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Abstract — This paper uses the Genetic Algorithm (GA) 

in order to make a structural optimization of the switched 
reluctance motor (SRM). The objective function in this 
optimization is chosen to minimize the outer volume of the 
motor, or in other words, to maximize its output power. 
This paper explains the optimization procedure step by 
step and shows the results and the conclusions of a 
simulation which was done in order to check this 
procedure. 

Index Terms — Switched Reluctance Motor, Structural 
Optimization, Genetic Algorithm. 

 

I. INTRODUCTION 
Although the basic principles of the switched 

reluctance motor (SRM) are well documented in the 
literature [1-5], only few articles have been written 
about the optimization of this motor, and even less use 
evolutionary methods for this optimization process. The 
Genetic Algorithm (GA) is a powerful optimization 
technique and is one of the most widely known methods 
for evolutionary computation today [6-12]. The Genetic 
Algorithm has many advantages: parallel ability of 
working on a population of points, finding the global 
optimum with higher probability (rather than the local 
one), ability of handling discrete parameters, and 
reasonable computation time. This paper presents the 
adaptation of the Genetic Algorithm for structural 
optimization of the SRM. Later paper [13] is going to 
use the Genetic Algorithm in order to minimize the 
torque ripple of this motor. 

II. MOTOR DESIGN OPTIMIZATION PRINCIPLES 
We can look at the optimization of electrical 

machinery as a typical problem of nonlinear 
programming [14]. We have to find n  variables 

),,,( 21 nxxxX K=  which minimize or maximize a 
scalar function )(XF  under m  scalar conditions: 

( ).)(,),(),()( 21 XgXgXgXG mK=  The above described 
X  vector contains n  independent variables which 

could be electromagnetic or geometric quantities. 
Common examples for these independent variables may 
be: the air gap diameter, height and width of stator and 
rotor teeth, stator and rotor radiuses, etc. The scalar 
function )(XF  is called the objective function (since 
the minimization or the maximization of this function is 
the objective of the optimization). Common examples 
for the objective function may be the cost of the 
machine, the output power of the machine, etc. The 

)(XG  vector contains m  scalar conditions 
),()( XGXgi ∈  mi ...1=  which are frequently called 

constraints. Common examples for constraints may be 
starting torque, geometrical or electrical limitations, etc. 

III. GENETIC ALGORITHM PRINCIPLES 
The Genetic Algorithm was introduced by John 

Holland form the University of Michigan. Holland’s 
goal was formally study of the adaptive processes in 
nature and the development of similar methods for 
computer systems. In his book [6] (which was originally 
published in 1975), Holland presented the Genetic 
Algorithm framework. With similarities to biological 
evolution, the GA describes a population of 
chromosomes which are strings. These chromosomes 
are composed of genes which are (traditionally) bits (0s 
or 1s). In each iteration, the population moves from its 
current form into a new form by a kind of natural 
selection, which is realized by the GA operators 
(crossovers and mutations), and by the selection 
function. Fig. 1 shows a basic version of the Genetic 
Algorithm. As it can be seen form this figure, after the 
generation number t  and the population )(tPop  are 
initialized, an evaluation of this population is done by 
using the fitness (or evaluation) function. Next, there is 
a loop which continues until the termination condition is 
satisfied. Inside of this loop, a recombination of the 
population )(tPop  is done in order to create the 
offspring )(tC  of the t ’th generation. This is done 
using the GA operators which are crossover and 
mutation. An evaluation of the offspring is done, and 
then the selection function selects the individuals for the 
next generation, 1+t , which yields the new population, 

).1( +tPop  This process continues until the algorithm 
converges on the ‘best’ solution, which is hopefully the 
optimal solution of the problem. The termination 
condition is the indication of when we should stop the 
optimization and declare the ‘best’ solution. As we use 
the Genetic Algorithm for an optimization problem, we 
will refer to it from now on in the context of an 
optimization problem. 
A. The GA Operators 

There are mainly two kinds of GA operators: 
crossover operators and mutation operators. Crossover 
takes two individuals from the population and produces 
two new individuals.  Mutation takes a single individual  



 
Fig. 1. General structure of the Genetic Algorithm  

 
and alters it. The application of these two types of 
operators depends of the encoding method we use for 
the chromosomes. The encoding methods can be 
classified as follow: binary encoding, real-number 
encoding, integer of literal permutation encoding, and 
general data structure encoding.  Real-number encoding 
is best used for function optimization problem [11]. 
Three examples for each kind of these operators are 
shown next. 

