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Abstract: Differential protection is the best protection 

technique for power transformers. However, differential 

relays cannot provide discrimination between internal 

fault and inrush currents; they always detect the inrush 

current as an internal fault state. This paper presents a 

proposed algorithm based on Support Vector Machines 

(SVM) for monitoring the three phase two windings 
transformer. The algorithm diagnosis different 

transformer conditions: normal, over excitation, inrush 

current, internal and external faults. Both primary and 

secondary currents and their second order harmonics are 

used to distinguish between these conditions. The 

transformer conditions are simulated using 

PSCAD/EMTDC in order to obtain the primary and 

secondary current signals. These signals are then used to 

train and test the SVM using MATLAB/Simulink software. 

The results are compared with corresponding results 

obtained by applying Recurrent Neural Network (RNN)-
based method. The results prove that the proposed 

algorithm is accurate and very fast in detecting and 

classifying different transformer conditions. 

 

Keywords: Support Vector Machine (SVM), transformer 

monitoring, magnetizing inrush current, internal fault, 
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1. Introduction 

Power transformer is one of the vital 

components of electric power systems. The  
continuity  of  the  transformer operation  is  of  vital  

importance  in  maintaining  the reliability  of  power  

system. In order to detect faults, high speed, highly 

sensitive and reliable protective relays are required. 
For  this  purpose, differential  protection  has  been 

employed  as  the  primary  protection  for  most  of  

the power  transformers. However, the magnetizing 
inrush current always exists during energization of 

power transformers. This inrush current always flows 

on one side of the transformer, it looks like an 
internal fault to the differential relay and ends up as 

spill current and the relay mal-operates. [1]. 

Distinguishing between inrush current and internal 
fault current is still a challenging power transformer 

protection problem. The inrush current typically 

contains a large second-harmonic component 

whereas  the  internal  fault  consists  of  the 
fundamental  and  small  amount  of  second  

harmonics. Earlier protection schemes use second 

harmonic component as the discriminator factor 
between an inrush and internal fault current [2, 3]. 

On other hand, inter-turn (turn-to-turn) fault is one of 

the most important causes of failures occurring in 
power transformers [4]. Turn-to-turn faults will give 

rise to a heavy fault current in the short-circuited 

turns, but changes in the transformer terminal 

currents will be very small. For that reason, the 
traditional transformer differential protection is not 

sensitive enough to detect such winding turn-to-turn 

faults [5] 
It is very difficult to detect these faults since 

they induce negligible changes in the currents at the 

transformer terminals, although they give rise to a 

heavy fault current in the short-circuited turns [5]. In 
addition, when the transformer tap changer is moved 

up and down with respect to the middle point at 

which the relay is adjusted to, the differential relay 
might initiate a trip signal without the presence of 

any fault. Such mal-operation of differential relays 

can affect both the reliability and stability of the 
whole power system. 

To enhance the reliability of differential 

protection, signals other than current have also been 

utilized. To enhance the security and dependability of 
differential protection, signals other than current 

have also been utilized [6]. A method based on an 

equivalent circuit composed of inverse inductance 
has been proposed to recognize internal fault and 
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inrush current conditions [7]. Another method 

discriminates internal fault from inrush current by the 

sum of active power flowing into transformer from 
each terminal [8]. These methods need to use voltage 

transformers and require accurate measurements 

which may increase the protection system cost. Some 

other methods use second harmonic component as 
the discriminator factor between an inrush and 

internal fault current [9-10]. The main drawback of 

these schemes is the possibility of generation of 
second harmonic component during faults due to 

current transformer (CT) saturation. Other techniques 

detect faults based on waveform fluctuations of 

differential current. Regards to the fact that the time 
interval between two respective peaks in inrush 

current is smaller than the time intervals in the 

internal fault current [10], delayed fault detection is 
the main disadvantage of such techniques. 

 

Wave shaped recognition technique was 
presented in [11]; this technique depends on fixed 

threshold index and requires large computational 

burden. In [12], a wavelet-based method has been 

presented. The method is based on measuring both 
voltages and currents which may increase the cost of 

hardware implementation. Alternative improved 

digital protective methods for accurate and effective 
discrimination between inrush and internal fault 

currents have thus to be found. 

