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Abstract— In this paper the efficiency of the polyphase 

decomposition form against the direct decomposition form of 

quadrature mirror filter bank for power harmonic analysis is 

investigated. For that purpose, the both forms of decomposition 

in 3-levels were implemented on digital signal processor 

TMS320C6713 using SIMULINK. The obtained results were 

presented on the conference “EUROCON 2015”. In addition to 

that, the polyphase and direct forms of decomposition in 5-levels 

were implemented on the same processor, directly in Code 

Composer Studio. Experimental results from both investigations 

show increased efficiency when polyphase decomposition form is 

used. Also, the influence of the input finite length signal 

extension on the accuracy of calculated RMS result is 

investigated, for the aim of reliable harmonic analysis. The 

investigation has shown that the periodic signal extension gives 

best results in case of stationary input signals and can be used 

for both direct and polyphase implementations. 

Keywords—discrete wavelet transform, wavelet packet 

transform, input signal extension, polyphase implementation, 

harmonic analysis 

I.  INTRODUCTION  

As a result of the widespread use of nonlinear power 

electronic devices significant disturbances in Power 

systems are caused, such as reactive power burden, 

transient oscillations, voltage dips and swells, harmonic 

distortion, inter-harmonics and etc. The accuracy of Power 

system harmonic analysis is essential for evaluating the 

overall power quality. The Discrete Fourier Transform 

(DFT) is proposed in the IEC Standard 61000-4-7 [1] for 

the measurement of harmonics and inter-harmonics in 

power supply systems as the processing tool for harmonic 

analysis. Time-variations of individual harmonics are 

analyzed by short-time Fourier transform (STFT) which 

provides both time and frequency based views of a signal, 

but the drawback is that once a particular size is chosen for 

the time window, that window is the same for all 

frequencies. The results of transient harmonic analysis are 

therefore not satisfactory. 

      In recent years, use of Discrete Wavelet Transform 

(DWT) as a powerful signal processing method is 

receiving increased attention for Power Quality (PQ) 

analysis. Many wavelet based algorithms for harmonic 

analysis in power systems are proposed [2]-[7]. Reported 

results are competitive with the results obtained using the 

harmonic-group concept proposed by the IEC for different 

measurement conditions, showing the potential of the 

wavelet analysis as an alternative processing tool for the 

harmonic estimation in power systems. Additionally, the 

wavelet‟s dilation and translation property gives time and 

frequency information accurately. Apart from it, the 

process of shifting enables the analysis of waveforms 

containing non-stationary disturbance events. These 

unique properties are making DWT best suited for PQ 

analysis. The form of Dyadic Discrete Wavelet Transform 

(DDWT), which is a set of low-pass and high-pass wavelet 

filters, is being most frequently applied, in point of fact its 

more  advanced version – Wavelet  Packet  Transform 

(WPT). WPT can decompose the frequency spectrums of a 

signal into uniform bands and thus it improves the 

accuracy of harmonic detection [2], [7]-[10].  

      Vaidyanathan with 24 coefficients (v24), Daubechies 

with 20 coefficients (db20) and Coiflet 5 with 30 

coefficients (coif5) are proposed in the literature as the 

most adequate wavelet filters for harmonic analysis [6]. In 

[11] and [12] is shown that Johnston‟s filters with 32 

coefficients are also suitable for harmonic analysis. This is 

due to their better selectivity compared to well-known 

wavelet filters. One of the main advantages of these filters 

is that they are with linear phase, and more efficient WPT 

form can be implemented using polyphase representation 
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of the decimation filters. The efficiency of the polyphase 

implementation and the accuracy of the RMS calculations 

are the main objective in this paper. 

 

II. WAVELT TRANSFORM FOR HARMONIC ANALYSIS 

A. Discrete wavelet transform (DWT)  

The discrete wavelet transform is given with the 

equation: 
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where function ψ is the base function or the mother 

wavelet, and b and a are dilatation and translation 

parameters, respectively. With the choice a0 = 2 and 

b0 = 1, a dyadic orthonormal wavelet transform is obtained 

[13], [14] and can be easily and quickly implemented by 

filter bank techniques known as Multi-Resolution Analysis 

(MRA). The filter bank is used to decompose the signal 

into various levels using alow-pass filter with a transfer 

function H0(z) and a high-pass filter with a transfer 

function H1(z), as shown in Fig.1. The basic idea of the 

MRA is that of the successive approximation, together 

with that of “added detail”. The low frequency part 

(approximation signal) is split again into two parts of high 

and low frequencies. Depending on the application and on 

the size of the input signal, process could be repeated 

several times. As result, logarithmic decomposition of 

frequency spectra of the input signal is obtained. 

