
Structural switched reluctance motor optimization using
the genetic algorithm

Natan Tzvi Shaked and Raul Rabinovici

Department of Electrical and Computer Engineering

 Ben Gurion University of the Negev, Beer-Sheva, Israel
natis@ee.bgu.ac.il and rr@ee.bgu.ac.il

Abstract — This paper uses the Genetic Algorithm (GA)

in order to make a structural optimization of the switched
reluctance motor (SRM). The objective function in this
optimization is chosen to minimize the outer volume of the
motor, or in other words, to maximize its output power.
This paper explains the optimization procedure step by
step and shows the results and the conclusions of a
simulation which was done in order to check this
procedure.

Index Terms — Switched Reluctance Motor, Structural
Optimization, Genetic Algorithm.

I. INTRODUCTION
Although the basic principles of the switched

reluctance motor (SRM) are well documented in the
literature [1-5], only few articles have been written
about the optimization of this motor, and even less use
evolutionary methods for this optimization process. The
Genetic Algorithm (GA) is a powerful optimization
technique and is one of the most widely known methods
for evolutionary computation today [6-12]. The Genetic
Algorithm has many advantages: parallel ability of
working on a population of points, finding the global
optimum with higher probability (rather than the local
one), ability of handling discrete parameters, and
reasonable computation time. This paper presents the
adaptation of the Genetic Algorithm for structural
optimization of the SRM. Later paper [13] is going to
use the Genetic Algorithm in order to minimize the
torque ripple of this motor.

II. MOTOR DESIGN OPTIMIZATION PRINCIPLES
We can look at the optimization of electrical

machinery as a typical problem of nonlinear
programming [14]. We have to find n variables

),,,(21 nxxxX K= which minimize or maximize a
scalar function)(XF under m scalar conditions:

().)(,),(),()(21 XgXgXgXG mK= The above described
X vector contains n independent variables which

could be electromagnetic or geometric quantities.
Common examples for these independent variables may
be: the air gap diameter, height and width of stator and
rotor teeth, stator and rotor radiuses, etc. The scalar
function)(XF is called the objective function (since
the minimization or the maximization of this function is
the objective of the optimization). Common examples
for the objective function may be the cost of the
machine, the output power of the machine, etc. The

)(XG vector contains m scalar conditions
),()(XGXgi ∈ mi ...1= which are frequently called

constraints. Common examples for constraints may be
starting torque, geometrical or electrical limitations, etc.

III. GENETIC ALGORITHM PRINCIPLES
The Genetic Algorithm was introduced by John

Holland form the University of Michigan. Holland’s
goal was formally study of the adaptive processes in
nature and the development of similar methods for
computer systems. In his book [6] (which was originally
published in 1975), Holland presented the Genetic
Algorithm framework. With similarities to biological
evolution, the GA describes a population of
chromosomes which are strings. These chromosomes
are composed of genes which are (traditionally) bits (0s
or 1s). In each iteration, the population moves from its
current form into a new form by a kind of natural
selection, which is realized by the GA operators
(crossovers and mutations), and by the selection
function. Fig. 1 shows a basic version of the Genetic
Algorithm. As it can be seen form this figure, after the
generation number t and the population)(tPop are
initialized, an evaluation of this population is done by
using the fitness (or evaluation) function. Next, there is
a loop which continues until the termination condition is
satisfied. Inside of this loop, a recombination of the
population)(tPop is done in order to create the
offspring)(tC of the t ’th generation. This is done
using the GA operators which are crossover and
mutation. An evaluation of the offspring is done, and
then the selection function selects the individuals for the
next generation, 1+t , which yields the new population,

).1(+tPop This process continues until the algorithm
converges on the ‘best’ solution, which is hopefully the
optimal solution of the problem. The termination
condition is the indication of when we should stop the
optimization and declare the ‘best’ solution. As we use
the Genetic Algorithm for an optimization problem, we
will refer to it from now on in the context of an
optimization problem.
A. The GA Operators

