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Abstract: The design of various feedback 

controllers, optimal controllers require the 

information about all the states present in the 

system. Not all the states in the system will be 

available for direct measurement. In order to 

estimate all the states of the system the observers 

are designed. In this paper the state estimation 

problem of the CSTR is considered, the 

observers used include Luenberger Observer, 

Kalman Observer, and Sliding Mode Observer. 

The states that are estimated using the observers 

are utilized by the state feedback controllers and 

the optimal controllers, to ensure the 

convergence of the states to the equilibrium 

point. The designed observers had the residuals 

converging to zero in finite time and the 

comparison in terms of estimation errors 

resulted in better performance of the sliding 

mode observer. 

Keywords: Luenberger Observer, Sliding Mode 

Observers (SMO), Kalman Observers (KO), 
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1. Introduction 

The CSTR is important process equipment and 

the reactor considered here is exothermic. The 

distinguished property of a CSTR is that it has 

non linearitires such as bifurcations [1], multiple 

steady states [2], Chaos [3], limit cycle [4] and 

potential safety issues [5]. In some cases state 

variables of the reactor are not completely 

measurable for economic or technical reasons so 

a T-S based observer was used to estimate the 

states and the H infinity controller was used to 

ensure robust tracking performance [6], [7].The 

process variables (states) may not available for 

direct measurement, but they can be inferred 

from readily accessible states by means of the 

competent design of observers. The observers 

are used in places where the sensors are costly or 

where the sensors are not available for direct 

measurement of the state variables. The most 

common type of observer used is Luenberger 

observer it is known for its simple structure 

[8].In case of presence of disturbances the 

Kalman observer can be used [9]. The observers 

can also be used in fault detection and also as 

disturbance estimator. The sliding mode 

observer method incorporates a switching 

function into the observer design to make the 

error dynamics to converge to zero 

asymptotically [10].  

The organization of the paper is as follows. In 

Section 2 the modeling of the CSTR is given in 

detail. The various models of state observers are 

briefed in section 3. The controller design is 

given in Section 4. The simulation results of 

observer based controller of CSTR are reported 

in section 5. Finally the comparison among the 

observers is given in the conclusion. 

 

2. Modeling of CSTR 

Modeling of the CSTR involves using the first 

principles to obtain the model of a system. Here 

the species balance and the energy balance of the 

CSTR is carried out to derive the state space 

model and the transfer function model of the 

system. During the modeling of the CSTR the 

following assumptions are made  

1. Perfect mixing of the reactants & 

2. Constant volume of the reactor. 

 



 
Fig.1 Typical CSTR 

 

        Table.1:  Parameters of the CSTR 

 

States 
Measured 

Variable 

Estimated 

Variable 

Concentration 

in the rector 

(mol/m3) Concentration 

in the rector 

(mol/m3) 

 

Temperature 

in the 

reactor(K) Temperature 

in the 

reactor(K) 

 

The mathematical model equations are obtained 

by a component mass balance and energy 

balance principle in the reactor.  

(Accumulation of component Mass) = 

(Component Mass) in - (component Mass) out + 

(generation of component Mass)  

(Accumulation U + PE + KE) = (H + PE + KE) 

in - (H+PE+KE) out + Q-Ws  

The species balance is given as  
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The state space representation of the CSTR is 

given as 
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Where the states of the process are 

Concentration of the Reactor (Ca), Temperature 

of the Reactor (T). Manipulated input is the 

Temperature of the Cooling Jacket (Tj). 

Controlled outputs are Concentration of the 

Reactor (Ca) and Temperature of the Reactor (T). 

 

Table.2:  Parameter values of the model 

 

Tj Temperature of cooling jacket (K) 270 

F Volumetric Flow rate(m3/sec) 100 

V Volume of CSTR(m3) 100 

ρ Density of A-B Mixture(kg/m3) 1000 

Cp 
Heat capacity of A-B mixture(J/kg-

K) 
0.239 

∆H 
Heat of reaction for  A       B 

(J/mol) 
4105  

E/R EoverR 8750 

K0 Pre exponential factor(1/sec) 10102.7   

UA 
Overall heat transfer coefficient 

(U=W/m2-K) 
4105  

Ca,f Feed concentration 1 

T Temperature in CSTR (K) 350 

Ca Concentration of A in CSTR 0.989 

 

The CSTR is linearized around the operating 

points Ca = 0.989 mol/m3 and T = 296.6 K and 

the state space representation of the nominal 

plant model is obtained. 
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Where, 