 

 

 

 

 

 

Fig. 1 DWT decomposition over 2 levels 

Obtained approximation and detailed wavelet coefficients 

have non uniform frequency bands and cannot be used for 

measurement of RMS values of different harmonic 

components. This limitation can be overcome with the use 

of WPT. 

B. Wavelet Packet Transform (WPT) 

The Wavelet packet transform (WPT) is a 

generalization of DWT. The difference is that in the WPT 

signal decomposition, both the approximation and detail 

coefficients are further decomposed at each level and as 

the result a uniform frequency decomposition of the input 

signal is obtained. The number of output bands for Llevel 

decomposition is 2
L
. An example for decomposition over 2 

levels is shown in Fig. 2. With selection of an adequate 

sampling frequency and level of decomposition these 

uniform frequency bands can be used for harmonics 

measurement of the input signal [3], [4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 WPT decomposition over 2 levels 

 

The RMS of voltage can be computed directly from the 

wavelet packet coefficients [3], [4]: 
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 In the equation  i

jV  is the RMS value of frequency 

band at node i and [ ]i

kd k are the wavelet coefficients at 

node i. 

III. POLYPHASE IMPLEMENTATION OF TWO-CHANNEL 

QUADRATURE MIRROR FILTER BANK 

A. Two-channel quadrature mirror filter bank 

The basic structure of a two-band filter bank is shown 

in Fig. 3. H0(z) and H1(z) designate the low-pass and high-

pass analysis filters, respectively, and F0(z) and F1(z) 

designate the low-pass and high-pass synthesis filters, 

respectively.  

 

 

 

 

 

 

                                  

Fig. 3 Two band filter bank 
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The input-output relation of a two-band filter bank is 

given with the following equation: 
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The first term describes the transmission of the signal 

through the system, while the second term represents 

aliasing error due to the change of sampling rate in the 

filter bank. The simplest way to cancel the aliasing is by 

selecting the filters in the analysis stage as  

 1 0( )H z H z                                   (4) 

and by selecting the synthesis filter as 

0 0 1 1( ) ( ),   ( ) ( )F z H z F z H z   .                    (5) 

Since the mirror-image symmetry about the frequency  

ω
 
= π/2 exists between H1(z) = H0(z), these filters are 

known as quadrature mirror filters (QMF) [13]. The two-

channel QMF bank structure is known as critically 

sampled filter bank as decimation, and interpolation 

factors are equal to number of bands. Therefore all the 

four filters are completely determined by the low-pass 

analysis filter H0(z) only. By using (4) and (5), the 

expression for the alias free reconstructed signal can be 

written as: 
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In this way, the whole filter bank is completely defined by 

a single low-pass filter H0(z). Additionally, if H0(z) is FIR 

and has linear phase, then overall transfer function H(z) 

will have linear phase, so phase distortion is eliminated. 

This means that h0[n] is symmetric. That is, 

 h0[n] = h0[N – n] for a filter of order N. QMF bank with 

linear phase filters can be implemented efficiently by 

using polyphase decomposition. 

B. Noble identities  

When we try to use polyphase representation different 

types of cascade interconnection between filter and 

decimators/interpolators are needed. If the filter transfer 

function H(z) is rational then it can be redrawn as it is 

shown in Fig. 4 and Fig. 5. These structures are known as 

Noble identities [13] and are very useful in theory and 

implementation of multirate systems. 

 

 

 

 

 

 

 

C. Polyphase representation 

The polyphase representation is an important 

advancement in multirate signal processing which leads to 

computationally efficient implementation of decimation 

and interpolation filters, as well as filter banks. The basic 

idea is given in addition: 

Let H(z) be a symmetric filter with a linear phase. 
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By separating the even numbered coefficients of h[n] from 

the odd ones, H(z) can be written as 
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H(z) can be written as: 

2 1 2

0 1( ) ( ) ( )H z E z z E z                     (10)                

Consider the Noble identities for decimation filter shown 

in Fig. 4 with M =
 
2 and using the equation (10), Fig. 6(a) 

can be redrawn as in Fig. 6(b). This implementation is 

more efficient than a direct implementation of H(z). The 

use of polyphase decomposition enables rearranging the 

computations of the filtering operation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Noble identity for interpolation 

(a)  

Fig. 6 Polyphase decomposition 

(b) H(z) ↓M H(zM) ↓M 
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Fig. 4 Noble identity for decimation 
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If direct form implementation is used for decimation 

filter, then only the even numbered output samples are 

computed and that requires (N+1) multiplications per unit 

time (MPUs) and N additions per unit time (APUs). 

