
High Speed, Pipelined Implementation of Advanced Encryption Standard (AES) on 
FPGA 

 

Fatemeh Aghazadeh Dizaji1 and 2 Miftahur Rahman 
North South University (NSU), Dhaka, Bangladesh 

Department of Electrical Engineering and Computer Science (EECS) 
e-mail: f19781211@gmail.com 

  
 
 

Abstract: Advanced Encryption Standard (AES), the latest 
publicly announced and strongest ever cryptographic 
algorithm contains ample parallelism in its structure and is 
very fast when implemented in dedicated hardware. This 
exactly is the reason, to choose Field Programmable Gate 
Array (FPGA) and not the microcontroller as 
implementation platform. This implementation can be 
carried out through several trade-off between area and 
speed. This paper presents an FPGA implementation of 
128- bit block and 128-bit key AES cipher. The processor 
design is completely described in Verilog language. The 
cipher operates at 279 MHz and consumes 90 clock cycles 
for encryption and decryption, resulting in a throughput of 
402 Mbps. Synthesis result in the use of 944 logic cells .The 
desire was to achieve the highest possible performance with 
implementation on Altera’s Startix FPGA. 

Keywords: Advanced Encryption Standard (AES), Field 
Programmable Gate Array (FPGA), Cryptography. 

1. INTRODUCTION 
Cryptography is of importance in digital communication 

systems. The security aspects of many applications such as 
Automated Teller Machines (ATMs), e-commerce, internet 
bank service depend on various cryptographic schemes. 
Today, however, the term refers to the science and art of 
transforming messages to make their transmission secured 
and immuned to eavesdropping. Due to the increasing usage 
of internet application and wireless communication, the data 
security becomes more and more important.  

The three major design targets with respect to the 
hardware realization are: optimization for area or cost, low 
latency that minimizes time to encrypt a single block and 
high throughput to encrypt multiple blocks in parallel. All 
these design criteria involve a trade-off between area and 
speed. There are a wide range of equipment encryption is 
needed for authentication and security but throughput is not 
a principal concern. A low cost, small area design could be 
used in smart cards application as well as in other storage 
devices and low speed communication channels. 
This paper presents an architecture for 128-bit AES. 
Algorithm implemented on an Altera FPGA device.  

The goal of this design is to achieve the highest possible 
performance with implementation on Altera’s Startix 
FPGA. This paper is organized as follows. Section 2 
presents an overview of AES algorithm. Section 3 discusses 
implementation of AES on FPGA. In section 4, the 
hardware consumption and test result is provided. Section 5 
concludes the paper. 

2. AES ALGORITHM 
The use of encryption/decryption is as old as the art of 

communication. The Advanced Encryption Standard (AES) 
is an encryption algorithm for securing sensitive but 
unclassified material by U.S. Government agencies. In 
October 2000, the Rijndael algorithm [1], developed by 
Joan Daemon and Vincent Rijmen, was selected as the 
winner of the AES development race. As a replacement of 
DES, AES is presently widely used in both software and 
hardware implementations. Hardware approaches are 
attractive because it provides better throughput as well as 
higher physical security. Besides, the byte-wise arithmetic, 
AES gives hardware approaches more convenience.  

In [2], the AES algorithm is clearly defined with key, 
functional blocks, and round numbers. The fixed length of 
plaintext is 128 bits, the lengths of keys are 128, 192 and 
256 bits, and the execution round numbers have 10, 12 and 
14. For the example of 128-bit key, during operations, the 
key must be segmented into 16 bytes, and the segmented 16 
bytes will be mapped into a 4×4 matrix, which is called the 
state matrix. Each byte in the state matrix must be 
normalized under Galois Field (GF) )2( 8  with the modulus 
of x 8 + x 4 + x 3 + x +1. The AES operations include four 
transformation calculations, which are SubBytes, 
ShiftRows, MixColumns and AddRoundKey in order. 

2.1 SubBytes Transformation 
This is a non-linear transformation that operates 

independently on each byte of the state using a substitution 
table (called S-box) [3]. The S-box is a one-to-one mapping 
table and consequently it is invertible. In the SubBytes step, 
each byte in the array is updated using an 8-bit S-box. This 
operation provides the non-linearity in the cipher. This 



transformation is constructed based on the two following 
phases: 

1. Take the multiplicative inverse in the finite field GF     
  (28), (Galois fields) [4], 
 

2. Apply an affine (over GF (2)) transformation defined   
by

iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(
'

To avoid attacks based on simple algebraic properties, the 
S-box is constructed by combining the inverse function with 
an invertible affine transformation. The S-box is also chosen 
to avoid any fixed points (and so is a rearrangement), and 
also any opposite fixed points.  