There are mainly two kinds of GA operators:
crossover operators and mutation operators. Crossover
takes two individuals from the population and produces
two new individuals. Mutation takes a single individual

Fig. 1. General structure of the Genetic Algorithm

and alters it. The application of these two types of
operators depends of the encoding method we use for
the chromosomes. The encoding methods can be
classified as follow: binary encoding, real-number
encoding, integer of literal permutation encoding, and
general data structure encoding. Real-number encoding
is best used for function optimization problem [11].
Three examples for each kind of these operators are
shown next.

Let 1P and 2P be two vectors denoting two
individuals (patents) taken form the population. Let 1C
and 2C be the new individuals (children) which are
“born” using 1P and .2P Simple crossover generates a
random number α from a uniform distribution from 1
to the number of genes in the chromosome and produces
(using the parents) two new individuals according to the
following equations:



 <

=


 <

=
otherwise:

 if:
;

otherwise:
 if:

1

2
2

2

1
1

i

i
i

i

i
i p

ip
c

p
ip

c
αα

 (1)

where ip1 , ip2 , ic1 , and ic2 are the i 'th gene of the first
parent, the second parent, the first child, and the second
child respectively. Arithmetic crossover creates two
complimentary linear combinations according to the
following equations:

212

211

)1(
)1(

PPC
PPC
⋅+⋅−=
⋅−+⋅=

αα
αα

 (2)

where).1,0(~ Uα Fig. 2 shows an example for the
arithmetic crossover. Heuristic crossover utilizes some
fitness information: it uses the fitness values of the two
parents in order to determine the direction of the search.
The offspring are created from of the parents according
to the following equations:

() BCWBBC =−+= 21 ; α (3)

where:),(21 PPbestB = ,),(21 PPworstW = ,)1,0(~ Uα .
If α is chosen such that one or more of its genes fall
outside of the allowable upper or lower bounds, it is

possible that 1C will not be feasible. That is why
heuristic crossover has a parameter that may be set by
the user. This parameter is the number of times of trying
to find α that results in a feasible chromosome. If a
feasible chromosome is not produced this number of
tries, the worst of the two parents, ,W is set to be .1C
Boundary mutation replaces the value of the randomly
chosen gene with either the upper or lower boundary of
the gene (chosen randomly). The idea behind this
operator is that the global solution for many
optimization problems usually lies on the boundaries of
the feasible region, so it may be beneficial to search
there. Uniform mutation replaces the value of the
randomly chosen gene with a uniform random value
selected between the upper and the lower boundaries of
this gene. Fig. 3 shows an example for the uniform
mutation. Non-uniform mutation increases the
probability that the amount of the mutations will be
close to zero as the generation number increases. This
kind of mutation is designed for fine-tuning capabilities
and for achieving high precision. Remembering that in
mutation there is only one parent and one child, let kp
be the k ’th gene of the parent and the selected gene for
the mutation (so ()hk ppppP ,...,,..., 21=), and let kc be
the k ’th gene of the child of this parent (so

()hk pcppC ,...,,..., 21=). This gene is randomly selected
from the following two choices:

])[,(
)][,(

kkkk

kkkk

pyLowBoundarptfpc
ppryHighBoundatfpc

−−=
−+=

 (4)

where the function f is defined as follows:

()bMaxGentatf /1),(−⋅= γγ (5)

where a is a random number from]1,0[, b is a
parameter determining the degree of the non-uniformity,
and MaxGen is the generation maximum number. The
function),(γtf returns a value in the range],0[γ such
that this value approaches zero as the generation number
t increases. If the offspring is not feasible, we reduce
the value of a until it is.
B. Selection Function

The selection function plays an important role in the
Genetic Algorithm: it chooses which individuals are