However, during the computation of odd numbered output 

samples, the structure is simply resting. If polyphase 

implementation is used, then the computation of O/P 

samples requires only (N+1)/2 MPUs and N/2 APUs [13]. 

Thus polyphase representation of decimation filter reduces 

the computational complexity of the filter bank. For 

complete implementation of two-channel QMF bank using 

polyphase framework, a total of only N  MPUs and  N 

APUs (for one sample of the input signal) are required 

[13] where N  is the length of prototype low-pass filter 

H0(z). 

IV. EXPERIMENTS AND RESULTS 

In this paper algorithms for harmonic analysis based on 

direct decomposition form and polyphase decomposition 

form are implemented. We used 50Hz input waveforms 

sampled at fs1=1600Hz and fs2=6400Hz. Several tests were 

performed on different stationary signals. Here we present 

results obtained for an arbitrary chosen signals that contain 

all odd harmonics up to the 15
th

 harmonic. The signals are 

the following: 

v(t) = sqrt(2) [ 250.0209sin(ω0t) +4.1251(3ω0t-90
0
) + 

0.3671sin(5ω0t+179
0
) + 3.2021sin(7ω0t 114

0
) +      

8.5781sin(9ω0t-173
0
) + 1.2571sin(11ω0t-124

0
) + 

1.9895sin(13ω0t-28
0
) +  1.1064sin(15ω0t+177

0
)] 

 

i(t) = sqrt(2)[3.6558sin(ω0t) + 2.7805sin(3ω0t-173
0
) + 

1.7790sin(5 ω0t-1
0
) + 0.8140sin(7ω0t-178

0
) + 

0.0381sin(9ω0t-92
0
) + 0.2494sin(11ω0t-9

0
) + 

            0.2537sin(13ω0t+178
0
) + 0.1109sin(15ω0t+5

0
)] 

 
with ω0 = 2πf, f

 
=

 
50

 
Hz.. They are shown on Fig. 7 and Fig. 8 

respectively.  

 
 

Fig. 7 Voltage signal 

 
 

Fig. 8 Current signal 

Additionally to well-known wavelet filters for harmonics 

measurement (db20, coif5, and v24) the Johnston‟s filters  

with 32 coefficients (J32 C, J32 D,J32 E) are used [12], 

[15]. Coefficients for different Johnston‟s filters together 

with the design parameters are given in [16]. Letter C is a 

notation for all Johnston‟s filters that have normalized 

transition band of 0.0625, D refers to normalized transition 

band of 0.043 and E refers to 0.023.  

A. Input signal extension 

In order to investigate the influence of the input signal 

extension on the accuracy of wavelet transform results 

Wavelet packet transform-based algorithm given in [4] is 

implemented for the two given stationary waveforms 

sampled at 1600Hz. The implementation is made in 

MATLAB. Extension types that were applied on the both 

sides of the signal (bilateral padding) are the following: 

- Periodic extension („per‟) - signal is periodically 

extended outside the original support; 

- Symmetric whole-point extension („symw‟) -

symmetric edge replication starting from the 

second edge value; 

- Zero-padding extension („zpd‟) - signal is zero 

outside the original support. 

- Symmetric half-point extension („sym‟) – 

symmetric edge replication starting from the first 

edge value. 

The both types of symmetric extension can be used 

only if the corresponding filter is symmetric and has a 

linear phase, while the periodic and zero-padding 

extension can be used with any type of filters. In the case 

of image border extension it was shown that symmetric 

extension performs better than the periodic extension. Its 

main advantage is that it may introduce a corner but it 

doesn‟t introduce a jump [14]. The influence of the signal 

extension on the harmonics calculations in case of 

stationary signals is shown in Table I and Table II.  



 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results are obtained after applying 3-level WPT 

decomposition using previously mentioned filters. 

