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Abstract—The performance of the Field-Programmable Gate 

Array (FPGA) is largely affected by its reconfiguration 

overheads. For a dynamic system in which the nature of the 

system is unpredictable at design-time, these overheads are 

expensive in terms of performance. To reduce these overheads, 

architecture along with two algorithms is proposed which 

dynamically predicts and schedules the configuration. As a 

result, the time reconfiguration overhead is reduced to improve 

the performance. In most cases, the scheduling result obtained 

exactly matches with the system whose configurations are fetched 

from HS memory. This could be the near maximum achievable 

performance for any FPGA architecture, executing a dynamic 

application. 
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I. INTRODUCTION 

Reconfigurable architecture finds its place in most of the 
application that was previously ruled by the other general 
purpose processor (GPP) and digital signal processor (DSP) 
systems. It is because of their high flexibility without 
compromising much on performance [1], [2]. Some of the 
features like partial reconfiguration [3] and run-time 
reconfiguration [4], [5] make field-programmable gate array 
(FPGA) unique when compared with other processor systems. 
When the configurations are loaded onto the available 
resources on an FPGA, reconfiguration overheads are 
generated [6]. These overheads can degrade the system 
performance to a larger extent. To reduce these overheads, 
proper management of configurations is very important. 

In our paper, we focus mainly on a dynamic system. A 
dynamic system may execute more than one application at a 
time. Its main drawback is that the future tasks are 
unpredictable in nature. Without predicting the future tasks, it 
is very difficult to manage the configurations needed for partial 
reconfiguration. Improper management of configuration results 
in configuration thrashing problem. Therefore, in this paper, 
we present a prediction based scheduling where most of the 
reconfiguration overheads are reduced and the system achieves 
a near maximum performance. 

II. RELATED WORKS 

Reconfiguration overhead occurs when the configurations 
are improperly managed. During partial-reconfiguration, 
configuration data are fetched from the off-chip memory and 
loaded into the desired Reconfigurable Unit (RU). This 
fetching of configurations from the off-chip memory is costly 
as it carries a significant amount of both the time and energy 
reconfiguration overheads. In paper [7], a configuration 
memory hierarchy is proposed along with two configuration 
mapping algorithms. One algorithm is for dynamic systems. 
The authors tried to keep only a limited number of tasks inside 
the on-chip memories, to avoid configuration thrashing 
problems. Authors from the paper [8] and [9], used prefetch 
approach to reduce the reconfiguration overhead. Prefetching 
the configurations in advance hides most of the time 
reconfiguration overheads. It improves the system 
performance. The size of the configuration is directly 
proportional to the amount of reconfiguration overhead 
generated. So, authors in paper [10] used intra-bitstream 
compression technique where they exploit the redundancies 
available between successive configurations and reuse them. 
The regularities between different configurations are analyzed 
and the configurations are compressed to reduce the 
reconfiguration overhead in the paper [11]. Paper [12] used 
compression, prefetching, caching, and allocation services to 
reduce the reconfiguration overheads in heterogeneous 
multicore RSoC systems.  

Authors of the paper [13], proposed a fast reconfiguration 
manager named FaRM which uses bitstream compression, 
direct memory access, and scheduling techniques to reduce the 
reconfiguration overheads. Multi-context FPGAs are used to 
hide the time reconfiguration overhead [14]. When the active 
Virtual ConFiguration (VCF) is working in the foreground, a 
configuration is being loaded in the background. Configuration 
context swapping takes very short time compared to the 
execution time. Multiple configuration controller concepts are 
introduced in [15]. Previous works considered that task can be 
executed in parallel, but the configurations are loaded only in 
sequence. Here, the configurations are loaded in parallel with 
the help of having multiple tiles and each tile carrying its own 



configuration SRAM. It reduces the configuration overheads 
by 21% compared with a system having a single configuration 
controller. All the above techniques can be used efficiently in a 
static system. But, for a dynamic system, these techniques fails. 
Because the future is unpredictable. Our paper tries to address 
this lacuna and reduces most of the reconfiguration overheads 
generated in any dynamic systems. 