2.2 ShiftRows Transformation 
The ShiftRows transformation performs the fixed cyclic 

byte shift according to different row positions. In the 0th 
row, this row does not act byte shift. In the first row, this 
row acts one byte shift. In the second row, this row acts two 
bytes shift. In the third row, this row acts three bytes shift. 
The ShiftRows performs cyclic left shift during AES 
encryptions, and the ShiftRows performs cyclic right shift 
during AES decryptions. 

2.3  MixColumns Transformation 
The MixColumns transformation acts the row-by-row 

mapping operations. During encryptions, the row-by-row 
operation in based on the mapping polynomial 

}02{}01{}01{}03{)( 23  xxxxa under constrains of GF (28) 
and x4+1 modulus. During decryptions, the row-by-row 
operation is based on the mapping polynomial 

}09{}0{}0{}0{)( 231  xexdxbxa under constrains of GF(28) 
and x4+1 modulus.  

2.4 AddRoundKey Transformation 
The AddRoundKey transformation performs the bit-by-

bit XOR operations between outputs of MixColumns and 
the round key. 

3. IMPLEMENTATION AND DISCUSSION 
ASE proposed in this paper is aimed to realize the high 

speed. To make AES suitable to high-speed data conditions, 
we need to optimize the architecture. Meanwhile by sharing 
resource and eliminating common sub expression we can 
reduce the use of the hardware resource. 

 There are three basic architectures of AES to improve 
the throughput: Loop unrolled, pipelined, sub-pipelined. 
The Loop unrolled architecture, it is the architecture that 
don’t buffer the data but input the data to the next round 
function directly. The pipeline architecture which buffers 
the data among round functions.  Finally the sub pipelined 
architecture that buffers the data among round functions and 
among inner transformations. That’s why we adopt the 
pipelined architecture.  

Designing a high speed low area S-Box and inverse S-
Box is one of the most critical problems in the research 
process, because the realization of S-box/InvS-box is the 
only nonlinear transformation in the four transforms of AES 
arithmetic and is the key point to improve the throughput of 
AES cipher core and decrease the resource used to 
implement the AES. Most of earlier designs implemented 
the byte transformation using look up table techniques, 
which put all the transformed data in BRAMs and output the 
transformed data recording to the data you want to 
implement byte transformation. But the design of pipelined 
AES needs many S-boxes/InvS-boxes, requiring 200 S-
boxes/InvS-boxes in ten rounds transformation and key 
expansion totally. Using look up table techniques not only 
use more hardware resource (in terms of memory) but also 
limit maximum operable clock frequency to BRAMS 
included in Field Programmable Gate Array (FPGA). So in 
this paper, we design the S-box/InvS-box in composite field 
of GF (28). 

 In our design, both encryption and decryption are 
included, and decryption can be realized in inverse 
transformations of encryption process. But if we use simple 
inverse encryption process to decrypt, we need to reorganize 
the implementation modules in pipelined architecture, and it 
will spend much more hardware resource, so the equivalent 
decryption is used according to the equivalent encryption. 
InvMixColumns transformation must be used to process the 
expanded key coming from key expansion process in 
decryption. But the InvMixColumns transformation is 
programmed separately, not using the MixColumns module in 
round transformation. In this way, we can get higher 
transformation speed but use less hardware resource. The flow 
of key expansion is shown in Fig.1. 
 

  
  

  
    

 
Fig.1. KeyExpansion 

 

3.1 Integration of Mix column and InvMix column 
function. 
The function of mix/Inv-mix column can be described 

by the following equation: 
Encryption output = [2, 3, 1, 1] * Tbbbb ),,,( 3210 ;             (1) 

Decryption output = [E, B, D, 9] * Tbbbb ),,,( 3210 ;           (2)      



Equation (2) can be expressed in the following matrix form 
first mentioned by Satoh [5] [6]. 



















3

2

1

0

i
i
i
i

=


















edb
bed
dbe

dbe

9
9

9
9







































































































4040
0404
4040
0404

8888
8888
8888
8888

2113
3211
1321
1132

3

2

1

0

b
b
b
b



















3

2

1

0

b
b
b
b

= 

































































)44(
)44(
)44(
)44(

8888
8888
8888
8888

21

20

11

20

3210

3210

3210

3210

'
3

'
2

'
1

'
0

bb
bb
bb
bb

bbbb
bbbb
bbbb
bbbb

b
b
b
b

 

In our design, we express the operation of InvMixColumn 
as: 
output [127:120]= 2(2 (2(in[127:120]  in [119:112])  
2(in[111:104]  in[103:96]  in [127:120] )))  2(in 
[127:120]  in [119:112])  in [111:104]  in[103:96]  in 
[119:112]).         
So, an efficient design of MixColumn and InvMixColumn 
transformation are shown in Fig.2 and 3 respectively.  

