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Abstract: This paper deals with the robust series and 

parallel fractional-order PID synthesis controllers with the 

automatic selection of the adjustable performance weights, 

which are given in the weighted-mixed sensitivity problem. 

The significant contribution of the paper is to achieve the 

good trade-off between nominal performances and robust 

stability for DC motor regardless its nonlinear dynamic 

behavior, the unstructured model uncertainties and the 

effect of the sensor noises on the feedback control system. 

The main goal is formulated as the weighted-mixed 

sensitivity problem with unknown adjustable performance 

weight.  This problem is then solved using an adequate 

optimization algorithm and its optimal solution leads to 

determine simultaneously the robust fractional PID 

controller, which is proposed by the series and the parallel 

fractional structures, As well as, the obtained optimal 

solution determines the corresponding adjustable 

performance weight. The proposed control technique is 

applied on DC motor where its dynamic behavior is 

modeled by unstructured multiplicative model uncertainty. 

The obtained performances are compared in frequency- and 

time-domains with those given by both integer controllers 

such classical PID and H∞ controllers. 
 
Key words: Fractional-order PID controller FO-PID, Robust 
Stability RS, Nominal Performance NP, Min-Max 
Optimization Problem. 
 

1. Introduction 

Recently, one of the most desired aspects in 

DC control motor is to achieve a good trade-off 

between RS and NP of the feedback control 

system [1–2]. Due to inaccurate modeling, 

component aging of mechanical part of DC 

motor, sensor noises, exterior conditions, and 

others, all proposed DC motor models 

unavoidably incorporate uncertainties and 

external disturbances.  

In control engineering, the controller synthesis 

using the integer PID controller-structures is still 

widely recognized as one of the simplest yet most 

effective control strategies in industry [3–5]. 

However, the obtained H∞ performances analysis 

does not guarantees both RS and NP, and optimal 

trade-off between them. Hence this trade-off 

should be enhanced when DC motor is subjected 

to parametric uncertainties and measurement 

noises.  

To avoid this problem, Matrix Inequality LMI 

based H∞ control techniques or Algebraic Riccati 

equations AREs are usually preferred over other 

methods [6-7], due to its computational simplicity 

and efficiency. The controller parameters are 

designed from solving the weighted-mixed 

sensitivity problem where all the above 

mentioned effects are presented using some 

weights in the weighted-mixed sensitivity 

problem. The obtained robust controller ensures 

good robustness properties. However, a 

significant shortcoming of these techniques leads 

to high-order controller. Its implementation leads 

to high cost, difficult commissioning, poor 

reliability, and potential problems in maintenance. 

Recently, many researches have done H∞ 

control analysis of uncertain systems using 

fractional controller-structures, from which the 

controller parameters are optimized by an 

adequate optimization tool.  

İt may be noted that the fractional order 

carried-out on the Laplace operator is 

approximated by an equivalent integer transfer 

function, which contains the infinite poles and 

zeros [8]. Therefore, various advanced control 

design methods benefit to this property. Its 

controller is designed with the less number of the 

unknown parameters [8-9]. It can also satisfy a 

high level of the imposed H∞ specifications where 

the model parameters change in wide range.  

It is further noticed that the FO-PID 



 

 

controllers have been applied by researchers in 

different fields of engineering and industries 

around the world, such as in motion control of DC 

motor [9–10], automatic voltage regulator [11–

12], aerospace designing control system [13], 

weapon system[14], wind energy system [15], 

nuclear reactor [16], hydropower turbine [17], and 

most of the above mentioned research results 

show that the FO-PID controller has a better 

performance and robustness than a conventional 

one. Although it is so, the parameter optimization 

of FO-PID controller is still an important and 

challenge issue until now. 

In this paper, the robust FO-PID controller is 

proposed using both structures series and parallel. 

The objective is to optimize the controller 

parameters from solving the weighted-mixed 

problem, in which the adjustable performance 

weight is derived.  The control strategy is applied 

on DC motor to validate the efficiency of the 

proposed idea.  
 