Recently, Artificial Neutral Networks (ANNs) 
techniques have been applied to power transformer 

protection to distinguish internal faults from 

magnetizing inrush currents [13-16]. These 

classifiers were associated with feature extraction 
techniques based on either time or frequency domain 

signals.  However, no one of these methods seems to 

reach a practical level yet, and the second harmonic 
component filtering technique still to be widely used 

regardless of its shortcoming. 

Support vector machine (SVM) is a 

computational learning method based on the 
statistical learning theory. It is originally  developed 

by Cortes and Vapnik [17]; and it has emerged as a 

potent tool for data analysis. It is a powerful tool for 
the nonlinear and high dimension problems. It 

provides a unique solution and is a strongly 

regularized method appropriate for most ill-posed 
problems. It can successfully solve the problems of 

„over-fitting‟, local optimal solution and low-

convergence rate existing in the ANN [18]. 

SVMs have been widely used for many 
applications in power system [19-25]. The SVM 

classified the transformer faults using dissolved gas 

analysis [26-28] and it is used to identify internal 

faults as well as inrush current [29-31], however; no 
one of these papers has applied the harmonic restraint 

principle.  

This paper presents an SVM based algorithm to 

discriminate between different transformer 
conditions (normal, over excitation, inrush current, 

internal and external faults). Various transformer 

conditions are simulated to obtain the training and 
testing data. The accuracy and reliability of the 

proposed algorithm is validated for all case studies. 

 

2.  Harmonics restrain  
Energization of unloaded power transformers 

results in magnetizing inrush current very often with 

high amplitude. The inrush current exists whenever 
the residual flux does not match the instantaneous 

value of the steady-state flux which would normally 

be required for the particular point on the voltage 
waveform at which the circuit is closed [32]. There 

are many factors affecting the inrush currents such as 

the residual flux, saturation flux and the energization 

voltage angle.  
Harmonics restrain is based on the fact that the 

inrush current has a large second-harmonic 

component of the differential current which is much 
larger in the case of inrush than for a fault. Figure 1 

shows the simulation of internal fault and inrush 

currents occurred at 0.1 sec. These harmonics can be 
used to restrain the relay from tripping during inrush 

current condition, so it is important to use them to 

obtain better discrimination between inrush and 

internal fault currents. 

 
Figure 1 Second harmonic component of magnetizing 

inrush and internal fault currents 

3. Support Vector Machine 
SVM is a relatively new computational 

learning method based on the statistical learning 

theory. In SVM, the original input space is mapped 

into a high-dimensional dot product space called a 
feature space. In the feature space, the optimal 

hyperplane is determined to maximize the 

generalization ability of the classifier. SVMs  have  
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the  potential  to  handle  very  large feature  spaces,  

because  the  training  of  SVM  is  carried out  so  

that  the  dimension  of  classified  vectors  does  not 
have as a distinct influence on the performance of 

SVM as  it  has  in  the  conventional  classifier. 

Also, SVM-based classifiers are claimed to have 

good generalization properties compared to 
conventional classifiers, because in training SVM 

classifier, the so-called structural misclassification 

risk is to be minimized, whereas traditional 
classifiers are usually trained so that the empirical 

risk is minimized. SVMs may have problems with 

large data sets, but in the development of fault 

classification routines, these are usually not even 
available [33].  

Let n-dimensional input Xi (I =1,2,….M), M is 

the number of samples belong to Class-I or Class-II, 
and associated labels are Yi = 1 for Class-I and Yi = -1 

for Class-II respectively. For linearly separable data a 

hyperplane f(x) = 0 which separates the data can be 
determined as: 

𝑓 𝑥 = 𝑤𝑇𝑥 + 𝑏 =  𝑤𝑗
𝑛
𝑗=1 𝑥𝑗 + 𝑏 = 0               (1) 

Where w is a dimensional vector and b is a scalar. 
The vector w and the scalar b determine the position 

of the separating hyperplane. This separating 

hyperplane satisfies the constraints: 
f (xi) ≥ 1     if  yi = 1,  and  

f (xi)  ≥ -1  if   yi = -1  and this results in 

𝑦𝑖𝑓 𝑥𝑖 = 𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1  for   i=1,2,…..M     (2) 

The separating hyperplane that creates the 
maximum distance between the plane and the nearest 

data is called the optimal separating hyperplane as 

shown in the Figure 2. The geometrical margin is 

found to be  𝑤−𝟐  [33]. 