III. PROPOSED ARCHITECTURE 

The proposed architecture is having a memory hierarchy 
which consists of high speed (HS), low energy (LE) and off-
chip memories shown in figure 1. The task graphs to be 
configured at run-time are present inside the off-chip memory. 
Mapping analyzer, future task predictor, and replacer together 
work on the current scenario at run-time to give an efficient 
mapping on HS and LE memories. Since the system is a 
dynamic system, future tasks are predicted at every instant and 
assigned to either of the on-chip memories. RUs in the 
architecture are blocks which are reconfigured with the tasks as 
per the requirement of the system dynamically. For every new 
task arrival, the future task predictor forecast the next task 
which may get reconfigured. This task is assigned to HS or LE 
memory based on the decision taken by mapping analyzer. In 
some cases, as the number of tasks presents inside the HS or 
LE memory is already full and still, a new task has to be 
accommodated, then the replacer has to check with the 
previously stored tasks and replace the non-vital task with the 
current one. All the details about reconfiguration and execution 
are updated instantaneously in the info table. The scheduler 
organizes the reconfiguration and execution of individual tasks 
in the available RUs. The microprocessor controls every 
operation which is performed by the proposed architecture. 
Communication infrastructure can be made using buses or 
network-on-chip (NOC) [16]. This kind of architecture can be 
realized using last generation FPGA’s of Xilinx [17], [18] and 
Altera [19], [20]. 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Proposed architecture 

The architecture consists of a number of homogeneous 
reconfigurable tiles as it appears in the paper [21]. At run-time, 
these tiles are loaded with the configuration and perform an 
execution. Dynamic reconfiguration changes the functionality 
of the individual RU. When the functionality changes, it is 
necessary to alter the interconnections available between them. 

This involves a tedious and time-consuming process of 
placement and routing. Hence, the interconnection network 
model is used where each tile is surrounded by fixed 
interconnections that avoid run-time placement and routing 
[22]. In this architecture, the applications are modeled using 
the Task Concurrency Management (TCM) [23]. TCM uses 
two levels of hierarchies. The top level consists of applications 
represented as task graphs and the lower level consists of tasks 
(capable of performing individual functions). The dynamic 
nature of the model is restricted only to the top level. 

IV. MOTIVATIONAL EXAMPLE 

A static system can be scheduled efficiently by reducing 
most of the reconfiguration overheads. It is achieved, because, 
the future tasks are easily predictable. For a dynamic system, it 
is not possible to decide the nature of the task graph execution 
at the design-time phase. But, during the run-time phase, the 
future task can be dynamically predicted. When the system 
dynamically starts predicting, the performance of the dynamic 
system can be improved. Consider a dynamic system, 
consisting of only two task graphs, namely MPEG-1 and JPEG 
[7] is shown in figure 2. Each task is represented with specific 
notations and is given outside the task graph. Whereas, the 
ideal execution time of individual tasks are specified inside. 
The nature in which these two task graphs get executed at run-
time is shown in figure 3. 

At design-time, the system is unaware of the nature of task 
graph execution.  So, it is impossible to predict the task graph 
execution at design-time. Without prediction, if we allocate 
some of the tasks to on-chip memories, it may not be the 
optimum one regarding performance. Hence, the scheduler 
result is shown for all the tasks assigned to off-chip memory in 
figure 4. Prefetching of configuration is not possible as the 
future tasks are unpredictable. Consider, if the nature of the 
task graph execution is already known and we have only HS 
memory with ten configurations of memory space. Now, the 
same scheduler output is shown in figure 5. In figure 5, the 
scheduler achieves the execution in just 122 ms. Figure 4 and 5 
gives the scheduling for only 5 RUs and it is represented as R1 
to R5. This is just half the total execution time achieved when 
all the tasks were kept inside the off-chip memory. The 
methodology proposed in this paper focuses mainly on run-
time prediction and suitable memory allocation (either HS or 
LE) for every task. This is carried out dynamically at every 
instant of the application so that the time reconfiguration 
overhead generated is less. 

 

 

 

 

Fig. 2. Task Graphs of MPEG-1 and JPEG 

 

Fig. 3. Execution of MPEG-1 and JPEG at run-time 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Tasks scheduled only from off-chip memory 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Tasks scheduled only from HS memory 

V. PROPOSED METHODOLOGY 

Our methodology is divided into design-time and run-time 
phases. The complex parallel task graphs are converted into 
their simpler forms at design-time and stored in the off-chip 
memory. The run-time phase performs a prediction based 
scheduling using future task predictor, mapping analyzer, and 
replacer. The prediction is also dynamic in order to match 
with the dynamic nature of the application. 