2. On the Fractional Calculus  

Fractional calculus is a generalization of 

integration and differentiation of the non-integer 

order operator a tD , where a  and t  denote the 

limits of the operation [18]. The continuous 

integro-differential operator of order   is defined 

in the following way  
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So that the Riemann – Liouville definition is 
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According to (2), n  denotes the integer part of 

  where 1n n    and  .  is the Euler's gamma 

function that given by   n 1 n

0
n t e dt


   , where 

 1 !n n   . The Laplace transforms of the RL 

fractional derivative/integral (2) under zero initial 

conditions for order   is given by 
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Noticing that, the implementation FO-PID 

controller needs to approximate its fractional part 

of powers   by the usual integer transfer 

functions with a similar behavior. The method is 

based on approximating s  in a specified 

frequency range [ , ]h b   and of integer order N  

by a rational transfer function obtained in the 

following manner [19] 

k N
k

k N k

s
s C

s

 











                          (4) 

From (4) the zeros, poles and gain are respectively 

defined as 
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In some fractional controller-structure, due to 

the commutative property of the fractional 

operator s  and order 1  , it can be 

approximated by ns s   where n     is the 

integer part of   and s  is approximated 

according to equation (4). 
 
3. Robust Parallel/Series FO-PID Design 

Controller 

Some feedback control systems implement a 

FO-PID controller function on serial form, while 

others use the parallel form. The aim of this paper 

is to observe differences between them for the DC 

motor, and to see the performances of each one in 

time and frequency domains. 

3.1. Robust Parallel FO-PID Controller 

The Robust parallel FO-PID controller called 

also PFO-PID is the general case of the classical 

parallel integer one. In time domain, the 

differential equation is defined by [20-21] 

0 0( ) * ( ) * ( ) * ( )p i t d tu t K e t K D e t K D e t            (8) 

Where ( )e t  and ( )u t  are respectively, the set-



 

error and the control signal. The transfer function 

of robust PFO-PID controller is therefore given 

through the following Laplace transform [20] 

 , p i dK s x K K s K s                   (9) 

According to (9), the controller parameters are 

given by the design vector 
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So, there are six parameters to be tune, which 

are given by the design vector 

, , , , ,
T

p i dx K K K       . 

3.2. Robust Series FO-PID Controller  

The Robust series FO-PID controller called 

also SFO-PID becomes the general form the 

classical series integer PID controller. The 

differential equation is therefore given in time 

domain by [22], [23] 
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From (11) the transfer function is defined by 

(12), in which the pre-filter 
1

1 s
can be 

included for the same previous reason, yields 

also                                                  
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where the weighted-mixed sensitivity problem is 

solved using the same prevois vector. 
 
4. Weighted-Mixed Sensitivity Formulation 

Problem   

    Let consider the feedback control system 

shown in Figure 1 
 

 

 

 

 

 

 

 

 

 

 

where ( )yd s and ( )s denote respectively, the load 

disturbance and the noise-measurements. Moreover, 

( )r s and ( )y s are respectively, the set-point reference 

and the process output of the feedback control system.  

Suppose that the nominal plant transfer function 

is ( )NG s and consider the perturbed plant transfer 

function of the form  ( ) 1 ( ) ( )P m NG s s G s  . 

Here, ( )m s is the normalized uncertainty that
 

is 

assumed to satisfy 

 max( ) max [ ( )] 1m ms j


 




                 (13)
 

where max[ ( )]m j  is the maximal singular value of 

( )m s at the frequency point and 
min max[  , ]   .  

In robust control theory the trade-off between RS 

and NP depends heavily by satisfying two following 

conditions, which are:                  

4.1. RS Condition 

The robust FO-PID controller should guarantee the 

RS that means the closed-loop system must remain 

stable in presence of all possible uncertainties. In order 

to secure the suitable RS, the complementary 

sensitivity transfer function ( , )T s x  has been used. 

Based upon the small gain theorem the RS condition 

for an uncertain system subject to the unstructured 

multiplicative uncertainty is defined by [24][20]           
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where  
1

( , ) ( ) ( , ) ( ) ( , )N NT s x G s K s x I G s K s x


  denotes 

the sensitivity function, which defines the transfer 

function from both inputs ( )s and ( )r s to the output 

( )y s . Moreover ( )TW j presents any stable transfer 

function that majorates all possible uncertainties and 

satisfies the following condition 
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   İn the next section, ( )TW s will be assumed as the 

following fixed transfer function 
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where its parameters are chosen similar to that given 

in [21].   

4.2. NP Condition 

During the design procedure, relatively fast 
Figure1. Block diagram of the feedback control system 
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responses, small overshoots and robustness against the 

model uncertainties can be assumed as suitable 

performances. Consequently, acquiring the NP is a 

crucial factor that should be fulfilled by optimization. 