 

 
Figure 2 Optimal separating planes 

 
Taking into account the noise with slack 

variables ξi and the error penalty C, the optimal 

hyperplane separating the data can be found by 

solving the following convex quadratic optimization 

problem: 

Minimize 
1

2
 𝑤 2 + 𝐶  ξi

𝑀
𝑖=1                                           (3) 

Subject to 

𝑦𝑖 𝑤
𝑇𝑥𝑖 + 𝑏 ≥ 1 − ξi       for    i =1,2,….M   (4) 

ξ
i
≥ 0    for all values of   i 

Where ξi is the measured distance between the 

margin and the examples xi that lying on the wrong 

side of the margin. The calculations can be simplified 
by converting the problem with Kuhn–Tucker 

condition into the equivalent Lagrange dual problem, 

which will be:  

Maximize 

𝑤 𝛼 =  αi −
1

2
 αi

M
i,k=0

𝑀
𝑖=1 αk yiykxi

T𝑥𝑘       (5) 

Subject to 

 𝑦𝑖𝛼𝑖
𝑀
𝑖=1 = 0, 𝐶 ≥ 𝛼𝑖 ≥ 0       i  =1, 2, … M  (6) 

The number of variables of the dual problem is 

the number of training data. Let us denote the 

optimal solution of the dual problem with α* and w*, 
the equality conditions in (2) holds for the training 

input-output pair (xi , yi)  only if the associated α*≠0. 

In this case, the training example xi is a support 
vector (SV). The number of SVs is considerably 

lower than the number of training samples, making 

SVM computationally very efficient. 

The value of the optimal bias b* is found from the 
geometry: 

𝑏∗ = −
1

2
 𝑦𝑖𝛼𝑖(𝑆1

𝑇
𝑠𝑣𝑠

𝑥𝑖 + 𝑆2
𝑇𝑥𝑖 )                   (7) 

Where S1 and S2 are arbitrary SVs for Class-I and 
Class-II, respectively. Only the samples associated 

with SVs are summed, because the other elements of 

the optimal Lagrange multiplier α* are equal to zero. 
The final decision function is given by: 

𝑓 𝑥 =  𝑦𝑖𝛼𝑖𝑠𝑣𝑠
𝑥𝑖

𝑇𝑋 + 𝑏∗                            (8) 

The unknown data sample x is then classified as: 

                      (9) 
The classified data is mapped into a high-

dimensional feature space where the linear 
classification is possible. Using nonlinear vector 

function: 

𝛷 𝑥 = 𝛷1 𝑥 𝛷2 𝑥 , ……… . 𝛷𝑚  𝑥 ,      𝑚 ≫ 𝑛  (10) 

To map the n-dimensional input vector x into the m-
dimensional feature space, the linear decision 

function in dual form is given by: 

𝑓 𝑥 =  𝑦𝑖𝛼𝑖𝛷
𝑇(𝑥𝑖𝑠𝑣𝑠

)𝛷(𝑥)                       (11) 

Notice that in (11) as well as in (4), the inner 
products are used. The nonlinear classification 

problems can also be solved by using SVM applying 



a kernel function. This function returns with a dot 

product of the feature space mapping of the original 

data points is called a kernel function, 

 𝐾(𝑥, 𝑧) = 𝛷𝑇
 (𝑥)𝛷(𝑥). 

The learning in the feature space does not require the 

inner products where a kernel function is applied. 