Let 1P  and 2P  be two vectors denoting two 
individuals (patents) taken form the population. Let 1C  
and 2C  be the new individuals (children) which are 
“born” using 1P  and .2P  Simple crossover generates a 
random number α  from a uniform distribution from 1 
to the number of genes in the chromosome and produces 
(using the parents) two new individuals according to the 
following equations: 



 <

=


 <

=
otherwise:  

 if:  
;

otherwise:  
 if:  

1

2
2

2

1
1

i

i
i

i

i
i p

ip
c

p
ip

c
αα

                 (1) 

where ip1 , ip2 , ic1 , and ic2 are the i 'th gene of the first 
parent, the second parent, the first child, and the second 
child respectively. Arithmetic crossover creates two 
complimentary linear combinations according to the 
following equations: 
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where ).1,0(~ Uα  Fig. 2 shows an example for the 
arithmetic crossover. Heuristic crossover utilizes some 
fitness information: it uses the fitness values of the two 
parents in order to determine the direction of the search. 
The offspring are created from of the parents according 
to the following equations: 

( ) BCWBBC =−+= 21  ; α                                            (3)                     

where: ),( 21 PPbestB = , ),( 21 PPworstW = , )1,0(~ Uα .  
If α  is chosen such that one or more of its genes fall 
outside of the allowable upper or lower bounds, it is 

possible that 1C  will not be feasible. That is why 
heuristic crossover has a parameter that may be set by 
the user. This parameter is the number of times of trying 
to find α  that results in a feasible chromosome. If a 
feasible chromosome is not produced this number of 
tries, the worst of the two parents, ,W  is set to be .1C  
Boundary mutation replaces the value of the randomly 
chosen gene with either the upper or lower boundary of 
the gene (chosen randomly). The idea behind this 
operator is that the global solution for many 
optimization problems usually lies on the boundaries of 
the feasible region, so it may be beneficial to search 
there. Uniform mutation replaces the value of the 
randomly chosen gene with a uniform random value 
selected between the upper and the lower boundaries of 
this gene. Fig. 3 shows an example for the uniform 
mutation. Non-uniform mutation increases the 
probability that the amount of the mutations will be 
close to zero as the generation number increases. This 
kind of mutation is designed for fine-tuning capabilities 
and for achieving high precision. Remembering that in 
mutation there is only one parent and one child, let kp  
be the k ’th gene of the parent and the selected gene for 
the mutation (so ( )hk ppppP ,...,,..., 21= ), and let kc  be 
the k ’th gene of the child of this parent (so 

( )hk pcppC ,...,,..., 21= ). This gene is randomly selected 
from the following two choices: 
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where the function f  is defined as follows: 

( )bMaxGentatf /1),( −⋅= γγ                                       (5)                  

where a  is a random number from ]1,0[ , b  is a 
parameter determining the degree of the non-uniformity, 
and MaxGen  is the generation maximum number. The 
function ),( γtf  returns a value in the range ],0[ γ  such 
that this value approaches zero as the generation number 
t  increases. If the offspring is not feasible, we reduce 
the value of  a  until it is. 
B. Selection Function 

The selection function plays an important role in the 
Genetic Algorithm: it chooses which individuals are 
 

 
Fig. 2.  Crossover Example: arithmetic crossover 



 
Fig. 3.  Mutation Example: uniform mutation 

 

going to ‘live’ (be in the next generation) and which 
individuals are going to ‘die’ (not be in the next 
generations). Like the Darwinian selection, better 
individuals have better chances to survive (being 
selected). Usually, the selection function assigns the 
k 'th individual a selection probability of kProb  based 
on its fitness value. Then, a series of random numbers is 
generated and compared against the cumulative 
probability of the population which is defined by: 
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If 1ii CProbUCProb +<< )1,0(  then the i’th individual is 
selected for being in the next generation. Most of the 
selection methods are different form each other due to 
the different assignment of selection probabilities. Three 
examples of typical selection functions are shown next.  