A is nn  the system matrix, a constant 

B is rn   the input matrix, a constant 

C is nm  the output matrix, a constant 

D is rm  the direct feed through, a constant 

x is 1n  the state vector, a function of time 

u 1r  is the input, a function of time 

y 1m   the output, a function of time 

3. Models of observers 

3.1 Luenberger Observer 

For the continuous system of the form   

                                                                                                                                                                                  

                                      (5)                                                                                                           

The pair [A, C] should be observable for the 

application of observer to the system. The 

observer equation is given as 

  

                                                              (6)                                                                                                     

L is the observer gain 

The Estimation error is given as  ; 

Residual of the observer is given as .                                                                                                                            

The observer gain L must be chosen in such a 

way that the error dynamics converges to zero 

when time tends to infinity. The closed loop 

poles of the observer have to be 3 to 4 times 

greater than the poles of the system [11]. 

 

3.2 Continuous Time Kalman Observer 

 

Kalman observer is a recursive predictive filter 

that is based on the use of state space techniques 

and recursive algorithms, i.e. only the estimated 

state from the previous time step and the current 

measurement are needed to compute the estimate 

of the current state. The Kalman filter operates 

by propagating the mean and covariance of the 

state through time [12]. 

For the continuous system of the form 

 

                                   (7)                                                                                                      

With inputs u, white process noise w, and white 

measurement noise v satisfying 

 

E(w)=E(v)=0, E(wwT)=Qn, E(vvT)=Rn, 

E(wvT)=Nn 

The observer equation is given as  

 

                                                              (8)                                                                                                                      

L is the observer gain.  

The steady-state error covariance is given by  

                    (9)                                                                                           

The filter gain L is determined by solving an 

algebraic Riccati equation to be 

L = (PCT+N) R-1                                             (10)                                                                                                             

3.3 Sliding Mode Observer 

For the continuous system of the form 

                                                                                                                           

                                    (11)                                                                                                        

Where A ϵ R n x n, B ϵ R n x m, C ϵ R p x n and p  

m. The pair [A, C] should be observable for the 

application of observer to the system 

Consider the change of coordinates x Tc x 

whereby 

Tc =                                                        (12)                                                                                                             

Where the columns of NC ϵ R n x (n-p) span the 

null space of C. This transformation is 

nonsingular. 

The canonical form for the nominal system is 

given as 

 
                               (13)                                                                                                                  

Where Tc X =  

The observer is given as  

                                                                                                         

                        (14)                                                        

Where  represent the state estimates, L ϵ 

R (n-p) x p is a gain matrix and  = M sign ( ) 

where M ϵ R+. L is the observer gain and it can 



be chosen to make the spectrum of   

lie in the left of the complex plane [13]. 

 

4. Controller Design 

4.1 State feedback control 

For a system of the form 

                                                                                                                 

                                     (15)                                                                                                            

 

A state feedback control places the closed loop 

poles at the desired location. The poles of the 

system is given by the Eigen values of the A 

matrix. This can be done using methods namely 

Pole placement, Ackermann's formula. For the 

application of the State feedback controls the 

necessary and the sufficient condition is that the 

system is controllable. For the above mentioned 

system the control vector u is given by   

                                                    (16)                                                                                                            

The closed loop system is given as 

   

                                             (17)                                                                                              

The gain matrix is designed in such a way that 

Determinant of (sI - (A - BK)) = (s-µ1) (s-µ2) (s-

µ3)….. Where µ1, µ2, µ3 are the desired pole 

locations [14]. 

 

4.2 Optimal Control 

 

For a system of the form 

 

 
The optimal controllers are designed in such a 

way that it minimizes the Quadratic cost 

function (J). 


+=
0

)( dtRuuQxxJ TT . Here x is 

the state variable, u is the control variable, Q and 

R are the penalty on the state variables and 

control variables. In order to optimize the gain 

value (K) in the state feedback control u=-Kx 

(t) the optimal control is used. The value of K is 

obtained by solving PBRK T = −1 . The value 

of P is found by solving the Algebraic Ricatti 

Equation 01 =+−+ − QPBPRPAPA TT
[15]. 

 

5. Simulation Results 

 

The state space representation of the CSTR is 

obtained by linearizing the non linear model 

around the steady state operating points. 
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5.1 Luenberger Observer 

For the design of the Luenberger Observer 

location of the desired poles of the plant are µ1=-

0.0281, µ2=-0.1480.The observer poles are 

chosen to be -0.0842, -0.4441which is 3 times 

greater than the poles of the plant. The 

calculated value of the observer gain 

is 







=

3910.13

3522.0
L .Using the poles and the 

observer gain the observer is constructed. The 

Fig.2 shows that the residuals of the observer 

tend to zero in a finite time. 

