VSM/VSF obtained from the CPF program and iy is the 

VSM/VSF estimated by the SVR or ANN and n is the 

number of unseen cases.

 
 

3.3 Design of fuzzy logic controller  

3.3.1 Fuzzy modeling  

Fuzzy Logic is a methodology used to solve the 

problems which are too complex to be understood 

quantitatively. It is based on fuzzy set theory, introduced 

by Prof. Zadeh [24]. Use of fuzzy sets in logical 

expression is known as fuzzy logic.In this paper, fuzzy 

logic is used to compute the reactive power support 

required to be provided in the system. The proposed 

system takes change in VSMI (∆VSMI) and change in 

VSF (∆VSF) as inputs and gives the required reactive 

power  at a load bus (∆QC ) taken as output. The fuzzy 

inputs ∆VSMI and ∆VSF are determined from Eq. (17). 

 
T CB CB TΔVSMI=VSMI -VSMI ; ΔVSF=VSF -VSF  (17)                                                                  
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Fig.3.Membership functions of input-output variable. 

The membership function and its ranges for fuzzy inputs 

(∆VSMI, ∆VSF) and output (∆QC )are shown in Fig. 3. 

The corresponding linguistic variables are defined as L 

(low), LM (low medium), M (medium),HM (high 

medium) and H (high). For simplicity triangular and 

trapezoidal membership functions are considered. 

In fuzzy logic based approaches, the decisions are made 

by forming a series of rules that relate the input variables 

to the output variables using if–then statements.The 

output is derived on the basis of rules defined by an 

inference matrix. The number of rules depends on the 

number of inputs and their linguistic variables. Two 

inputs (∆VSMI and ∆VSF) with each five linguistic 

variable produce twenty five rules for the fuzzy 

Inference System are shown in Table 1. From the  FIS 

sample output of  Fig.4, it is observed that ∆VSMI is M 

(0.06) and  ∆VSF is M (0.04) then output ∆Qc is M (0.2). 

The fuzzy output signal is defuzzified by the centre of 

HM L LM M  H 

1 

∆VSMI 

0 0.03 0.06 

 

0.12 0.09 

HM L   LM M H 

1 

∆VSF 

0.02 0.03 0.04 

  

0.06 0.05 

HM L LM M H 

1 

∆QC 

0 

0 

0.1 0.2 

  

0.4 0.3 



gravity defuzzification strategy to get the crisp output 

value[25]. 

 

 

 
Fig. 4. FIS Sample output 

Table 1 

Fuzzy inference system rules. 

 

3.3.2 VAR limit control

  
In order to minimize VAR devices investment cost, the 

number of VAR support location should be reduced. So, 

the VAR support should be provided on the critical load 

buses ( QCBS

C
). The VAR limit control updates the VAR 

support required at the QCBS

C
subject to a maximum of 

reactive load power at the critical buses  

( QCBS

L
) using following Eq. (18). 

Q Q QCBS CBS

C C C   (18) 

 if, Q Q , then set Q =QCBS CBS CBS CBS

C L C L  

The maximum QCBS

C
is limited to 

L
QCBS  for avoiding 

over compensation. 

The proposed system is tested with different system 

configurations. In each configuration, SVR model 

estimates the VSMI
CB

 and VSF
CB

. These estimated 

values are compared with threshold values of VSMI
T
 

and VSF
T
. If both the error components

ΔVSMI and ΔVSF  are less than or equal to zero, then 

the system remains in stable. If any one or both the error 

components are positive, then the FLC determines the 

CQ and the VAR limit controller provides CBS

CQ . This 

calculated VAR support is injected in the corresponding 

critical buses and the new values of VSMI
CB

 and VSF
CB 

are recalculated. These values are compared again with 

threshold values, and this process is continued until the 

error components ΔVSMI and ΔVSF become zero or 

negative. 

 

3.3. Generation of training and testing data 

The training and testing data of the SVR are generated 

for different system configurations as follows. 

 The system under normal operating condition. 

 The load active and reactive powers are changed  

(  30% of the base case values) and supplied by 

slack generator. 

 The load active and reactive powers are changed 

 (  30% of the base case values and +50% generator 

active powers). 

 The system under N-1 contingency. 

 The system under N-1 contingency with load and 

generator changes. 

The power factor at each bus is maintained constant 

during pattern generation. Each randomly generated 

pattern is then verified by a conventional power 

flow program to make sure that each of the cases 

provides a feasible power flow solution and obtain 

the operating points. The cases, for which the power 

flow does not meet the steady state operating 

requirements, are removed. The acceptable cases are 

subjected to CPF. 