Roulette wheel selection determines the selection 
probability for each chromosome as proportional to the 
fitness value. This method is based of spinning an 
imaginary “roulette wheel” the number of times equal to 
the size of the population. In this case, the probability 

kProb  for each individual is defined by: 
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where popN  is the population size. Normalized 
geometric selection is a type of a ranking method. It 
assigns the probability kProb  based on the rank of the 

th'k  solution after sorting all solutions according to:  
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popNk   ׂ                               (8)                                             

where q  is the probability of selecting the best 
individual, ρ  is the rank of the individual (1 is the best). 
Tournament selection is different from the above 
described selection methods since according to this 
method we do not have to assign selection probabilities, 
all we have to do is selecting k  individuals randomly 
(with replacements), and to choose the best of them 

(using the fitness function) to be in the new population. 
We repeat this process until we have the same number 
of individuals in the new population as we had in old 
one. 
C. Termination Function 

The termination function determines when the 
Genetic Algorithm has to stop running and the optimal 
solution has to be declared. The common reasons for 
that may be: when there is no improvement in the best 
solution in a specified number of generations, when the 
sum of deviations among individuals becomes smaller 
than a known threshold, or when a specified maximum 
number of generations is reached. 
D. Fitness Function and Constraints 

It has already been explained that in the evaluation 
stage each individual gets a fitness value which 
determines its chances of being in the next generation. 
In an unconstrained optimization problem this is usually 
done by the objective function )(XF  which its 
minimization or maximization is the objective of the 
optimization problem. In a constrained optimization 
problem, the constraint vector )(XG  has to be taken 
into consideration. This is going to affect the original 
objective function in such a way than if any of 
constraints is not satisfied for one of the individuals, its 
fitness value is going to be so bad, that this individual 
will probably not going to be chosen for the next 
generation. This can be done by penalizing the objective 
function for these cases, which yields the final fitness 
function ).(XE  This technique transforms the 
constrained optimization problem into unconstrained 
problem. One way to do this is by adding a penalty term 
to the objective function: 

)()()( XmPenaltyTerXFXE +=                                (9)         

The structure of mPenaltyTer  has to be such that if the 
individual that is checked, is feasible - we have to get 

,0=mPenaltyTer  which means that ).()( XFXE =  
This can be done by choosing the mPenaltyTer  to be: 

( )∑
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where m  is the number of constrains in the )(XG  
vector [ )()( XGXgi ∈ ], kW ’s are the weighting factors, 
and r  and β  are the penalty factors. The above 
equation assumes that we want to solve a minimization 
task and that the constraints are given in the following 
forms (one of them or both of them): 

eActualValuyValueLowBoundargi −=                   (11)  

ryValueHighBoundaeActualValugi −=                   (12) 

So if the actual value of the variable is bigger than the 
low boundary value for (11) and the actual value of the 
variable is smaller than the high boundary value for 



(12), we are inside of this variable boundaries. In this 
case, we get ,0<ig so penalty term is equal to zero and 
the fitness function is equal to the objective function. 
The other case is when the actual value is smaller than 
the low boundary value for (11) or higher than the high 
boundary value for (12). In this case, we get ,0>ig  so 
the penalty term is unequal to zero and the fitness 
function are unequal to the objective function. 
The penalty factors r  and β  should be adjusted to 
make a sensible ratio between the objective function and 
the penalty term. These factors can be obtained by a 
simple trail and error procedure. Too high penalty 
factors mean a fast but wrong convergence, whereas too 
small penalty factors mean a very slow convergence. 
The weighting factor of the k ’th constraint should be 
higher compared to the rest of the weighting factors if 
we want to give the condition of not satisfying this 
constraint a higher effect on the penalty term. Fig. 4 
shows the overall 7-stages GA including the fitness 
function building stage. 

IV. STRUCTURAL MOTOR OPTIMIZATION VIA 
GENETIC ALGORITHM 

Until now we have interpreted the Genetic Algorithm 
in the general meaning of optimization problems, from 
now on we are going to interpret it in the meaning of 
structural motor optimization problems [14-17]. In this 
case, the population contains individuals which each 
one of them is a motor design. Each motor design 
(chromosome) is characterized by a set of motor design 
variables Xxi ∈  (genes). The constraints )(XGgi ∈  
are usually geometric or electromagnetic limitations. 
The objective function )(XF  is some desirable goal for 
the resultant motor. 