Fig.2. Residual of Luenberger Observer 

The measured state which is the concentration 

(mol/m3) is also estimated as we are invloved in 

designing if full order observers. The Fig.3, 4 

shows the convergence of the estimated states 

(x1, x2) to the plant’s real states. Table 3 shows 

the values of estimation error at different time. 



                            
Fig.3. Convergence of Concentration (x1) in 

mol/m3 of Luenberger Observer 

 
Fig.4. Convergence of Temperature (x2) in  

Kelvin (K) of Luenberger Observer 

 

Table 3: Estimation Error calculation for 

Luenberger Observer 

Time 

(Seco

nds) 

Estimation Error in states  

-  

Concentration(mol/

m3) 

-  

Temperature (K) 

 10 3.9563 1.7212 

20 2.2881 0.3273 

30 1.2923 0.0124 

40 0.4999 0.0062 

 

5.2. Continuous time Kalman Observer 

 

The greater advantage of the Kalman Observer is 

the consideration of the process noise and the 

measurement noise. The weighing matrices Qn 

and Rn which satisfies E(w)=E(v)=0, 

E(wwT)=Qn, E(vvT)=Rn, E(wvT)=Nn; R 

depends on the sensor sensitivity. If this is a real 

world problem this can be obtained from the 

manufacturer. If not an identity matrix 

multiplied by a scalar that is less than 1is used. 

Q is the covariance of the process noise. Again if 

this is a real world problem this can be obtained 

in the noise level in the states of the system at 

steady state. A non-zero Q helps achieve good 

convergency characteristics  

 1
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The steady state Covariance matrix for the 

design of Kalman observer is given as 






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

−

−
=

0613.00948.0

0948.01639.0
P

. 

The observer gain L is a column vector with 

values 










−
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0384.0

0617.0
L

. 

5.2.1 Kalman Observer Based Optimal 

Controller 

The Optimal controller design requires 

information about the solution to the Algebraic 

Ricatti-Equation, 

(ARE) 01 =+−+ − QPBPRPAPA TT
. The value 

of  1
10

01
=








= RQ  and the solution to the 

ARE is 







=

1937.32139.0

2139.05120.8
P .The obtained 

value of the controller gain (K) is shown in the 

tabulation. The residuals of the observer which is 

the difference between the output y (t) of the 

plant and the output   of the observer tend to 

zero in finite time. The Fig.5 shows that the 

residuals of the observer tend to zero in a finite time. 

The measured state which is the concentration 

(mol/m3) is also estimated as we are invloved in 

designing if full order observers. The Fig.6, 7 

shows the convergence of the estimated states 

(x1, x2) to the plant’s real states. Table 4 shows 

the values of estimation error at different time. 

 

 



 
   Fig.4. Residual of LQR based Kalman 

Observer

 
Fig.5. Convergence of Concentration (x1) in 

mol/m3 of LQR based Kalman Observer 

 
Fig.6. Convergence of Temperature (x2) in 

Kelvin (K) of LQR based Kalman Observer 

 

 

 

 

Table 4: Estimation Error and Gain calculation 

for LQR based Kalman Observer 

Time 

(Seco

nds) 

Estimation Error in 

states 

Controller Gain 

[K1 K2] 

-  

Concentrati

on 

(mol/m3) 

-  

Temperat

ure 

(K) 

10 0.6773 0.8931  

[0.3251 -0.3008] 

 
20 0.1741 0.2483 

30 0.0802 0.0017 

40 0.0172 0.0027 

 

5.2.2 Kalman Observer based State Feedback 

Controller 

For the design of the State feedback control law 

the location of the desired poles is required. Here 

µ1=-0.0903, µ2=-0.1476. Once the locations of 

the desired poles are known the controller gain 

can be calculated. The Fig.8 shows that the 

residuals of the observer tend to zero in a finite time.  

The measured state which is the concentration 

(mol/m3) is also estimated as we are invloved in 

designing if full order observers. The Fig.9, 10 

shows the convergence of the estimated states 

(x1, x2) to the plant’s real states. Table 5 shows 

the values of estimation error at different time. 

 
 Fig.8. Residual of state feedback based Kalman 

Observer 

 

 

 



 
Fig.9. Convergence of Concentration (x1) in 

mol/m3 of State feedback based Kalman 

Observer 

 
Fig.10. Convergence of Temperature (x2) in 

Kelvin (K) of State feedback based Kalman 

Observer 

Table 5: Estimation Error calculation for state 

feedback based Kalman Observer 

Time 

(Secon

ds) 

Estimation Error in states  Controller Gain  

[K1 K2] -  

Concentrati

on(mol/m3) 

-  

Temperatu

re (K) 

10 0.3820 0.9704  

 

[0.4212  0.1936] 

 

 

20 0.3452 0.3963 

30 0.0215 0.2610 

40 0.0020 0.3434 

 

5.3. Sliding Mode Observer  

To design a SMO the change of coordinates x 

Tc x has to be calculated Tc =               









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. The change of 

coordinates leads to 

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




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
=

T

C
X

a

10

01
. As  = M 

sign ( ), the value of M is 0.1. 