Using kernel function, the decision function can be 
written as: 

𝑓 𝑥 =  𝑦𝑖𝛼𝑖𝑘(𝑥𝑖 ,𝑥)𝑠𝑣𝑠
                              (12) 

There are different kernel functions used in the 

literature. Mercer‟s theorem states that any 
symmetric positive-definite matrix can be regard as a 

kernel matrix. In this paper, Gaussian radial basis 

kernel function is selected. The radial basis kernel 

function is defined as: 

𝐾 𝑥, 𝑧 = 𝑒
−

 𝑥−𝑧 2

𝛾                                     (13) 

 γ =  
1

2σ2
 

Where σ is the width of the Gaussian function [34, 

35] 
 

4. Applying SVM for Discrimination between 

Transformer Conditions 
In this section, SVMs classification technique is 

generalized to discriminate between different 

transformer conditions.  

  
4.1 SVM classifier structure 

As shown in Figure 3, the diagnostic model 
includes four SVM classifiers. These classifiers are 

used to identify the normal and faulty states (internal, 

over excitation, external and inrush).  

The first SVM1 is trained to identify the normal 
state. When the input pattern of SVM1 represents a 

normal state, the output is 0; otherwise it will be +1. 

The second SVM2 is trained to identify the internal 
fault. When the input pattern of SVM2 represents 

internal fault, the output is +1; otherwise it will be 

+2. The third SVM3 is trained to identify the 

saturation state. When the input pattern of SVM3 
represents the saturation fault, the output is +2; 

otherwise it will be +3. The fourth SVM4 is trained 

to identify external fault. The output is +3 for 
external fault; otherwise it will be +4.  All the four 

SVMs adopt Gaussian as their kernel function. In the 

studied SVM, the parameters σ and C of SVMs 
model are optimized by the cross validation method. 

The adjusted parameters with maximal classification 

accuracy are selected as the most appropriate 

parameters. Then, the optimal parameters are utilized 

to train the SVM model. The output codification is 

presented in Table 1. 
 

Table 1 The output of SVM. 
Transformer 

conditions 
SVM1 SVM2 SVM3 SVM4 

Normal 

operation 
0 - - - 

Internal 

fault 
1 1 - - 

Over 

excitation 
1 2 2 - 

External 

fault 
1 2 3 3 

Inrush 

current 
1 2 3 4 

 

 
Figure 3 Diagnostic model of power transformer based on 

SVM classifiers. 

 
4.2 Training and Testing Data 

Consecutive samples of phase currents are 
usually chosen as the input to SVM classifier. In 

modern power transformers, the harmonic 

components in inrush currents are very low. In order 
to increase the security and dependability of the 



SVM classifier for these transformers, harmonic 

sharing method is used to determine the harmonic 

input to the SVM.  In this method the second 
harmonic is obtained by dividing the summation of 

the second harmonics of the three phases by the 

summation of the fundamental currents of these 

phases. 

 
                  (14) 

The appropriate input data window length is a 

major factor which should be considered. Long data 

window of inputs enables protective algorithms to 
get more information and in turn resulting in stable 

performance. Through a series studies, it was found 

that a short window of length of 5 samples of each 
current at sample rate 1 kHz for a 50 Hz power 

frequency have a good results.  So, each of these 

currents is represented by 5 samples and second 

harmonic current, resulting in 36 inputs for all 
patterns. 

 

5. Simulation and Results  
The studied power system consists of a three 

phase source connected to a load through a three 

phase power transformer 110/10.5 kV, 100 MVA, as 
shown in Figure 4. The transformer has a star-star-to-

ground connection. The data required for training and 

testing the SVMs are developed by simulating the 

power system using the PSCAD/EMTDC software 
package. Power transformer internal faults are 

implemented by PSCAD/EMTDC program as shown 

in Figure 4. The necessary data required to generalize 
the problem are obtained from this simulation. 

Different types of internal winding faults are 

simulated at different percentage of windings, and 

inception time. The CT ratios are chosen as 1257:1 
and 120:1 for secondary and primary sides of the 

power transformer respectively. The prescribed five 

operating conditions are studied.  
 

AC

CB CBCT CT

Load  
Figure 4 Single line diagram 

 

Many cases have been implemented on the 
studied system at the prescribed transformer 

conditions. Total number of patterns used for SVMs 

training and testing is equal to 1152 patterns. These 

data are divided into two data sets: the training data 
set (576 samples) and the testing data set (576 

samples). The training data sets have been provided 

as: normal operation (54 samples), internal fault (378 

samples), overexcitation (54 samples), external fault 
(32 samples) and inrush current overheating (58 

samples) as illustrated in Table 2. 