Fig. 2. Crossover Example: arithmetic crossover

Fig. 3. Mutation Example: uniform mutation

going to ‘live’ (be in the next generation) and which
individuals are going to ‘die’ (not be in the next
generations). Like the Darwinian selection, better
individuals have better chances to survive (being
selected). Usually, the selection function assigns the
k 'th individual a selection probability of kProb based
on its fitness value. Then, a series of random numbers is
generated and compared against the cumulative
probability of the population which is defined by:

k

i

k
i robPCProb ∑

=

=
1

 (6)

If 1ii CProbUCProb +<<)1,0(then the i’th individual is
selected for being in the next generation. Most of the
selection methods are different form each other due to
the different assignment of selection probabilities. Three
examples of typical selection functions are shown next.

Roulette wheel selection determines the selection
probability for each chromosome as proportional to the
fitness value. This method is based of spinning an
imaginary “roulette wheel” the number of times equal to
the size of the population. In this case, the probability

kProb for each individual is defined by:

∑
=

=
PopN

j
j

k
k

ueFitnessVal

ueFitnessValProb

1

 (7)

where popN is the population size. Normalized
geometric selection is a type of a ranking method. It
assigns the probability kProb based on the rank of the

th'k solution after sorting all solutions according to:

1)1(
)1(1

−−
−−

= ρq
q

qProb
popNk ׂ (8)

where q is the probability of selecting the best
individual, ρ is the rank of the individual (1 is the best).
Tournament selection is different from the above
described selection methods since according to this
method we do not have to assign selection probabilities,
all we have to do is selecting k individuals randomly
(with replacements), and to choose the best of them

(using the fitness function) to be in the new population.
We repeat this process until we have the same number
of individuals in the new population as we had in old
one.
C. Termination Function

The termination function determines when the
Genetic Algorithm has to stop running and the optimal
solution has to be declared. The common reasons for
that may be: when there is no improvement in the best
solution in a specified number of generations, when the
sum of deviations among individuals becomes smaller
than a known threshold, or when a specified maximum
number of generations is reached.
D. Fitness Function and Constraints

It has already been explained that in the evaluation
stage each individual gets a fitness value which
determines its chances of being in the next generation.
In an unconstrained optimization problem this is usually
done by the objective function)(XF which its
minimization or maximization is the objective of the
optimization problem. In a constrained optimization
problem, the constraint vector)(XG has to be taken
into consideration. This is going to affect the original
objective function in such a way than if any of
constraints is not satisfied for one of the individuals, its
fitness value is going to be so bad, that this individual
will probably not going to be chosen for the next
generation. This can be done by penalizing the objective
function for these cases, which yields the final fitness
function).(XE This technique transforms the
constrained optimization problem into unconstrained
problem. One way to do this is by adding a penalty term
to the objective function:

)()()(XmPenaltyTerXFXE += (9)

The structure of mPenaltyTer has to be such that if the
individual that is checked, is feasible - we have to get

,0=mPenaltyTer which means that).()(XFXE =
This can be done by choosing the mPenaltyTer to be:

()∑
=

⋅=
m

k
kk XgWrXmPenaltyTer

1
0),(max)(β (10)

where m is the number of constrains in the)(XG
vector [)()(XGXgi ∈], kW ’s are the weighting factors,
and r and β are the penalty factors. The above
equation assumes that we want to solve a minimization
task and that the constraints are given in the following
forms (one of them or both of them):

eActualValuyValueLowBoundargi −= (11)

ryValueHighBoundaeActualValugi −= (12)

So if the actual value of the variable is bigger than the
low boundary value for (11) and the actual value of the
variable is smaller than the high boundary value for

(12), we are inside of this variable boundaries. In this
case, we get ,0<ig so penalty term is equal to zero and
the fitness function is equal to the objective function.
The other case is when the actual value is smaller than
the low boundary value for (11) or higher than the high
boundary value for (12). In this case, we get ,0>ig so
the penalty term is unequal to zero and the fitness
function are unequal to the objective function.
The penalty factors r and β should be adjusted to
make a sensible ratio between the objective function and
the penalty term. These factors can be obtained by a
simple trail and error procedure. Too high penalty
factors mean a fast but wrong convergence, whereas too
small penalty factors mean a very slow convergence.
The weighting factor of the k ’th constraint should be
higher compared to the rest of the weighting factors if
we want to give the condition of not satisfying this
constraint a higher effect on the penalty term. Fig. 4
shows the overall 7-stages GA including the fitness
function building stage.