 

4.  Proposed algorithm. 

The algorithm of the proposed system is briefly 

described in the following steps: 

1. Different system configurations are created 

randomly by perturbing the load and line as 

described in the subsection 3.3. 

 

 2. The valid random cases are collected through a 

conventional power flow program to ensure that only the 

acceptable cases are subjected to CPF.  

 

3. Determine the most critical bus of the given power 

system using VSF as explained in section 2.1. 

 

4. An input vector 
L  and 

LQ are generated using 

conventional power flow and respective target vector 

VSMI and VSFCB CB are determined using CPF. 

AND ∆VSMI 

 L LM M HM H 

 

∆VSF 

L L L LM M M 

LM L LM M M M 

M LM M M M HM 

HM M M M HM H 

H M M HM H H 



 

5. Choose different possibilities, such as kernel type, 

kernel parameters and SVR parameters (C and γ) to train 

the SVR network. 

 

6. Train the SVR network using the training data set. 

Test the accuracy of the regression model to unseen test 

samples and verify the predictor of voltage stability 

margin.  

 

7. Develop the FLC to obtain CQ  by the mapping

ΔVSMI and ΔVSF  as explained in section 3.3.1. 

 

8. Choose threshold values VSMI and VSFT T

experimentally and set Q 0CBS

C 
 

 

9. Compute error components ΔVSMI and ΔVSF using 

Eq. (17) for a new system   configuration. If both the 

error components are 0, then the system is stable and 

stop the computation. Else, compute
CQ  by a fuzzy 

logic controller. 

 

10. Determine QCBS

C
 using Eq. (18). It changes the 

operating condition of the system and improves the 

values of VSMI and VSF ,CB CB  then go to step 9. 

 
5.  Simulation results and discussions 

The proposed algorithm is applied to the IEEE 14 bus 

and IEEE 30 bus systems. These are the standard test 

systems used by the researchers to validate their results. 

The numerical data for IEEE 14 bus and IEEE 30 bus 

systems are taken from the reference [26]. Initially, 

critical buses are computed by VSF for each test case 

with heavy loading conditions as explained in section 

2.1. The ranking of the critical buses of the test systems 

is shown in Table 2. It is identified that buses 14 and 30 

are the most vulnerable buses for IEEE14 and IEEE30 

bus system respectively.  

Table 2 

Ranking of critical buses of the test systems. 

 

Test system Critical buses for VAR 

support( CBS

CQ ) 

IEEE-14 Bus 14, 9, 5, 4, 10 

IEEE-30 Bus 30, 29, 26, 24, 19, 20, 21 

 

Patterns of about 6470 and 8010 are generated in IEEE 

14 bus and IEEE 30 bus respectively. Out of these 

patterns 5823 and 7209 patterns (90%) are randomly 

selected for SVR training, while the left 647 and 801   

patterns (10%) are used for testing the SVR.  In each 

system configuration, the input vectors, bus voltage 

angle 
L  and load reactive power 

LQ at the initial 

operating point of load buses are computed using the 

conventional Newton-Raphson method.The voltage 

stability indices, VSMI
CB

 and VSF
CB

 are then computed 

by the continuation power flow method. In this paper, 

conventional power flow and continuation power flow 

solutions are obtained using the Power System Analysis 

Toolbox (PSAT). The PSAT is a MATLAB based open 

source software tool for electric power system analysis 

and control [27]. All the computations are performed on 

a personal computer with 2.5GHz Intel Core i5-2450M 

CPU and 4 GB of RAM in MATLAB 7.8 software. 

MATLAB supported SPIDER SVM tool is used for 

training the SVMs in the regression. This paper use 

multi-output SVR for multiple outputs as VSM
CB

 and 

VSF
CB

. The training performance of the SVR module 

depends on proper selection of SVR parameter such as 

cost function C and γ and kernel types. The various 

kernel types considered for SVM regression are the 

Radial Basis Function (RBF), linear, Gaussian and 

polynomial. This paper uses RBF kernel type because of 

its superiority over the others and the optimal value of C 

and γ are chooses 100 and 0.2 for obtaining highest 

cross-validation accuracy [20].The trained SVR can be 

used to predict the VSMI
CB

 and VSF
CB

 for the unseen 

test cases.  

 

5.1. SVR performance in estimation of VSMI and 

VSF 

Figs.5and 6 shows that the accuracy of the estimated 

VSMI
CB

 and VSF
CB 

by the trained SVR in IEEE14 bus 

and IEEE 30 bus system respectively. The graphs plot 

the “Error of VSMI
CB

 and VSF
CB

” against the testing 

patterns by the SVR for the unseen test cases. The 

comparison of mean square errors (MSE) and the 

computational time for training and testing of SVRs and 

ANN model for both IEEE 14 bus system and IEEE 30 

bus system are tabulated in Table 3. It shows that SVR is 

superior to ANN because, less training and testing error 

and time. 