Johnston filters are used for all four type of input signal 

extension. Daubechies filter „db20‟ is used only for 

periodic and zero-padding extension because it is 

asymmetric. For applying polyphase decomposition using 

Johnston filters only the periodic extension of the input 

signal can be used. That is because with separating the 

even numbered filter coefficients from the odd ones, the 

obtained filters become asymmetric. In the tables the bold-

marked values are the closest to the exact values. It is 

evidently that in the case of stationary waveform the 

periodic extension gives the best results. 

B. Direct vs. polyphase implementation efficency 

It was mentioned above that the limitation of DWT for 

measurement of RMS value of different harmonic 

components can be overcome using the WPT. With the use 

of the Noble identities WPT can be implemented with 

direct or polyphase form. In this paper we investigate the 

efficiency of the polyphase decomposition against the 

direct decomposition using Johnston filters J32C, J32D 

and J32E for periodic input signal extension on each level. 

The efficiency is the same for the all of the three 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

filters, because they have the same length. For that 

purpose the both forms of decomposition are implemented 

on the floating-point signal processor TMS320C6713 

(225MHz). Towards the analysis one of the previously 

given signal is used. The signal consists of 10 periods with 

32 samples in each period for sampling frequency 

fs1=1600Hz and 10 periods with 128 samples in each 

period for sampling frequency fs2=6400Hz. 

In addition theoretical calculations of the efficiency 

and execution time of the processor are given.  

a) Theoretically calculated efficency through the 

number of multiplications and additions 

In the shown block-diagrams the following 

nomenclature is used: 

- N - Length of the filter 

- L - Length of input signal 

In this case N is equal to 32 coefficients and L is equal to 

320 samples that makes 10 periods from the fundamental 

signal. The calculation of the efficiency for the direct 

form, for one level of decomposition is the following: 

 

 

 

 

 

TABLE I. RESULTS FOR DIFFERENT TYPES OF EXTENSION FOR INPUT SIGNAL V(T) 

  J32 C J32 D db20 

  ZPD PER SYMW SYM ZPD PER SYMW SYM ZPD PER 

50 Hz 249.7689 249.9890 250.4234 249.6009 249.1206 249.1396 249.9993 249.1715 231.1948 250.0066 

150 Hz 7.9220 4.3183 22.9342 14.0404 7.5086 3.8946 22.6146 13.1259 14.4012 4.7968 

250 Hz 1.9850 0.3363 6.9836 2.8495 1.9086 0.3701 7.0518 2.6863 6.5380 1.1195 

350 Hz 2.3505 2.1004 3.9825 3.6612 3.1608 2.9686 4.4844 4.3236 4.4211 4.6170 

450 Hz 8.8612 8.9311 9.3198 8.9902 8.6412 8.6998 9.1193 8.7542 7.5657 7.9090 

550 Hz 1.2315 1.2298 1.4938 1.2328 1.2601 1.2705 1.4573 1.2491 1.0971 1.1976 

650 Hz 1.0951 1.1117 1.1807 1.1948 1.0872 1.1026 1.1123 1.2045 1.1576 1.1549 

750 Hz 2.0117 1.9892 2.1296 2.1909 2.1203 1.9842 2.5521 2.5661 1.8514 1.9986 

 

 

 
TABLE II. RESULTS FOR DIFFERENT TYPES OF EXTENSION FOR INPUT SIGNAL I(T) 

  J32 C J32 D db20 

  ZPD PER SYMW SYM ZPD PER SYMW SYM ZPD PER 

50 Hz 3.6464 3.6576 3.6603 3.6448 3.6491 3.6601 3.6652 3.6482 3.4097 3.6837 

150 Hz 2.7708 2.7736 2.8535 2.7731 2.7796 2.7823 2.8698 2.7838 2.5521 2.6450 

250 Hz 1.7911 1.7835 1.8323 1.8144 1.7656 1.7599 1.8141 1.7852 1.8309 1.9260 

350 Hz 0.7856 0.7855 0.8131 0.7786 0.7993 0.7994 0.8291 0.7945 0.6945 0.7191 

450 Hz 0.2123 0.2098 0.2158 0.2150 0.1542 0.1496 0.1597 0.1600 0.3483 0.3673 

550 Hz 0.2488 0.2494 0.2517 0.2516 0.2464 0.2468 0.2510 0.2485 0.2275 0.2441 

650 Hz 0.2526 0.2533 0.2574 0.2505 0.2541 0.2549 0.2597 0.2525 0.2459 0.2548 

750 Hz 0.1107 0.1112 0.1109 0.1119 0.1111 0.1114 0.1115 0.1122 0.1042 0.1116 
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That gives 10240 multiplication and additions per level. 