IV. STRUCTURAL MOTOR OPTIMIZATION VIA
GENETIC ALGORITHM

Until now we have interpreted the Genetic Algorithm
in the general meaning of optimization problems, from
now on we are going to interpret it in the meaning of
structural motor optimization problems [14-17]. In this
case, the population contains individuals which each
one of them is a motor design. Each motor design
(chromosome) is characterized by a set of motor design
variables Xxi ∈ (genes). The constraints)(XGgi ∈
are usually geometric or electromagnetic limitations.
The objective function)(XF is some desirable goal for
the resultant motor.

V. OPTIMIZATION OF SRM VIA GENETIC ALGORITHM
The switched reluctance motor of [17] has been

chosen in order to check the above described structural
motor optimization. This is a 60KW, 231V, 3 phases,
4700 rpm, air cooled SRM. The fixed parameters of this
motor are: maximum current density 31010007×

],[A/m2 shaft diameter [m], 0.039=shD maximum
flux density [T], 2.094max =B and switching frequency

[Hz]. 9401 =f

A. SRM Objective Function
The objective function was chosen to minimize the

outer volume of the motor [17-18]:

() envo LDVolumeMotorOuter ⋅⋅= 22/π (13)
where oD is the machine outer diameter, and envL is
the envelope length of the machine. Let sr be the split
ratio of the rotor outer diameter and the machine outer
diameter:

or DDsr /= (14)

where rD is the rotor outer diameter. Using (14) in (13)

Fig. 4. 7-stages constrained GA optimization

gives:

() envr LsrDVolumeMotorOuter ⋅⋅⋅= 2/4/1 π (15)

The envelope length, ,envL may be estimated as the stack
length, ,stkL plus two turn overhangs [18]. The
overhang length can be estimated as 1/4 of the stator
pole pitch, so the envelope length can be expressed as:

srstkenv NDLL /2/1 ⋅⋅+≅ π (16)

So we can rewrite (15) as follows:

() ()srstkr NDLsrD

VolumeMotorOuter

/2/1//41 2 ⋅⋅+⋅⋅⋅

≅

ππ
 (17)

The goal of the optimization process is to find the
motor which has the minimal volume depending on
some specific parameters. In our case, these parameters
are going to be , , srDr and stkL . In other words:

rDx =1 ; stkLx =2 ; srx =3 (18)

We want to find) , ,(321 xxxX = which brings the motor
to its minimal volume. This means that in our case, the
objective function is:

erVolumeMachineOutXF =)((19)

Using (18) and (19) in (17) gives:









⋅+⋅








⋅⋅= 12

2

3

1

24
1)(x

N
x

x
xXF

s

ππ (20)

B. SRM Optimization Constraints
The above described general optimization problem

was: “Find n variables),,,(21 nxxxX K= which
optimize a scalar function)(XF under m scalar

conditions ())(,),(),()(21 XgXgXgXG mK= .” In our
case 3=n and the constraints (“scalar conditions”) are:
• Motor aspect ratio:

21 / xxAR = , 33.0 ≤≤ AR
• Slot-fill factor ff [17]:
 maxffff ≤ , where maxff is the maximum slot-fill

factor which depends on the type of the coil and
the amount of insulation.