 

 

 
Fig.5. Error of testing patterns in IEEE 14 Bus system. 
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Fig.6. Error of testing patterns in IEEE 30 Bus system. 

Table 3  

Comparative analysis SVR with ANN in IEEE 14 Bus 

and 30 bussystems. 

 

Test system Parameters ANN SVR 
IEEE 14 bus No of neurons 6 - 

 Training MSE 0.5537e-2 0.6532e-5 

 Testing MSE 0.4762e-3 0.6142e-5 

    
 Training  time(S) 16.235 5.9256 

 Testing time(S) 3.256 1.5631 

IEEE 30 bus No of neurons 7 - 

 Training MSE 0.4721e-3 -0.5901e-5 

 Testing MSE 0.4212e-3 -0.4159e-5 

 Training time(S) 18.8742 5.7264 

 Testing time(S) 3.9834 1.2637 

 

The proposed tool not only assesses the voltage stability, 

also provide VAR support needed using FLC, when the 

system enters near the unstable condition. The fuzzy 

inputs ∆VSMI and ∆VSF are computed using Eq. (17) 

and are obtained from trained SVR. The threshold value 

of VSMI
T
 and VSF

T
 depends on the power system 

configuration and the operating state, hence they are 

computed experimentally.   

 

Table 4 

 Threshold Values 

 

 

The threshold value of VSMI
T
 and VSF

T
 are chosen 

between the values of 
max

c and max  through 

empirical observation. It is treated as constant for all the 

operating conditions. The chosen threshold values for 

VSMI
T
 and VSF

T
 are given in Table 4.The proposed tool 

quickly provides the required reactive power support at 

the critical buses to enhance the voltage stability. The 

load buses require VAR support called critical buses in 

each test systems are shown in Table 2. It is also noted 

that in all the test cases the VAR support at the critical 

buses are limited to the local reactive power demand 

requirement. The proposed tool is then tested for 

different bilateral and multilateral transactions in every 

test system. 

 

5.2. Cost of VAR compensation 

     It is assumed that the reactive compensators are 

installed at critical buses. The charge for using 

capacitors is assumed proportional to the amount of the 

reactive power output purchased [28].It can be expressed 

asEq.(19) 

Ccj (Qcj) = rcjQcj                                                                                          (19) 

Where, 
Qcj: injected reactive power at the bus j in (MVAh).rcj is 

the price of reactive power per MVAh. The amount 

injected reactive power depends on the system operating 

condition and the voltage stability margin requirement. 

The price of reactive power depending on some factors 

such as capital cost,period of a lifetime and average 

utilization factor. For example, investment cost of VAR 

support device is $22000/MVAh,lifetime of 30 years and 

average use of 2/3, rcj can be calculated as follows: 
 

 

 
cj

Investment cost

Operating h s
r

our
  

$22000
0.1255 $/ MVAh)

2
30 365 24

3

cjr  

  

 

 

5.3. VAR support estimation 

In the IEEE 14 bus system, the following bilateral and 

multilateral transactions are considered. 

 

1. 5MW of power injected at generator bus 6 and the 

same amount is consumed by the load at bus 10. 

2. 10MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 13.   

 3. 10 MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 9. 

4.  12MW of power injected at generator bus 2 and the 

same amount is consumed by the load bus 2 with outage 

the line (9-10). 

 5. 5MW of power injected at generator bus 6 and the 

same amount is consumed by the load bus 6 with outage 

the line (6-11). 

6. 5 MW of power injected at generator buses 3 and 6 

respectively, and 5 MW consumed by the load buses 

5and 13 respectively. 

7. 10 MW of power injected at generator buses 2 and 6 

respectively, and 10 MW consumed by the load buses 

5and 13 respectively. 
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Test system VSMI
T 

VSF
T 

IEEE-14 Bus 0.9600 0.0250 

IEEE-30 Bus 0.9500 0.0200 



8. 10 MW and 5MW of power injected at generator 

buses 2 and 3 respectively, and 10 MW and 5MW 

consumed by the load buses 10and 12 respectively. 

9. 10 MW and 5MWof power injected at generator buses 

2 and 3respectively, and 10 MW and 5MW consumed by 

the load buses 10and 12 respectively with outage  the 

line (6-12). 

 

Table 5 

VAR support of IEEE 14-bus system using ANN. 