For 3 levels of direct decomposition their number is 

40960. 

The calculation of the efficiency for the polyphase 

form, for one level of decomposition is the following: 

 

 

 

 

 

 

 

 

That gives 2560 multiplications and additions per level. To 

that number are added 160 additions and subtractions 

(together noted as additions) needed for obtaining 

polyphase outputs and that gives 2560 multiplication and 

2720 additions. 

For 3 levels of polyphase decomposition their number is 

10240 multiplications and 10880 additions. 

From the obtained results is evident that the polyphase 

decomposition form is almost 4 times more efficient than 

the direct decomposition form. 

 

b) Direct and polyphase implementation on 

 TMS320C6713 for fs1=1600Hz using SIMULINK 

The implementation of direct wavelet decomposition 

and polyphase wavelet decomposition on signal processor 

for fs1=1600Hz is made in blocks using SIMULINK 

environment [17]. In SIMULINK a function-block for 

direct wavelet decomposition already exists, but is not 

used because it works only with zero-padding extension. 

Hence, we have implemented two models for wavelet 

decomposition using subsystems so that arbitrary chosen 

signal extension can be used. Every level has 2
L-1 

subsystems, where L is the number of the corresponding 

level. They are consisted of embedded MATLAB 

function-blocks for extension and decimation, as well as 

convolution blocks. In this model a periodic extension is 

used. In Fig. 11 and Fig. 12 is shown the content of these 

subsystems for direct and polyphase decomposition, 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the purpose of our investigation, measurement of 

calculation times and instruction cycles for all of the 3 

levels of decomposition is made. The results when 

Johnston filters with 32 coefficients are used in case of 

polyphase and direct implementation are given in Table 

III. 

 

 

 

 

 

  

 

 

 

 

 

 

 

For better comparison of the efficiency in addition 

in Table IV are given the results when Daubechies  filter 

with 20 coefficients (db20) and Vaidyanathan filter with 

24 coefficients (v24) are used. 

 

 

 

 

 

 

 

 

TABLE III.  EXECUTION TIME OF WPT COMPUTATIONS FOR 

POLYPHASE DECOMPOSITION AND 320 SAMPLES FROM THE INPUT 

SIGNAL 

J 32 D,C,E 

 
Direct Polyphase 

Level Cycles  Time [ms] Cycles Time [ms] 

1 183.690 0,82 63.833 0,28 

2 427.950 1,90 106.245 0,47 

3 618.975 2,75 200.363 0,81 

 

 

 

Fig. 9 Block-diagram for calculation of the number of 

instructions for direct decomposition form 

Fig. 12 SIMLUNIK model for polyphase wavelet decomposition 

Fig. 11 SIMULNIK model for direct wavelet decomposition 

H0(z) ↓2 

↓2 H1(z) 

↓2 
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L/4 
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(LN/8) 

≈ 2(LN/8) = 
 =LN/4 

(LN/8) 

TABLE IV. EXECUTION TIME OF WPT COMPUTATIONS FOR DIRECT 

DECOMPOSITION AND 320 SAMPLES FROM THE INPUT SIGNAL 

 
DB20 V24 

Level Cycles  Time [ms] Cycles Time [ms] 

1 81.743 0,36 110.250 0,49 

2 163.733 0,73 239.400 1,06 

3 267.075 1,19 381.600 1,70 

 

Fig. 10 Block-diagram for calculation of the number of 

instructions for polyphase decomposition form 



 

The only drawback of this implementation is that the 

use of SIMULINK allows only 3-levels of decomposition. 

That is a result from the fact that during the generation of 

the code for each level of decomposition new variables are 

declared, which brings to memory overload. Hence, for 

decomposition in more than 3-levels, the same algorithm 

was implemented directly in Code Composer Studio. 

 

c) Direct and polyphase implementation on 

 TMS320C6713 for fs1=1600Hz in Code Composer Studio 

For implementation of direct and polyphase 

decomposition in 3-levels directly in Code Composer 

Studio, Johnston filters with 32 coefficients are used.  In 

addition, Table V, are given the results for instruction 

cycles and calculation times when periodic input signal 

extension is used. 