  
Table2 Input patterns of SVM. 

Transformer conditions No of  pattern 

Normal operation 108 

Internal fault 378 

overexcitation 108 

External fault 64 

Inrush current 116 

 
The simulations of the proposed SVMs classifier 

have been performed through MATLAB 

environment using Bioinformatics toolbox.  

The performances of the four SVMs are 
assessed for each of these values by calculating the 

classification accuracy which is defined by [34]: 

%Classification accuracy of SVM =

                  
Total   patterns  −  Incorrect  patterns

Total   patterns
× 100 (15) 

The highest training efficiency obtained with the 
kernel function is 99.83% for SVM. The best 

accuracy for SVM has been achieved with the values 

of C = 10, and γ = 0.1. These parameters are used for 

“learning” the SVMs. Once the training is completed, 
the trained SVMs are used for testing the new 

patterns. Table 3 illustrates the classification 

accuracy of the designed SVMs for testing data. 
 

Table.3. Over all test results 

Condition Training Testing 

No of pattern 576 576 

Correct pattern 576 575 

Incorrect pattern 0 1 

Classification accuracy 100 99.83 

 
To help judging the value and the accuracy of the 

proposed system, the SVMs results have compared 

with those obtained using recurrent neural network 

(RNN) based system.  In that study the RNN-based 
method was applied to detect and classify different 

conditions of power transformer. The same training 

and testing data described above have been used to 
train the RNN-based system. A comparison between 

the two methods is depicted in Tables 5 These results 



show that the proposed SVMs is faster and more 

accurate (both for training and testing patterns) than 

RNN-based method as it is clear from Table 5. 
 

Table 5: Comparison between accuracy and training 

time for RNN and SVMs methods 

Method 

Accuracy 

for training 

patterns % 

Accuracy 

for testing 

patterns % 

Training 
time (s) 

SVM 100 99.83 5 

RNN 100 98 1800 

 
6. Conclusion 

This paper presents a novel technique to 

classify different power transformer conditions such 

as inrush, saturation, internal and external fault 
conditions based on SVM technique. Both primary 

and secondary currents and their second order 

harmonics are used to distinguish between different 
transformer conditions. The use of second harmonic 

current as an addition input helps to improve the 

ability of the SVM to discriminate between 

transformer conditions and to increase the security 
and dependability of the technique.  

The proposed SVM classification technique 

has been proven to be highly reliable and very fast in 
detecting and classifying transformer conditions with 

accuracy of 99.83% average for all the test cases. 

Comparing the proposed SVM with the RNN-

based method has proven that the proposed SVM-
based method is faster and more accurate. Applying 

the proposed method to several case studies has 

shown that the SVM based classifier has consistently 
accurate detection and discrimination in all operating 

conditions 

 

7. Reference 
1.  S. H. Horowitz and A. G.  Phadke : Power System 

Relaying,  John Wiley & Sons INC, 1992. 

2.  M. Tripathy: Power transformer differential  protection  

using  neural  network Principal Component Analysis 

and Radial Basis Function Neural Network, Simulation 

Modelling Practice and Theory 18 ,2010, 600–611. 

3.  G. Baoming, A. T. de Almeida, Z. Qionglin  and  W. 

Xiangheng : An  Equivalent Instantaneous Inductance-
Based Technique for Discrimination Between Inrush 

Current and Internal Faults in Power Transformer, 

IEEE Trans. Power Delivery, vol.20, No.4, pp.2473- 

2482, 2005 

4.   P. L. Mao and R. K. Aggarwal : A wavelet Transform 

Based Decision Making Logic Method for 

Discrimination Between Internal Faults and Inrush 

Currents in Power Transformers,  international journal 

of Electric Power and Energy System. , vol.22 ,no.6, 

389–395, 2000. 

5.  F. Zhalefar and M. Sanaye-Pasand : Studying Effect of 

Location and Resistance of Inter-turn Fault on Fault 

Current in Power Transformers, The 40th International 

Universities Power Engineering Conference, UPEC, 

Brighton, UK, 4-6 September 2007. 