To ensure this goal, the sensitivity transfer 

function ( , )S s x , has been used. 

Noticing that, the sufficient small singular 

values ( , )S s x  in specific frequency ranges can satisfy 

precise performance characteristics. Moreover, all 

these characteristics can be obtained by selecting the 

performance weight ( )SW s , which is used to shape the 

sensitivity function as follow [24], [20] 
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Where  
1

( ) ( ) ( , )NS s I G s K s x


  denotes the 

sensitivity function, which defines the transfer function 

from both inputs ( )yd s and ( )r s to the output ( )e s . In 

this paper the performance weight SW will be assumed 

as the adjustable transfer function that defined in (18). 

Its parameters are jointly optimized to those of the 

desired controller using some rules given that decribed 

later [25]. We get      
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Where B is the minimum bandwidth, which presents 

the straight-line approximation of ( )SW s crosses the 

unity (i.e. 0db ), 
SM is  the minimum peak, which limits 

 ,S s x


and  S is the steady-state error, which is 

fixed to the less value. İn this paper the good trade-off 

between NP and RS is constrained by the good 

selecting of the performance weight (18), in which the 

parameters SM and B are given by optimization. So 

that these parameters are chosen according to the 

following rules.   

i. - Typically, the adjustable parameter SM is chosen to 

be sufficiently small. So that the pole of 1
SW

is at least 

two decades above its zero.  In general, it is required to 

have S SM  . 

ii.- When the control objective is to improve the NP 

margin, the general rule is to flat the curve of 

 max ( , )S j x  as much as possible in high frequency. 

This goal is achieved by increasing B . However, 

increasing this frequency more than necessary 

deteriorates the RS condition in high-frequency range.  

Now, in the /S T
 
mixed sensitivity problem, both 

conditions (14) and (17) are combined and equation 

(18) is used to determine the following optimization 

problem[25]          
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Its solution is given using the fminimax function of 

the Matlab software, in which the new design 

parameter vector is defined by 

( , )( , )

[ , , , , , , , ]

S
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p i d S B
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x K K K M    . 

5.  Simulation Results and Discussions  

5.1. DC Motor Model   

The DC machines are characterized by their 

simplicities and flexibilities. By means of various 

combinations of the shunt, series and the separately 

excited field windings, they can be designed to display 

a wide variety of volt-ampere or speed-torque 

characteristics for both dynamic and steady-state 

operation. The systems of DC machines have been 

frequently used in many applications requiring a wide 

range of motor speeds and a precise output motor 

control. The diagram of typical DC motor is shown by 

Figure 2. We get  

 

 

 

 

 

A well-known linear model of DC motor for the speed 

control system is shown by Figure 3 

 

 

 

 

 

 

 

According to Figure 3, the plant-model from the input 

voltage, ( )V s  to the output velocity ( )s  is given by 
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Figure.2. Schematic diagram of the DC Motor  

 

Figure3. Bloc Diagram of DC Motor 
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Thus, the nominal plant-model from the angle ( )s to 

the voltage ( )V s is defined as                                      
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The nominal values of DC motor are summarized by 

Table1. We get  

Table1: DC Motor parameters 

Motor Parameters Value Unity 

J 0.02
 kg.m2/s2 

B 0.2 N-m.s/rad 

K0 0.1 N.m/A 

R 2 ohm 

L 0.5 H 

For the weighted-mixed sensitivity formulation 

problem, the frequency range 4 4

min max[ , ] = [10 , 10 ]    is 

used where the same fixed robustness weight of [21] is 

chosen. We get 

 
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In the next section, the adjustable weighting 

function ( , )SW s x  is defined by 
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The obtained solution of (19) yields also the following 

transfer functions 

a) PFO-PID: 
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b) SFO-PID: 
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The obtained performances by the PFO-PID 

controller are compared with those given by the 

conventional integer H∞ controller. Its transfer function 

is given by the Hinflmi function of the Matlab 

environment which solves the weighted-mixed 

sensitivity problem based upon both 

weights ( , )
PSW s x and ( )TW s . Nevertheless, the 

performances of the SFO-PID controller are compared 

with those given by the conventional integer H∞ 

controller, in which both 

weights ( , )
sSW s x and ( )TW s are used in the optimization 

problem. Finally, the obtained performances of 

previous controllers are compared with those given by 

the conventional integer PID controller, which its 

transfer function is given 

by 1 178.877
( ) 124.358 14.338

1 0.001.

s
K s s

s

  


. 