A. Design-time phase 

A complex task graph is converted into a simple one for 
easier processing at run-time. This conversion is performed by 
assigning weights to individual tasks. The most weighted task 
is kept at the top and the least weighted task is kept at the 
bottom, while the remaining tasks are distributed between first 
and the last task as per their weight. Also, the levels of the task 
graphs are maintained for any task execution. Until the 
execution of all the tasks present in any level is finished, the 
execution of next level tasks is not performed. The weight of 
any task is the sum of their ideal execution time and the 
maximum weight of their successive nodes. For a leaf node, as 
there is no successive node, the weight is equal to its ideal 
execution time. 

 

 

 

 

 

 

 

 

 

 

Consider the task graph given in figure 6. This task graph 
can be converted into a simpler one as shown in figure 7. The 
converted task graph is stored in the off-chip memory. This is 
repeated for all the task graphs. 

 

 

 

 

 
 

 

 

 

Fig. 6. Complex task graph with weight allocated to individual tasks 

 

 

Fig. 7. Converted simpe task graph 

B. Run-time phase 

The main aim of our methodology is to reduce the 
reconfiguration overheads of a dynamic system at run-time. 
The dynamic nature of the system is predicted (next task) for 
every task execution using the Future Task Predictor (FuTP). 
The availability of the next task inside the on-chip memory is 
verified with the help of info table. If the next task is already 
available inside the on-chip memory, it is loaded (using 
prefetch) and executed after the current task’s execution. If the 
next task is missing, then it is checked with Mapping Analyzer 
(MP) to store in either of the on-chip memories. Once it is 
stored in the on-chip memory, the scheduler performs the 
loading of the configuration on the available RU and its 
execution. 

Two scenarios are considered in a dynamic system. In one 
scenario, the number of task graphs is lesser than the total size 
of on-chip memories (including both HS and LE) and in 

 

 

 



another, the total number of task graphs is greater than or 
equal to that of the available total number of on-chip 
memories. In the latter case, the algorithm-1 used in the first 
case is used with slight modification to avoid configuration 
thrashing problems. The modification is followed till the 
number of task graphs becomes lesser than the total number of 
on-chip memories available. When it reaches the above 
condition, the same algorithm used for scenario 1 is used. 

1) Algorithm-1 

This algorithm tries to reduce most of the reconfiguration 
overheads. It consists of three steps. The main aim is to predict 
the next task when the current task is being executed and 
storing the next task inside the on-chip memory based on the 
hiding value. 

a) Step-1 

Assign all the first tasks of every task graph to on-chip 
memories. This is done in an ascending order, starting from 
HS to LE. When the size of HS equals the total size of HS 
tasks, the remaining tasks are kept in LE memory. These 
information is stored in the info table and it will be updated 
regularly.  

b) Step-2 

From the available tasks inside the on-chip memory, one 
task (TGx, f) is selected by the processor as per the user 
interrupt and it is loaded in the first available RU. The loaded 
task will be executed by the scheduler. In TGx, f, 'x' represents 
the task graph number and 'f' represents the task number that is 
present in the task graph 'x'. The task reconfiguration and 
execution of the first task is simulated using (1) and (2). For 
every next task memory assignment, the current task updating 
is required.  

R1 = RTGx, f  = HS (or) LE                         (1) 

E1 = ETGx, f  = ietgx, f + R1                         (2)   

Where R1 is the simulated reconfiguration time of the first task                

            E1 is the simulated execution time of the first task 

            RTGx, f is the simulated reconfiguration time of the task 
‘TGx, f’ 

      ETGx, f is the simulated execution time of the task 
‘TGx, f’ 

      ietgx, f is the ideal execution time of the task ‘TGx, f’ 

     HS (or) LE is the time needed to load the configuration 
from high speed or low energy respectively 

c) Step-3 

While the current task is being loaded (or) executed, the 
next task must be predicted. For next task prediction, FuTP is 
used. Keeping the current task as a reference, the FuTP 
updates the task set with all the possible tasks that may be 
needed for the application execution. Consider the example 
given in figure 2 where both MPEG-1 and JPEG are executed 

simultaneously. If task TG1, 1 is selected for the execution, 
then FuTP will have {TG1, 2 and TG2,1} as their updated set. 