6.  A. Wiszniewski, W. Rebizant and L. Schiel : Sensitive 

Protection of Power Transformers for Internal Inter 

Turn Faults, Proceedings of the 2009 IEEE Bucharest 

Power Tech  Conference, Bucharest, Romania, paper 
72, July 2009. 

7.  K. Inagaki and M. Higaki : Digital Protection Method 

for Power Transformers Based on an Equivalent 

Circuit Composed of Inverse Inductance, IEEE  

Transactions on Power Delivery, vol. 3, no. 4, pp. 

1501–1510, Oct. 1998. 

8.  K. Yabe :  Power Differential Method for 

Discrimination Between Fault and Magnetizing Inrush 

Current in Transformers, IEEE Transactions on Power 

Delivery, vol. 12, no. 3, pp. 1109–1117, July 1997. 

9. T. Sidhu, M. Sachdev : On-line Identification of 
Magnetizing Inrush and Internal Faults in Three-

Phase Transformers,  IEEE Transactions on Power 

Delivery, vol. 7, no. 4, pp. 1885–1891, Oct. 1992. 

10. M. Tripathy, R. P. Maheshwari, and H. KM. Tripathy, 

R. P. Maheshwari, and H. K. Verma : Advances in 

transform   protection: A review,   Electric Power 

Components and Systems, vol. 33, no. 11, pp. 1203–

1209, Nov. 2005. 

11. P. Arboleya, G. D´ıaz, J. G´ omez-Aleixandre, and C. 

Gonz´alez- Mor´an :  A solution to the Dilemma 

Inrush/fault in Transformer Differential Relaying 
Using MRA and Wavelets,   Electric Power 

Components and Systems, vol. 34, no. 3, pp. 285–301,  

2006. 

12. J. Ma, Z. Wang, Q. Yang, and Y. Liu :  Identifying 

Transformer Inrush Current Based on Normalized 

Grille Curve,  IEEE Transactions on Power Delivery, 

vol. 26, no. 2, pp. 588–595, 2011. 

13. M. Tripathy, R. P. Maheshwari, and H. K. Verma : 

Power Transformer Differential Protection Based on 

Optimal Probabilistic Neural Network,  IEEE 

Transactions on Power Delivery , vol. 25, no. 1, pp. 

102–112, Jan. 2010. 
14. J. Pihler, B. Grcar and D. Dolinar : Improved 

Operation of Power Transformer Protection Using 

Artificial Neural  Network,  IEEE Transactions on 

Power Delivery, 12 , 3, pp. 1128–1136,1997 

15. M. R. Zaman and M. A. Rahman : Experimental 

Testing of The Artificial Neural Network Based 

Protection of Power Transformers,  IEEE Transactions 

on Power Delivery, 13, 2, pp. 510–517, 1998. 

16. A. L. Orille-Fernandez, N. K. I. Ghonaim and J. A. 

Valencia : A FIRANN as Differential Relay for Three 

Phase Power Transformer Protection," IEEE  Trans. 
on Power Delivery, 16 , 2, pp.  215–218, 2001. 



17. C. Cortes, and V. Vapnik : Support-Vector Networks, 

Machine Learning, Vol. 20, pp. 273–297, 1995. 

18. B. Heisele, T. Serre, S. Prentice, and T. Poggio : 

Hierarchical Classification and Feature Reduction for 

Fast Face Detection with Support Vector Machines,  

Pattern Recognition, Vol. 36(9), pp. 2007–2017, 2003. 

19. C. Koley, P. Purkait, and S. Chakravorti : SVM 

Classifier for Impulse Fault Identification in  

Transformers  using  Fractal  Features,  IEEE  

Transactions on  Dielectric  Electrical Insulation, 

Vol.14,  Issue 6, pp. 1538–47, Dec. 2007. 
20. P. F. Pai, and W. C. Hong : Support Vector Machines 

with Simulated Annealing Algorithms in Electricity 

Load Forecasting,  Energy Conversion and 

Management, Vol. 46, Issue 17, pp. 2669–2688, Oct. 