Figure 4 compares the singular values plots of SFO-

PID, conventional integer PID and conventional H∞ 

controllers in frequency domain. However, Figure 5 

compares the singular values plots of PFO-PID, 

conventional integer PID and conventional H∞ 

controllers. We can obtain  
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Figure4. Nominal performance properties given by SFO-

PID, integer PID and H∞ controllers 

According to figure 4, it can be seen that maximal 

singular values plot given by the integer PID controller 

exceed the upper bounds, max1/ [ ( , )]
sSW j x   at some 

frequencies except, in frequency range [0.07 ,  1.33]  
radians/seconds. This can be explained in the time 

domain by higher sensitivity to sensor noises. Noticing 



 

 

that the better NP margin is given when the maximum 

singular values plot of the sensitivity function are small 

as much as possible at low-frequency range. So that, 

the robust SFO-PID controller ensures the better 

margin then the H∞ controller. Furthermore, in low 

frequency range when 0.005  radians/seconds, the 

curve of 
max[ ( , )]S j x  

 
is below 80 dB , which means 

that the load disturbances are attenuated more than 

10000 times at plant output.  
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Figure.5. Nominal performance properties given by PFO-

PID, integer PID and H∞ controllers 

 

According to figure 5, the robust PFO-PID controller 

ensures the better NP margin than the one given by H∞ 

controller; integer PID controller and also the robust 

SFO-PID controller (see figure 6).   
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Figure.6. Nominal performance properties: PFO-PID vs 

SFO-PID 

For the RS case, figure 7 compares the singular values 

plots of SFO-PID, conventional integer PID and 

conventional H∞ controllers in frequency domain. 

However, Figure 8 compares the singular values plots 

of PFO-PID, conventional integer PID and 

conventional H∞ controllers. We get 
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Figure.7. Robust stability properties given by SFO-PID, 

integer PID and H∞ controllers 
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Figure.8. Robust stability properties given by PFO-PID, 

integer PID and H∞ controllers 

According to figures 7 and 8, it can be seen that the 

better RS margin is given when the maximum singular 

values of complementary sensitivity matrix are small 

as much as possible at high frequency range. So that, 

the H∞ ensures the better NP margin compared with 

those given by integer PID, PFO-PID and SFO-PID 

controllers. 
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Figure.9. Robust stability properties: PFO-PID vs SFO-

PID controllers 

    According to figure 9, it is easy to see that the 

singular values plot, which is given by the PFO-PID 

controller is reduced at frequencies beyond the system 

bandwidth in order to secure robustness at high 

frequency range. Furthermore, for frequencies above 

3200   radians/seconds, this plot is below -60 dB in 

which the sensor noises are suppressed more than 1000 

time at the plant output. Consequently, the PFO-PID 

controller provides the better RS margin compared 

with the one given by the SFO-PID controller. To 

confirm the above results in time domain, the set-point 

reference that assumed a unit-step is used. Therefore, 

figure 10 shows the obtained tracking dynamic of the 

closed-loop system given by the H∞ , integer PID, 

robust PFO-PID and robust SFO-PID controllers. So 

that, the better tracking properties are ensured by the 

robust PFO-PID controller, which are characterized by 

the fast settling time with the reasonable overtaking. 
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Figure.10. Tracking dynamic of the closed-loop system 

given by the H∞ , integer PID, robust PFO-PID and robust 

SFO-PID controllers 

 
6. Conclusion  

In this paper, comparisons between two fractional 

controller-structures have been presented for DC speed 

control motor. The design controllers have been 

achieved using the series and parallel fractional order 

PID configurations. Each controller has been designed 

with the automatic selection of corresponding 

performance weight. The parameters of both controller 

and weight have been determined from solving the 

weighted-mixed sensitivity problem by the fminimax 

function of the Matlab software. The obtained 

simulation results have been compared with those 

given by two conventional controllers. The obtained 

simulation results show the notable improvement that 

the proposed control strategy. However, it is also clear 

that further improvements in weighted-mixed 

sensitivity formulation step will require introducing the 

fractional weights to enhance the controller 

performances for the wide variation of the model 

parameters. 
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