V. OPTIMIZATION OF SRM VIA GENETIC ALGORITHM 
The switched reluctance motor of [17] has been 

chosen in order to check the above described structural 
motor optimization. This is a 60KW, 231V, 3 phases, 
4700 rpm, air cooled SRM. The fixed parameters of this 
motor are: maximum current density 31010007×  

],[A/m2  shaft diameter [m],  0.039=shD  maximum 
flux density [T], 2.094max =B  and switching frequency 

[Hz]. 9401 =f  

A. SRM Objective Function 
The objective function was chosen to minimize the 

outer volume of the motor [17-18]: 

( ) envo LDVolumeMotorOuter ⋅⋅= 22/π               (13) 
where oD  is the  machine  outer  diameter, and envL  is 
the envelope length of the machine. Let sr  be the split 
ratio of the rotor outer diameter and the machine outer 
diameter: 

or DDsr /=                                                                 (14)  

where rD  is the rotor outer diameter. Using (14) in (13) 

Fig. 4.  7-stages constrained GA optimization 
 

gives: 

( ) envr LsrDVolumeMotorOuter ⋅⋅⋅= 2/4/1 π                 (15)                   

The envelope length, ,envL  may be estimated as the stack 
length, ,stkL  plus two turn overhangs [18]. The 
overhang length can be estimated as 1/4 of the stator 
pole pitch,  so the envelope length can be expressed as: 

srstkenv NDLL /2/1 ⋅⋅+≅ π                                       (16)                        

So we can rewrite (15) as follows: 

( ) ( )srstkr NDLsrD

VolumeMotorOuter

/2/1//41  2 ⋅⋅+⋅⋅⋅

≅

ππ
                (17)         

The goal of the optimization process is to find the 
motor which has the minimal volume depending on 
some specific parameters. In our case, these parameters 
are going to be , , srDr  and stkL .  In other words: 

rDx =1   ;  stkLx =2   ;  srx =3                                   (18)                      

We want to find ) , ,( 321 xxxX =  which brings the motor 
to its minimal volume.  This means that in our case, the 
objective function is: 

erVolumeMachineOutXF =)(                                  (19)                        

Using (18) and (19) in (17) gives: 
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B. SRM Optimization Constraints 
The above described general optimization problem 

was: “Find n  variables ),,,( 21 nxxxX K=  which 
optimize a scalar function )(XF  under m  scalar 



conditions ( ))(,),(),()( 21 XgXgXgXG mK= .” In our 
case 3=n  and the constraints (“scalar conditions”) are: 
• Motor aspect ratio: 

21 / xxAR = ,  33.0 ≤≤ AR  
• Slot-fill factor ff  [17]: 
 maxffff ≤ , where maxff  is the maximum slot-fill 

factor which depends on the type of the coil and 
the amount of insulation. 

• Steady state average torque avgT : 
 oavg TT ⋅≥ K , where oT  is the full load  

output torque and K  is the overload factor. 
• Efficiency η : 
 maxmin ηηη ≤≤ , where minη and maxη  are the 

maximum and minimum allowable efficiencies 
respectively. ( )/( lossesshaftshaft PPP +=η [18], where 

shaftP  is the machine shaft power, and lossesP  are the 
losses in the machine and in the converter). 

• Maximum generalized power factor mPF  [5]: 
 9.055.0 ≤≤ mPF  

and three domain constraints (which restrict the search 
into the practical values and preserve a reasonable 
computation time):  
• Rotor outer diameter:  

5.005.0 ≤≤ rD  
• Rotor axial length: 

5.005.0 ≤≤ stkL  
• Split  ratio  of  the  rotor  outer  diameter and 

the motor outer diameter: 
63.05.0 ≤≤ sr  

As it can be seen from Fig. 4, the objective function 
and the constraints are input into “STAGE 1” box and 
the fitness function is built using them. Before we 
explain how it is done, we have to understand that in 
order to build the fitness function, the constraints, which 
were defined above, have to be expressed in (11) and 
(12) forms. Applying this rules in our optimization 
problem, we should write the above described 
constraints as follows: 
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C. 7-stage Genetic Algorithm Optimization 
Using (20) and (21), the fitness function in our case 

can be written as: 
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This is actually “STAGE 1” of Fig. 4. In order to 
perform “STAGE 2” of this figure we may randomize a 
set of SRM designs. This set is the initial population and 
it contains popN  members. Since in our case, the X  
vector contains three variables ( 21, xx  and 3x ), all we 
have to do is to randomize popN  values for each one of 
these variables, and in that we actually “create” popN  
SRM designs. The evaluation of the initial population is 
done in “STAGE 3” of Fig. 4. If one or more constraints 
are not satisfied, the fitness value of the current SRM 
design will be penalized by adding something to its 
objective function, and get a higher “effective volume”, 
which means that there are less chances for this design 
to be in the next generation of the population. After 
applying the Genetic Algorithm operators in order to 
create the offspring (“STAGE 4”) and after evaluating 
the offspring (“STAGE 5”), a selection is performed so 
the better individuals are copied to the population of 
next generation (“STAGE 6”). Then, a termination 
criterion is checked (“STAGE 7”). If it is not satisfied 
then we go back to “STAGE 4”, otherwise we end the 
optimization procedure and pronounce the best SRM 
design which has been found. The termination criterion 
we choose for our optimization is a maximum number 
of generations. 