2005. 

21. W. W. Yan, and H. H. Shao : Application of Support 

Vector Machine Nonlinear Classifier to Fault 

Diagnoses, Proceedings of the Fourth World Congress 

Intelligent Control and Automation, 10–14 June 2002. 

Shanghai, China, pp. 2697–2670, 2002. 

22. L. B. Jack, and A.K. Nandi : Fault Detection using 
Support Vector Machines and Artificial Neural 

Networks: Augmented by Genetic Algorithms,  

Mechanical Systems and Signal Processing, Vol. 16, 

Issues 2–3, pp. 373–390, March 2002. 

23. W. C. Chan, C.W. Chan, K. C. Cheung, and C. J. 

Harris : On the Modeling of Nonlinear Dynamic 

Systems using Support Vector Neural Networks,   

Engineering Applications of Artificial Intelligence, 

Vol. 14, Issue 2, pp. 105–113, April 2001. 

24. Z. Moravej, S. Banihashemi, M. Velayati :  Power 

Quality Events Classification and Recognition using a 
Novel Support Vector Algorithm,  Energy Conversion 

and Management, Vol. 50, Issue 12, pp. 3071–3077, 

Dec. 2009. 

25. P. G. V. Axelberg, I. Y. H. Gu and M. H. J. Bollen : 

Support Vector Machine for Classification of Voltage 

Disturbances,  IEEE Transactions on Power Delivery, 

Vol. 22, No. 3, pp. 1297–303, 2007 

26. Ganyun Lv, Haozhong Cheng, Haibao Zhai, and Lixin 

Dong : Fault Diagnosis of Power Transformer Based 

on Multi-Layer SVM Classifier, Electric power system 

research 75(2005) 9-15. 

27. Sheng-wei Fei, Cheng-liang Liu, and Yu-bin Miao : 
Support vector machine with genetic algorithm for 

forecasting of key-gas ratios in oil-immersed 

transformer, Expert Systems with Applications, 36 

(2009), 6326-6331.  

28. Khmais Bacha, Seifeddine Souahlia, and Moncef 

Gossa : Power Transformer Fault Diagnosis Based on 

Dissolved Gas Analysis by Support Vector Machine, 

Electric power system research 83(2012) 73-79. 

29. Sheng-Wei Fei, Xiao-bin Zhang : Fault Diagnosis of 

Power Transformer Based on Support Vector Machine 

With Genetic Algorithm, Expert System with 
Applications 36, (2009) 11352-11357. 

30. S. Jazebi, B. Vahidi, and M. Jannati : A novel 

Application of Wavelet Based SVM to Transient 

Phenomena Identification of Power Transformers,  

Energy Conversion and Management 52 (2011) 1354-

1363. 

31. A. M. Shah, B.R. Bhalja : Discrimination between 

Internal Faults and Other Disturbances in 

Transformer Using the Support Vector Machine-Based 

Protection Scheme, IEEE Transactions on Power 

Delivery,  Vol. 28 ,  No. 3,  (2013),pp. 1508 – 1515.  

32. Randy Hamilton : Analysis of Transformer Inrush 
Current and Comparison of Harmonic Restrain 

Methods in Transformer Protection, IEEE Trans. On 

Industry appl. Vol. 49 No. 4 July/August 2013. 

33. P. K. Dash, S. R. Samantaray and P. Ganapati : Fault 

Classification and Section Identification of an 

Advanced Series-Compensated Transmission Line 

Using Support Vector Machine,  IEEE Trans on Power 

Delivery, Vol.  22, pp. 67–73, March 2007. 

34. S. Tuntisk and S. Premrudeepreechacharn : Harmonic 

Detection in Distribution Systems Using Wavelet 

Transform and Support Vector Machine,  Proceedings 
of 2007 IEEE lausanne Power tech, Tuly(1-5), 2007. 

35. V. Vapnik : The Support Vector Method of Function 

Estimation, In J. Suykens and J. Vandewalle (Eds.), 

"Nonlinear modeling: Advanced black-box techniques" 

Kluwer Academic Publishers, pp. 55-85,1998 

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=61
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=61
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=61
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6544637