 
 

Trans

action 

CBS

CQ (p.u) Total 

VAR 

support 

(p.u) 

VAR 
support 

Cost 

 
$/MVAh 

BC AC VAR 

support 

provided 

time 

(Sec) 

 

14 

 

9 

 

5 

 

4 

 

10 

 

VSMICB 

 

VSFCB 

 

VSMICB 

 

VSFCB 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9802 0.0201 0.9802 0.0201 0.0000 

2 0.0340 0.1062 0.0122 0.0200 0.0394 

 

0.2116 0.0265 0.9323 0.0509 0.9681 0.0246 2.5342 

3 0.0200 0.0764 0.0102 0.0232 0.0302 0.1600 0.0200 0.9305 0.0507 0.9677 0.0206 2.8225 

4 0.0366 0.1260 0.0134 0.0325 0.0456 0.2541 0.0318 0.8799 0.0485 0.9667 0.0202 5.6721 

5 0.0250 0.0914 0.0348 0.0260 0.0112 0.1884 0.0236 0.8674 0.0635 0.9668 0.0232 2.0457 

6 0.0180 0.0744 0.0100 0.0221 0.0292 0.1537 0.0192 0.9409 0.0485 0.9693 0.0244 3.0153 

7 0.0300 0.1062 0.0122 0.0228 0.0394 0.2106 0.0264 0.9068 0.0776 0.9641 0.0234 3.1024 

8 0.0200 0.0764 0.0302 0.0232 0.0102 0.1600 0.0200 0.9363 0.0576 0.9628 0.0249 2.9100 

9 0.0500 0.1660 0.0580 0.0400 0.0160 0.3300 0.0414 0.9017 0.0662 0.9705 0.0249 8.2561 

 

 

Table 6 

VAR support of IEEE 14-bus system using SVR. 

 

 

 

 

 

 

 

 

 

 

 

 

Trans 

action 

CBS

CQ (p.u) Total  

support

VAR 

(p.u) 

VAR 

support 

Cost 

 
$/MVAh 

BC AC VAR 

support 

provided 

time 

(Sec) 

 

14 

 

9 

 

5 

 

4 

 

10 

 

VSMICB 

 

VSFCB 

 

VSMICB 

 

VSFCB 

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9845 0.0201 0.9845 0.0201 0.0000 

 

2 0.0340 0.1060 0.0121 0.0200 0.0392 

 

0.2111 0.0264 0.9232 0.0509 0.9682 0.0226 2.4563 

3 0.0198 0.0761 0.0102 0.0231 0.0300 0.1592 0.0199 0.9395 0.0507 0.9734 0.0201 2.7125 

 

4 0.0365 0.1260 0.0132 0.0323 0.0452 0.2532 0.0317 0.8806 0.0485 0.9691 0.0200 5.3729 

5 0.0249 0.0913 0.0346 0.0258 0.0110 0.1876 0.0235 0.8698 0.0635 0.9768 0.0211 2.0065 

6 0.0178 0.0742 0.0100 0.0220 0.0292 0.1532 0.0192 0.9489 0.0485 0.9702 0.0234 2.9133 

7 0.0300 0.1061 0.0122 0.0225 0.0391 0.2099 0.0263 0.9088 0.0776 0.9649 0.0214 2.8026 

8 0.0200 0.0763 0.0300 0.0228 0.0101 0.1591 0.0199 0.9263 0.0576 0.9628 0.0213 2.8105 

9 0.0499 0.1660 0.0578 0.0397 0.0155 0.3279 0.0412 0.9057 0.0662 0.9756 0.0247 7.3678 



The one line diagram of IEEE 30 bus system with the 

splitting of Area 1, 2 and 3 is given in fig.7. The 

following bilateral and multilateral transactions are 

considered for the system. 

 

 
 

Fig.7. Single line diagram of IEEE 30 bus system. 

 

1. Generator at bus 2 in area 1 supplies 10 MW to the 

load at bus 15 in area 2. 

2. Generator at bus 2 in area 1 supplies 10 MW to the 

load at bus 17 in area 2. 

3. Generator at bus 2 in area 1 supplies 10 MW to the 

load at buses14 and 17 in area 2  

4. Generator at bus 13 in area 2 supplies 10 MW to the 

load at bus 15 in area 3. 

5. Generator at buses13and 23 in area 2 supplies 10 MW 

to the load at buses 10 and 21 at area 3. 

6. Generator at bus 13 in area 2 supplies 10 MW to the 

load at bus 10in area3 with line  

10-21outage. 

7. Generator at bus 27 in area 3 supplies 10 MW to the 

load at bus 8 in area 1. 