• Steady state average torque avgT :
 oavg TT ⋅≥ K , where oT is the full load

output torque and K is the overload factor.
• Efficiency η :
 maxmin ηηη ≤≤ , where minη and maxη are the

maximum and minimum allowable efficiencies
respectively. ()/(lossesshaftshaft PPP +=η [18], where

shaftP is the machine shaft power, and lossesP are the
losses in the machine and in the converter).

• Maximum generalized power factor mPF [5]:
 9.055.0 ≤≤ mPF

and three domain constraints (which restrict the search
into the practical values and preserve a reasonable
computation time):
• Rotor outer diameter:

5.005.0 ≤≤ rD
• Rotor axial length:

5.005.0 ≤≤ stkL
• Split ratio of the rotor outer diameter and

the motor outer diameter:
63.05.0 ≤≤ sr

As it can be seen from Fig. 4, the objective function
and the constraints are input into “STAGE 1” box and
the fitness function is built using them. Before we
explain how it is done, we have to understand that in
order to build the fitness function, the constraints, which
were defined above, have to be expressed in (11) and
(12) forms. Applying this rules in our optimization
problem, we should write the above described
constraints as follows:

srgsrg
LgLg

DgDg
PFgPFg

ggTTg
ffffgARgARg

stkstk

rr

mm

avgo

−=−=
−=−=
−=−=
−=−=

−=−=−⋅=
−=−=−=

5.0 , 63.0
;05.0 ,5.0

;05.0 ,5.0
 ;55.0 ,9.0

; ; ,K
;; 3.0 , 3

1413

1211

109

87

min6max54

max321

ηηηη

 (21)

C. 7-stage Genetic Algorithm Optimization
Using (20) and (21), the fitness function in our case

can be written as:

()[]∑
=

⋅⋅+









⋅+⋅








⋅⋅=

14

1

12

2

3

1

0,max

24
1)(

k
kk

s

gWr

x
N

x
x
xXE

β

ππ
 (22)

This is actually “STAGE 1” of Fig. 4. In order to
perform “STAGE 2” of this figure we may randomize a
set of SRM designs. This set is the initial population and
it contains popN members. Since in our case, the X
vector contains three variables (21, xx and 3x), all we
have to do is to randomize popN values for each one of
these variables, and in that we actually “create” popN
SRM designs. The evaluation of the initial population is
done in “STAGE 3” of Fig. 4. If one or more constraints
are not satisfied, the fitness value of the current SRM
design will be penalized by adding something to its
objective function, and get a higher “effective volume”,
which means that there are less chances for this design
to be in the next generation of the population. After
applying the Genetic Algorithm operators in order to
create the offspring (“STAGE 4”) and after evaluating
the offspring (“STAGE 5”), a selection is performed so
the better individuals are copied to the population of
next generation (“STAGE 6”). Then, a termination
criterion is checked (“STAGE 7”). If it is not satisfied
then we go back to “STAGE 4”, otherwise we end the
optimization procedure and pronounce the best SRM
design which has been found. The termination criterion
we choose for our optimization is a maximum number
of generations.

D. The Model of Simulation
The analytical model that is being used here is the

one which was presented by Miller & McGlip [19]. The
paper shows how to build the magnetization curves at
aligned, unaligned, and intermediate positions based on
the unaligned- and the aligned unsaturated-inductance.
These inductances can be achieved from the structural
quantities of the motor [1,25]. After using this analytical
model, we can draw the magnetization curves (the
flux-linkage as a function of the phase-current and the
rotor position,),(θψ i) of the optimized SRM design
which was chosen by the optimization procedure.