 

 

 

 

 

 
 

 
Fig.2. Design of MixColumn 

 

    

  

 × (2)   

 × (2) 

  

  

  

 × (2)  × (2) 

   × (2)   

  

  
  

 
Fig.3. Design of InvMixColumn 

 

4. PERFORMANCE  AND COMPARISION  
The AES architecture described above has been 
implemented using Verilog HDL. We applied pipelining 
technology in both encryptor and decryptor keyschedule 
modules to optimize the speed/area ratio, which achieves 
0.42 Mbps/Slice in Startix EP1S20F780C5. From the result, 
the design performs is 328.46 Mb/s for encryption and 
475.2 Mb/s in decryption. The clock frequency used is 
320.95MHz with clock period of 4.33 ns for encryption, 
also for decryption are 326.80 MHz and 3.06 ns 
respectively. 
Our proposed AES architecture provides the throughput of 
402 Mbps and clock frequency of 279 MHz. Compared with 
similar previous works, our proposed low-cost and efficient 
AES architecture only uses 944 slices, and achieves the 
throughput of 402 Mbps when implemented in Startix 
EP1S20F780C5. The throughput/area ratio is 0.42, which is 
relatively high in low- cost designs.  

The design in this research is also targeted for low speed 
and space restriction application. With the space 
requirement restriction, it would be hard to achieve more 
than 1Gb/s but it would possible if pipeline strategy is used. 
Although our design comparison is slightly slow, but we 
need to look into deeper considerations on other 
implementation listed in Table 1 most designs reported use 
a big size of FPGA and they used almost all gates and 
resources on the FPGA. The proposed design can be 
efficiently applied in computing resources restricted 
environments, such as wireless devices and embedded 
devices.  



Table1: COMPARISON OF AES DESIGN ON FPGA 
 

Design 
 

Slice 
(Area) 

Device Throughput 
 

Frequency 

Hodjat et al. [7] 9446 VIRTEX2P 

XV2VP20 

21.54 Gb/s 169.1 MHz 

Lemsitzer et al. [8] 7300 VIRTEX4 

FX100 

3500 Mb/s 110 MHz 

Bules et al. [9] 1800 SPARTAN3 1700 Mb/s 150 MHz 

Proposed design 944 STARTIX 

EP1S20F780C5 

402 Mb/s 279 MHz 

  

6. CONCLUSIONS 
This paper presents a compact reconfigurable FPGA 

architecture for the AES implementation. We applied 
pipelining technology in both encryptor and decryptor 
keyschedule modules to optimize the speed/area ratio, 
which achieves 0.4 Mbps/Slice in Startix EP1S20F780C5. 
Also we changed the structure of the key expansion, 
MixColumn and design a different control unit. The R-con 
part produces numbers proportional according to the same 
level that increases the speed of control unit. The throughput 
of our proposed design achieves 402 Mbps and maximum 
frequency of 279 MHz. 

REFERENCES 
[1] J. Daemen and V. Rijmen, “AES Proposal: Rijndael”, version 2, 

1999. Available on: http://www.esat.kuleuven.ac.be/~rijmen/rijndael. 
[2] “Advanced Encryption Standard (AES)” Federal Information 

Processing Standards Publication 197, Nov. 26, 2001. 
[3] Rijmen Vincent, "Efficient Implementation of the Rijndael S-box," 

Available on: http://www.iaik.tugraz.ac.at/research/krypto/AES/old/-             
ri jmen/rijndael/sbox.pdf. 

[4] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook   of  
Applied Cryptography. CRC Press, 1996. 

[5] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-D. Legat,"Compact         
and efficient encryption/decryption module for FPGA implementation 
of the AES Rijndael very well suited for small embedded 
applications",Information Technology Coding and Computing, 
2004.Proceedings. ITCC 2004, Volume 2, pp.583 – 587, Vol.2, 2004. 

[6] A. Satoh, S. Morioka, K. Takano, and S. Munetoh, "A Compact     
Rijndael Hardware ArchitectureWith S-Box Optimization," in Proc. 
LNC ASIACRYPT'01, vol. 2248, pp. 239-254, Dec. 2001. 

[7] A.Hodjat and I. Verbauwhede. A 21.54 Gbits/s Fully Pipelined AES 
Processor on FPGA. In FCCM ’04: Proceedings of the 12th Annual 
IEEE Symposium on Field Programmable Custom Computing  
Machines, pp.308–309, Washington, DC, USA, 2004. IEEE   
Computer Society. 

[8] S. Lemsitzer, J. Wolkerstorfer, N. Felber, and M. Braendli. 
Multigigabit GCM-AES Architecture Optimized for FPGAs. In 
Pascal Paillier and Ingrid Verbauwhede, editors, CHES, volume 4727 
of Lecture Notes in Computer Science, pp. 227– 238. Springer, 2007. 

[9] P. Bulens, F. Standaert, J. Quisquater, P. Pellegrin, and G. Rouvroy. 
Implementation of the AES-128 on Virtex-5 FPGAs. In Progress in 
Cryptology - AfricaCrypt 2008, pp.16 – 26. Springer, 2008. 

 
 
 

 
 