8. Generator at buses27 and 22 in area 3 supplies 10 

MW and 5MW to the load at buses3 and 7in     

area 1with line 6-9 outage. 

9. Generator at bus 27 in area 2 supplies 10 MW to the 

load at bus 19 in area 2. 

 

The simulation results obtained for various 

configurations of IEEE 14 bus system using ANN and 

SVR are provided in table 5 and 6 respectively. The 

table contains the VAR supports provided in the critical 

buses ( CBS

CQ ), the  total VAR supports, VAR support cost , 

VSMI
CB     

andVSF
CB

 values  for system  before 

compensation (BC), after compensation(AC) and VAR 

support providing time.  Similarly Table 7 and 8 

contains simulation results for IEEE 30 bus using ANN 

and SVR respectively.  

Table 7 

 VAR support of IEEE 30-bus system using ANN.

 

 

 

Transa

ction 

CBS

CQ (p.u) Total     

VAR 

support 

(p.u) 

VAR 

support 
Cost 

 

$/MVAh 

BC AC VAR 

support 

provided 

time 

(Sec) 

 

30 

 

29 

 

26 

 

24 

 

19 

 

  20 

 
VSMICB 

 
VSFCB 

 
VSMICB 

 
  VSFCB 

1 0.0049 0.0030 0.0094 0.0322 0.0189 0.0044 0.0728 0.0091 0.9456 0.0443 0.9509 0.0200 2.2004 

2 0.0128 0.0063 0.0170 0.0516 0.0273 0.0058 0.1208 0.0152 0.9448 0.0441 0.9566 0.0183 2.7212 

3 0.0181 0.0057 0.0154 0.0476 0.0316 0.0056 0,1240 0.0156 0.9258 0.0372 0.9536 0.0061 3.8931 

4 0.0140 0.0069 0.0181 0.0546 0.0286 0.0061 0.1282 0.0161 0.8896 0.0918 0.9584 0.0332 5.6721 

5 0.0080 0.0044 0.0046 0.0201 0.0136 0.0035 0.1542 0.0194 0.9296 0.0399 0.9554 0.0097 3.0153 

6 0.0051 0.0031 0.0096 0.0328 0.0191 0.0044 0.0741 0.0093 0.9399 0.0441 0.9607 0.0215 3.1024 

7 0.0045 0.0028 0.0090 0.0313 0.0185 0.0043 0.0704 0.0088 0.9400 0.0405 0.9560 0.0202 1.9324 

8 0.0114 0.0058 0.0156 0.0482 0.0258 0.0056 0.1125 0.0141 0.9135 0.0387 0,9559 0.0125 6.7821 

9 0.0118 0.0059 0.0156 0.0483 0.0258 0.0060 0.1134 0.0142 0.9135 0.0395 0.9560 0.0130 3.9543 



 

 

Table 8 

VAR support of IEEE 30-bus system using SVR. 

 

In the IEEE 14 bus system, for transaction 1, VSMI
CB

 value 

is greater than VSMI
T
 and the VSF

CB
 value is less than the 

VSF
T
. According to Eq. (17) there is no need for VAR 

support. But in remaining transactions, the VSMI
CB

 value is 

less than VSMI
T
 and VSF

CB
 value is greater than the VSF

T
, 

which leads the system to instability condition. Hence there 

is a need for VAR support to be provided for the system to 

reach the stable condition.  

In all transactions of the IEEE 30 bus system, the VSMI
CB

 

value is less than VSMI
T
 and VSF

CB
 value is greater than the 

VSF
T
, then the system reaches the instability condition. 

Hence there is a need for VAR support to be provided for the 

system to reach the stable condition. The inference from the 

Tables 5,6,7and 8 is clearly evident that the total VAR 

support requirement, their cost and VAR support providing 

time in the system using  SVR is found better than  ANN 

based system. 

6. Conclusion 

      This paper has developed a SVR model along with FLC 

based tools for online VSM assessment and improvement. 

The voltage stability indices, VSMI
CB

 and VSF
CB

  in the 

power system has been calculated using the SVR at every 

monitoring period. Moreover, a fuzzy logic methodology has 

been formulated to estimate the required VAR support to 

improve the voltage stability in a power system. The 

proposed tool has been used to estimate the voltage stability 

and required VAR support under normal operating 

conditions, N-1 contingencies as well as deregulated 

environment. The validity of the proposed model has been 

demonstrated by applying it to the IEEE 14bus and 30bus 

systems. The results from ANN and SVR performance and 

VAR supports of all transactions of the power systems 

network reveals that the SVR model is more effective and 

computationally feasible for online voltage stability 

assessment and improvement. 
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