The voltage equation of the motor for one phase can
be written as:

t
iRv

∂
∂

−⋅=
ψ (23)

where R is the phase resistance and v is the applied
voltage which may be chosen as:









>
<<−
<<

=

q

qc

c

V
V

v
θθ
θθθ
θθθ

 if 0
 if
 if 0

 (24)

where V is the dc supplied voltage, and 0θ , cθ , qθ are
the turn-on, turn off and quenching angles respectively.
The way of choosing these angels is explained in [2,3].
Under the assumption of constant velocity, (24) can be
written as:

)(1 iRv
m

⋅−⋅=
∂
∂

ωθ
ψ (25)

where mω is angular velocity of the rotor. Taking an
integral from both sides of (25), we can express the flux
linkage as:

∫ ⋅−= θ
ω

ψ diRv
m

)(1 (26)

In other words, we can say that:

m
prevnew iRv

ω
θψψ ∆

⋅⋅−+≈)((27)

where newψ is the flux linkage in the current integration
step, prevψ is the flux linkage in the previous integration
step, and dtmωθ =∆ is the integration step length. The
phase current i must be updated from the new value of
the flux linkage ψ and the rotor position θ in each
integration step. Following the procedure in [20], the
phase-current i as a function of rotor position θ can be
calculated. Usually, the other phase-currents have the
same waveform, but phase-shifted by a step angle. After
achieving the magnetization curves,),,(θψ i and the
phase-current,),(θi the coenergy and stored-energy can
be calculated as follows:

ψdiWf ∫= (28)

diWc ∫= ψ (29)

Then, the instantaneous electromagnetic torque can be
calculated in the following ways:

θ
θψ

θ
θ

∂

∂
−=

∂
∂

=
),(),(fc

e

WiWT (30)

Using this equation, the torque of each one of the phases
can be calculated and the sum of all torques from all
phases gives the total torque produced by the motor.
Then, the average torque can be calculated as well.

VI. RESULTS
The GA was applied for 50 generations which, as we

shall see, was enough for converging on the global
optimum. The objective function (which defines the
target of the optimization) was chosen to minimize the
outer volume of the motor (as stated in (13)). Table I
shows the results of the optimization for various
population sizes, number of crossovers, and number of
mutations which were the inputs of the optimization
procedure (together with the above mentioned fixed
parameters). The outputs of the optimization procedure
were the optimized variables (,rD ,stkL and sr). From
these optimized variables, the optimized outer volume
of the motor can be calculated. Other motor parameters
that can also be calculated are shown in Table II. Fig. 5
shows a trace of the best fitness function (for design 1)
through the 50 generations of the optimization. As it can

be seen from this figure, the rough converging of the
Genetic Algorithm to the global optimum is very fast,
but its “fine-tuning” may take much longer. From this
figure, it can also be seen that 50 generations are
enough for getting close enough to the global optimum.
This fact is right almost for all designs in the range we
checked, so 50 generations limit was chosen to be the
termination condition of the GA. Another termination
condition that may be chosen is the change in the fitness
function of the current generation compared to the
previous generation, but it was not necessary in our
case. We have learned that if someone wants to use a
maximum number of generations limit as the
termination condition for the GA, he must try it first for
a large number of generations and see where the change
of the fitness function is small enough. Only then he can
determine the maximum generations limit. If he will not
do it, he might use too low maximum number of
generations and stop the optimization process before
reaching the global optimum, then he may “find” a
wrong optimum. On the other hand, we should
remember that too high maximum number of
generations means unreasonable computation time. The
maximum number of generations is only one of the
parameters that may affect the truthfulness of the
optimization process, the Genetic Algorithm may be
affected from other parameters as well. Two of these
parameters are the penalty factors r and .β As it was
predicted: too small r and β cause a very slow
converging, whereas too big r and β cause a fast, but
wrong converging. A trail and error procedure has
shown that 5101 −×=r and 2=β are good penalty
factors in our case. The population size is another
parameter that must be chosen correctly. Trying to
do the optimization with less than 100 designs in the
population, gave in some cases wrong results. This is
the reason that in Table I we use with sizes of
population which are bigger than 100. The probabilities
of crossovers and mutations are also important: too high
probability of crossovers may lead us to converging to a
local optimum, and too high probability of mutations
may lead us to a primitive random search. On the other
hand, too low probability of crossovers or mutations
may not be enough for the changing of population
through the generations. We have found that an
adequate mutations and crossovers percentage in our
case may be 1-4% and 10-40% (of the population size)
respectively. Fig. 6 shows the magnetization curves for
one cycle of flux-linkage),(θψ i , which were found by
the above mention model. From this curves and form
the voltage equation of one phase, we can reach to the
phase-current waveform (Fig. 7). Then, the coenergy
and the stored-energy can be calculated. From the
coenergy (or the stored-energy), the instantaneous
torque can be found. Fig. 8 shows the dynamic torque