 The canonical form of the nominal system is 
 

                                                                                                   

       

The observer gain L= -0.069. 

 

5.3.1. Sliding Mode Observer based Optimal 

Controller 

 

The Optimal controller design requires 

information about the solution to the Algebraic 

Ricatti Equation 

(ARE) 01 =+−+ − QPBPRPAPA TT
. The value 

of  1
10

01
=








= RQ  and the solution to the 

ARE is 







=

2015.32149.0

2149.05122.8
P .The obtained 

value of the controller gain (K) is shown in the 

tabulation. The residuals of the observer which is 

the difference between the output y (t) of the 

plant and the output   of the observer tend to 

zero in finite time. The Fig.11 shows that the 

residuals of the observer tend to zero in a finite time.  
The measured state which is the concentration 

(mol/m3) is also estimated as we are invloved in 

designing if full order observers. The Fig.12, 13 

shows the convergence of the estimated states 

(x1, x2) to the plant’s real states. Table 6 shows 

the values of estimation error at different time.      



 
  Fig.11. Residual of LQR based Sliding Mode 

Observer 

 
Fig.12.Convergence of Concentration (x1) in 

mol/m3of LQR based sliding mode observer 

 
Fig.13. Convergence of Temperature (x2) in 

Kelvin (K) of LQR based sliding mode observer 

Table.6. Estimation Error calculation using LQR 

based sliding mode observer 

 
Time 

(Seco

nds) 

Estimation Error in states  Controller Gain 

[K1 K2] -  

Concentrati

-  

Temperatur

on(mol/m3) e (K) 

10 0.0455 0.412  

[-0.7064  0.2379] 

 
20 0.0124 0.3065 

30 0.0034 0.2283 

40 0.0009 0.1704 

 

5.3.2 Sliding Mode Observer based State 

Feedback Controller 

 

For the design of the State feedback control law 

the location of the desired poles is required. Here 

µ1=-0.0281, µ2=-0.1476. Once the locations of 

the desired poles are known the controller gain 

can be calculated. The Fig.14 shows that the 

residuals of the observer tend to zero in a finite time.  

The measured state which is the concentration 

(mol/m3) is also estimated as we are invloved in 

designing if full order observers. The Fig.15, 16 

shows the convergence of the estimated states 

(x1, x2) to the plant’s real states. Table 7 shows 

the values of estimation error at different time. 

 
Fig.14. Residual of State feedback based Sliding 

Mode Observer                                   

 



Fig.15. Convergence of Concentration (x1) in 

mol/m3of state feedback based sliding mode 

observer 

 
Fig.16. Convergence of Temperature (x2) in 

Kelvin (K) of state feedback based sliding mode 

observer 

Table.7. Estimation Error calculation for state 

feedback based sliding mode observer 

 
Time 

(Seco

nds) 

Estimation Error in 

states  

Controller Gain 

[K1 K2] 

-  

Concentra

tion(mol/

m3) 

-  

Temperatur

e (K) 

10 0.0676 0.4548  

[0.3251  -0.3008] 

 
20 0.0182 0.3351 

30 0.0050 0.2493 

40 0.0014 0.1860 

 

In order to ensure the robustness of the Sliding 

Mode Observers the disturbance rejection and 

the tracking performance of the observers were 

calculated in terms of the steady state error and 

tabulated.  

Table.8. Comparison of the Disturbance 

rejection and Tracking performance of the 

Observer Based Controllers in terms of Steady 

State Error 

 

6. Conclusion 

The estimation error calculations from the 

simulations confirm that the Sliding Mode 

Observers had minimum deviation between the 

true state and the estimated states. The sliding 

observer tracked the true states when both the 

state feedback and optimal control laws were 

used. The Luenberger Observer had the 

advantage of its simple structure and design and 

the Kalman Observer had the advantage of 

including the process noise and measurement 

noise into the system. The observer gains and the 

controller gains which are important for the 

design for observers are tabulated. The observers 

are also being compared in terms of its 

disturbance rejection and tracking performances 

which ensure the robustness of the sliding mode 

observers due to the reduced values of the steady 

state error comparing to Luenberger and Kalman 

Observers which is shown in Table 8. 
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