 

 

 

 

 

 

 

 

 

 

 

 

In the following table, Table VI, are given the results 

when Daubechies filter with 20 coefficients (db20) and 

Vaidyanathan filter with 24 coefficients (v24) are used. 

 

 

 

 

 

 

 

 

 

 

It is evident that the calculation times and the number of 

instruction cycles are smaller when SIMULINK 

implementation is used. That is due to declaring new 

variables in the SIMULINK model, which in the new code 

is solved by using several “for cycles”. Thus, values are 

transferred from one variable to another which increases 

the number of instruction cycles and results in calculation 

time increasing. 

 

d) Direct and polyphase implementation on 

 TMS320C6713 for fs2=6400Hz in Code Composer Studio 

The implementation of direct wavelet decomposition 

and polyphase wavelet decomposition on the signal 

processor for sampling frequency fs2=6400Hz is made 

directly in Code Composer Studio. For periodic input 

signal extension and 5-levels of WPT decomposition the 

calculation times and instruction cycles given in Table VII 

are obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table VIII are given the results when Daubechies 

filter with 20 coefficients (db20) and Vaidyanathan filter 

with 24 coefficients (v24) are used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The difference in time when polyphase decomposition 

is used is more than obvious in both implementations. The 

ratio between direct and polyphase results is close to the 

one that was theoretically obtained. The duration of the 

execution time for the fifth level of polyphase 

decomposition, implemented by applying "Johnston's" 

filters with 32 coefficients, is even shorter than the second 

level of direct decomposition implemented by applying 

Johnston's filters with 32 coefficients as well as the other 

proposed filters. With that the efficiency of the polyphase 

implementation over the direct implementation is shown. 

 

V. CONCLUSION 

In this work, at first the influence of the different signal 

extension was investigated. Experimental investigation 

performed with the use of Johnston‟s J32 C, J32 D and  

J32 D filters showed that the periodic extension is the most 

TABLE VII.  EXECUTION TIME OF WPT COMPUTATIONS FOR 

POLYPHASE DECOMPOSITION AND 1280 SAMPLES FROM THE INPUT 

SIGNAL 

J 32 D,C,E 

 
Direct Polyphase 

Level Cycles 
 Time 

[ms] 
Cycles 

Time 

[ms] 

1 773.137 3,44 290.604 1,30 

2 1.872.665 8,33 566.900 2,52 

3 2.934.431 13,05 842.425 3,75 

4 4.012.013 17,84 1.111.997 4,95 

5 5.102.583 22,68 1.384.204 6,16 

 

TABLE VIII. EXECUTION TIME OF WPT COMPUTATIONS FOR DIRECT 

DECOMPOSITION AND 1280 SAMPLES FROM THE INPUT SIGNAL 

 
DB20 V24 

Level Cycles 
 Time 

[ms] 
Cycles 

Time 

[ms] 

1 555.940 2,47 628.013 2,80 

2 1.425.108 6,34 1.568.994 6,98 

3 2.309.925 10,27 2.526.459 11,23 

4 3.182.848 14,15 3.469.338 15,42 

5 4.065.357 18,07 4.427.770 19,68 

 

TABLE V.  EXECUTION TIME OF WPT COMPUTATIONS FOR 

POLYPHASE DECOMPOSITION AND 320 SAMPLES FROM THE INPUT 

SIGNAL 

J 32 D,C,E 

 
Direct Polyphase 

Level Cycles  Time [ms] Cycles Time [ms] 

1 189.643 0,85 77.632 0,35 

2 466.157 2,08 143.734 0,64 

3 745.411 3,32 209.281 0,93 

 

 

 

TABLE VI. EXECUTION TIME OF WPT COMPUTATIONS FOR DIRECT 

DECOMPOSITION AND 320 SAMPLES FROM THE INPUT SIGNAL 

 
DB20 V24 

Level Cycles  Time [ms] Cycles Time [ms] 

1 146.371 0,65 163.471 0,73 

2 365.954 1,63 404.373 1,80 

3 592.349 2,64 647.598 2,88 

 



 

adequate in case of stationary signals. According to that 

conclusion both direct and polyphase forms of wavelet 

packet were implemented on a signal processor for two 

different sampling frequencies applied on the input signal. 

For the purpose of the efficiency investigation, 

measurement of calculation times and instruction cycles of 

the processor were made. Thereby the efficiency of QMF 

bank with linear phase filters, using polyphase 

decomposition, for the aim of harmonic analysis was 

shown. 
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