curves of each one of the phases, whereas Fig. 9 shows
the total torque and the average torque of the motor. Fig.
5-9 refer to design 1 of Tables I-II.

VII. CONCLUSION
This paper has explained the principles of the Genetic

Algorithm and shown how we can adapt this algorithm
for a constrained motor optimization. Then, it has
shown how this can be done for the switched reluctance
motor. An accurate step-by-step procedure of doing a
structural optimization for the SRM was discussed and a
simulation of this procedure was done in order to
check it. We have found that the Genetic Algorithm is a
fast and reliable algorithm for a structural SRM
optimization, as long as its parameters (size of
population, number of mutations and crossovers, etc)
are properly configured. An important conclusion of the
simulation we have done is that the first thing one
should do, before making his final experiments with the
Genetic Algorithm, is learning the problem in order he
can configure these parameters in a proper way. This
learning may take time (because for example we may
have to try the Genetic Algorithm with a large number
of generations in order to find a good termination
condition), but we must remember this “learning stage”
is very important to the truthfulness of the final result,
which is, in our case, the optimal SRM design. Later
paper [14] is going to deal with torque ripple
minimization using the GA and is also going to compare
the GA with a deterministic optimization method called
the Simplex Method.

Fig. 5. Trace of the best fitness function

Fig. 6. Magnetization curves of the described motor

TABLE I
GA OPTIMIZATION – INPUT PARAMETERS, OUT PARAMETER AND OBJECTIVE FUNCTION

 Parameter Design 1 Design 2 Design 3 Design 4
Population size popN 100 150 200 300

Percentage of crossovers 20% 10% 20% 20%

Inputs

Percentage of mutations 2% 2% 2% 1%
Rotor diameter rD [m] 0.1398 0.1442 0.1372 0.1397

Motor stack length stkL [m] 0.2156 0.1942 0.2343 0.1922

Outputs

Split ratio 0/ DDsr r= 0.6287 0.6286 0.6291 0.6292

F(X) Motor output volume outV [m3] 0.0098 0.0096 0.0101 0.0089

TABLE II
GA OPTIMIZATION – CALCULATED PARAMETERS

 Parameter Design 1 Design 2 Design 3 Design 4
Machine outer diameter oD [m] 0.2224 0.2294 0.2181 0.2220

Internal rotor diameter intrD [m] 0.0911 0.0927 0.0901 0.0910
Internal stator diameter intsD [m] 0.1734 0.1789 0.1700 0.1731

Stator diameter sD [m] 0.1403 0.1447 0.1377 0.1402

Calculated
parameters

Average torque [Nm] 125.4586 125.221 124.954 125.961

Fig. 7. Phase-current

Fig. 8. Phase torques

Fig. 9. Total torque and average torque

REFERENCES
[1] R. Krishnan, Switched reluctance motor drives: modeling,

simulation, analysis, design, and applications, CRC Press, 2001.
[2] T. J. E. Miller, Switched reluctance motors and their control,

Magna Physics Publishing, 1993.
[3] T. J. E. Miller, Electronic control of switched reluctance

machines, Newnes Power Engineering Series, 2001.

[4] T. J. E. Miller, Brushless permanent-magnet and reluctance
motor drives, Ch. 7, Oxford University Press, 1989.

[5] I. Boldea, and S.A. Nasar, Electric drives, CRC Press, 1999.
[6] J. H. Holland, Adaptation in natural and artificial systems: an

introductory analysis with applications to biology, control, and
artificial intelligence, MIT Press, 1992.