D. The Model of Simulation  
The analytical model that is being used here is the 

one which was presented by Miller & McGlip [19]. The 
paper shows how to build the magnetization curves at 
aligned, unaligned, and intermediate positions based on 
the unaligned- and the aligned unsaturated-inductance. 
These inductances can be achieved from the structural 
quantities of the motor [1,25]. After using this analytical 
model,  we can draw the magnetization curves  (the 
flux-linkage as a function of the phase-current and the 
rotor position, ),( θψ i ) of the optimized SRM design 
which was chosen by the optimization procedure.  

The voltage equation of the motor for one phase can 
be written as: 

t
iRv

∂
∂

−⋅=
ψ                                                              (23) 

where R  is the phase resistance and v  is the applied 
voltage which may be chosen as: 









>
<<−
<<

=

q

qc

c

V
V

v
θθ
θθθ
θθθ

        if              0
 if          
 if             0

                                      (24) 

where V  is the dc supplied voltage, and 0θ , cθ , qθ  are 
the turn-on, turn off and quenching angles respectively. 
The way of choosing these angels is explained in [2,3]. 
Under the assumption of constant velocity, (24) can be 
written as: 
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where mω  is angular velocity of the rotor. Taking an 
integral from both sides of (25), we can express the flux 
linkage as:  

∫ ⋅−= θ
ω

ψ diRv
m

)(1                                                 (26) 

In other words, we can say that: 

m
prevnew iRv

ω
θψψ ∆

⋅⋅−+≈ )(                                       (27) 

where newψ  is the flux linkage in the current integration 
step, prevψ  is the flux linkage in the previous integration 
step, and dtmωθ =∆  is the integration step length. The 
phase current i  must be updated from the new value of 
the flux linkage ψ  and the rotor position θ  in each 
integration step. Following the procedure in [20], the 
phase-current i  as a function of rotor position θ  can be 
calculated. Usually, the other phase-currents have the 
same waveform, but phase-shifted by a step angle. After 
achieving the magnetization curves, ),,( θψ i  and the 
phase-current, ),(θi  the coenergy and stored-energy can 
be calculated as follows: 

ψdiWf  ∫=                                                                (28) 

diWc ∫=  ψ                                                                 (29) 

Then, the instantaneous electromagnetic torque can be 
calculated in the following ways: 
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Using this equation, the torque of each one of the phases 
can be calculated and the sum of all torques from all 
phases gives the total torque produced by the motor. 
Then, the average torque can be calculated as well. 

VI. RESULTS 
The GA was applied for 50 generations which, as we 

shall see, was enough for converging on the global 
optimum. The objective function (which defines the 
target of the optimization) was chosen to minimize the 
outer volume of the motor (as stated in (13)). Table I 
shows the results of the optimization for various 
population sizes, number of crossovers, and number of 
mutations which were the inputs of the optimization 
procedure (together with the above mentioned fixed 
parameters). The outputs of the optimization procedure 
were the optimized variables ( ,rD ,stkL  and sr ). From 
these optimized variables, the optimized outer volume 
of the motor can be calculated. Other motor parameters 
that can also be calculated are shown in Table II. Fig. 5 
shows a trace of the best fitness function (for design 1) 
through the 50 generations of the optimization. As it can 