[7] P. Vas, Artificial-intelligence-based electrical machines and
drives: application of fuzzy, neural, fuzzy-neural, and genetic-
algorithm-based techniques, Oxford University Press, 1999.

[8] M. D. Vose, The simple genetic algorithm: foundations and
theory, MIT Press, 1999.

[9] M. Mitchell, An introduction to genetic algorithms, MIT Press,
1996

[10] Y. Rahmat-Samii, and E. Michielssen, Electromagnetic
optimization by genetic algorithms, Wiley, 1999.

[11] M. Gen, and R. cheng, Genetic algorithms and engineering
optimization, Wiley, 2000.

[12] R. S. Zebulum, M. A. Pacheco, and M. M. B. R. Vellasco,
Evolutionary electronics: automatic design of electronic circuits
and systems by genetic algorithms, CRC Press international
series on computational intelligence, 2002.

[13] N. T. Shaked, and R. Rabinovici, “Minimization of the torque
ripple in switched reluctance motors by optimizing the
phase-current profile,” Ninth International Conference on
Optimization of Electrical and Electronic Equipment,
OPTIM’04, Brasov, Romania, May 20-22, 2004.

[14] M. Poloujadoff , M. Nurdin, and A. Faure, “Synthesis of squirrel
cage motors, a key to optimization,” IEEE Trans. on Energy
Conversion, Vol. 6, No. 2, 1991.

[15] S. Palko, “Structural optimization of an induction motor using a
genetic algorithm and finite element method,” Acta Polytechnica
Scandinavia, Electrical Engineering Series, No. 84, 1996.

[16] N. Bianchi, and S. Bolognani, “Design optimization of electric
motors by genetic algorithms,” IEE Proc., Electr. Appl., Vol.
145, No. 5, pp 475-483, 1998.

[17] A. El-Wakeel, and A. C. Smith, “Optimal design of switched
reluctance motors using the genetic algorithms,” International
Conference on Electrical Machines, 2002.

[18] A. El-Wakeel, S. A. Gawish, and M. A. L. Badr, “Systematic
design procedure of switched reluctance motors,” Proceedings
of the International Conference on Electrical Engineering, 1999.

[19] T. J. E. Miller, and M. McGlip, “Nonlinear theory of the
switched reluctance motor for rapid computer-aided design,”
IEE Proc – Pt. B., Vol. 137, No. 6, pp 337-347, 1990.

[20] T. J. E. Miller, “Optimal design of switched reluctance motors,
IEEE Trans. on Industrial electronics,” Vol. 49, No. 1, pp 15-27,
2002.

[21] C. Roux, and M. M. Morcos, “On the use of simplified model
for switched reluctance motor,” IEEE Trans. on Energy
Conversion, Vol. 17, pp 400-405, No. 3, 2002.

[22] R. Rabinovici, “Torque estimation for switched reluctance
motors by on-line procedure,” Nonlinear Electromagnetic
Systems, pp 19-22, IOS Press, 1996.

[23] J. Faiz, and J. W. Finch, “Aspects of design optimization for
switched reluctance motors,” IEEE Trans. on Energy
Conversion, Vol. 8, No. 4, 1993.

[24] P. J. Lawreson, J. M. Stephenson, J. Corda, and N. N. Fulton,
“Variable speed switched reluctance motors,” IEE Proc. - Pt. B,
Vol. 127, No. 4, pp 253-265, 1980.

[25] A. V. Radun, “Design considerations for the switched reluctance
motor,“ IEEE Trans. on Industry Applications, Vol. 31, No. 5,
pp 1079-1087, 1995.

[26] P. N. Materu, and R. Krishnan, “Estimation of switched
reluctance motor losses,” IEEE Trans. on Industry Applications,
Vol. 28, No. 3, pp 668-679, 1992.