be seen from this figure, the rough converging of the 
Genetic Algorithm to the global optimum is very fast, 
but its “fine-tuning” may take much longer. From this 
figure, it can also be seen that 50 generations are 
enough for getting close enough to the global optimum. 
This fact is right almost for all designs in the range we 
checked, so 50 generations limit was chosen to be the 
termination condition of the GA. Another termination 
condition that may be chosen is the change in the fitness 
function of the current generation compared to the 
previous generation, but it was not necessary in our 
case. We have learned that if someone wants to use a 
maximum number of generations limit as the 
termination condition for the GA, he must try it first for 
a large number of generations and see where the change 
of the fitness function is small enough. Only then he can 
determine the maximum generations limit. If he will not 
do it, he might use too low maximum number of 
generations and stop the optimization process before 
reaching the global optimum, then he may “find” a 
wrong optimum. On the other hand, we should 
remember that too high maximum number of 
generations means unreasonable computation time. The 
maximum number of generations is only one of the 
parameters that may affect the truthfulness of the 
optimization process, the Genetic Algorithm may be 
affected from other parameters as well. Two of these 
parameters are the penalty factors r  and .β   As it was 
predicted: too small r  and β   cause a very slow 
converging, whereas too big r  and β  cause a fast, but 
wrong converging. A trail and error procedure has 
shown that 5101 −×=r  and 2=β  are good penalty 
factors in our case. The population size is another 
parameter  that  must  be  chosen  correctly.  Trying  to 
do the optimization with less than 100 designs in the 
population, gave in some cases wrong results. This is 
the reason that in Table I we use with sizes of 
population which are bigger than 100. The probabilities 
of crossovers and mutations are also important: too high 
probability of crossovers may lead us to converging to a 
local optimum, and too high probability of mutations 
may lead us to a primitive random search. On the other 
hand, too low probability of crossovers or mutations 
may not be enough for the changing of population 
through the generations. We have found that an 
adequate mutations and crossovers percentage in our 
case may be 1-4% and 10-40% (of the population size) 
respectively.  Fig. 6 shows the magnetization curves for 
one cycle of flux-linkage ),( θψ i , which were found by 
the above mention model. From  this  curves and form 
the voltage equation of one phase, we can reach to the 
phase-current waveform (Fig. 7). Then, the coenergy 
and the stored-energy can be calculated.  From the 
coenergy (or the stored-energy), the instantaneous 
torque can be found. Fig. 8 shows the dynamic torque 



curves of each one of the phases, whereas Fig. 9 shows 
the total torque and the average torque of the motor. Fig. 
5-9 refer to design 1 of Tables I-II. 

VII. CONCLUSION 
This paper has explained the principles of the Genetic 

Algorithm and shown how we can adapt this algorithm 
for a constrained motor optimization. Then, it has 
shown how this can be done for the switched reluctance 
motor. An accurate step-by-step procedure of doing a 
structural optimization for the SRM was discussed and a 
simulation of  this  procedure  was  done  in  order  to  
check it. We have  found that the Genetic Algorithm is a 
fast and reliable algorithm for a structural SRM 
optimization, as long as its parameters (size of 
population, number of mutations and crossovers, etc) 
are properly configured. An important conclusion of the 
simulation we have done is that the first thing one 
should do, before making his final experiments with the 
Genetic Algorithm, is learning the problem in order he 
can configure these parameters in a proper way. This 
learning may take time (because for example we may 
have to try the Genetic Algorithm with a large number 
of generations in order to find a good termination 
condition), but we must remember this “learning stage” 
is very important to the truthfulness of the final result, 
which is, in our case, the optimal SRM design. Later 
paper [14] is going to deal with torque ripple 
minimization using the GA and is also going to compare 
the GA with a deterministic optimization method called 
the Simplex Method.  

 
Fig. 5. Trace of the best fitness function 

 
Fig. 6. Magnetization curves of the described motor 

 
 

TABLE I 
GA OPTIMIZATION  –  INPUT PARAMETERS, OUT PARAMETER AND OBJECTIVE FUNCTION 

 

 Parameter Design 1 Design 2 Design 3 Design 4 
Population size popN  100 150 200 300 

Percentage of crossovers 20% 10% 20% 20% 

Inputs 

Percentage of mutations 2% 2% 2% 1% 
Rotor diameter rD   [m] 0.1398 0.1442 0.1372 0.1397 

Motor stack length stkL   [m] 0.2156 0.1942 0.2343 0.1922 

Outputs 

Split ratio 0/ DDsr r=  0.6287 0.6286 0.6291 0.6292 

F(X) Motor output volume outV  [m3] 0.0098 0.0096 0.0101 0.0089 
 

TABLE II 
GA OPTIMIZATION  –  CALCULATED PARAMETERS 

 

 Parameter Design 1 Design 2 Design 3 Design 4 
Machine outer diameter oD  [m] 0.2224 0.2294 0.2181 0.2220 

Internal rotor diameter intrD  [m] 0.0911 0.0927 0.0901 0.0910 
Internal stator diameter intsD  [m] 0.1734 0.1789 0.1700 0.1731 

Stator diameter sD  [m] 0.1403 0.1447 0.1377 0.1402 

Calculated 
parameters 

Average torque [Nm] 125.4586 125.221 124.954 125.961 



 
Fig. 7.  Phase-current 

 
Fig. 8.  Phase torques 

 
Fig. 9.  Total torque and average torque 
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