After the future task set prediction, the FuTP and the info 
table are compared. If all the tasks present inside the FuTP is 
already available in the info table, then there is no need for 
any other task to be kept inside the on-chip memory. 
Otherwise, the task needs to be kept inside the on-chip 
memory is checked with mapping analyzer. Before checking 
with the MA, the next task must be allocated to any of the 
available RU. The RU allocation is followed in the clockwise 
direction. Mapping analyzer checks the hiding value ‘Vn’ 
using the equations (3) (or) (4). Equation (3) is used before the 
replacement scenario and equation (4) is used after the 
replacement scenario to calculate the hiding value. Depending 
upon the value ‘Vn’, the task is kept either in HS or LE. If ‘Vn’ 
is positive, assign it to LE and otherwise, assign it to HS. 
After assignment, it is updated using equations (5) and (6) 
before the occurrence of replacement scenario. And using 
equations (7) and (8), after the occurrence of replacement 
scenario. This updating is necessary, to calculate the ‘Vn’ of 
the next task. 

                                   Vn = En-1 – (Rn-1 + LE)                         (3)  

                         Vn = En-1 – (Max {Em (or) Rn-1} + LE)         (4)   

Where Vn is the hiding value of the n
th

 task 

      En-1 is the simulated execution time of the (n-1)
th

 task 

      Rn-1 is the simulated reconfiguration time of the (n-1)
th

 
task 

       Em is the simulated execution time of the m
th

 task 

       m is the previous task’s number executed in the same 
RU 

Hiding value calculates the exact amount by which a task 
must be kept in either of the on-chip memory for the current 
situation in a dynamic system. A negative ‘Vn’ represents that 
the task to be kept in HS. Otherwise, a performance overhead 
occurs. A replacement scenario is the one in which all the 
available RUs are already occupied, and still there is a next 
task to be assigned in any of the available RUs. During this 
scenario, Least Recently Used (LRU) policy is used to select 
the RU.  

                         Rn = RTGx, f = Rn-1 + HS (or) LE                   (5)   

                  En = ETGx, f  = Max{En-1 (or) Rn} + ietgx, f                 (6) 

          Rn = RTGx, f = Max {Em (or) Rn-1} + HS (or) LE         (7) 

               En = ETGx, f  = Max{En-1 (or) Rn}+ ietgx, f                  (8) 



Where Rn is the simulated reconfiguration time of the n
th

 task 

       En is the simulated execution time of the n
th 

task 

After a task execution, the same task is removed from the 
on-chip memory. If the MA assigns the next task in HS or LE 
and in the assigned memory there is no space for the new task 
accommodation, then the replacer selects anyone of the task 
from the same memory and assigns it to the other available 
on-chip memory. The step-3 is repeated till all the tasks from 
every task graph is executed. 

2) Algorithm-2 

Algorithm-2 is used when the number of task graphs is 
greater than or equal to the total size of on-chip memories. At 
first, hiding value is calculated for every task presents in a task 
graph and is shown in figure 8. For every task graph, lines 1 – 
15 is performed to calculate the ‘Vn’. In lines 2 – 4, the first 
task is assumed to occupy HS and the values of ‘R1’ and ‘E1’ 
are updated using equations (9) and (10) respectively. 

 

# Hiding value calculation 

# Condition : Total number of task graphs >= Total size of on-

chip memories  

 

1   : for every task graph do 

2   :      assign first task to HS; 

3   :      n = 1; 

4   :      Update using equations (9) and (10); 

5   :      for 2 to i 

6   :            n = n+1; 

7   :            calculate Vn using equation (11); 

8   :            Update using equations (12) and (13); 

9   :      end 

10 :      for (i+1) to k 

11 :           n = n+1; 

12 :           calculate Vn using equation (14); 

13 :           update using equations (15) and (16); 

14 :      end 

15 : end 

Fig. 8. Hiding value calculation 

In lines 5 – 9 from the second task to ‘i
th

’ task, Vn is 
calculated using equation (11) and is updated using (12) and 
(13). ‘i’ is the available number of RUs. After replacement 
scenario, the same equation (11), (12), and (13) are modified 
to equations (14), (15), and (16) respectively to find the value 
‘Vn’. This is repeated from (i+1)

th
 task to k

th
 task in lines 10 – 

15, where k is the total number of tasks present inside the task 
graph. 

 

 

# Keep only highly crucial task inside the on-chip memory 

 

1   : for every task graph arrival do 

2   :       if (size of on-chip memory = size of tasks present 
inside the on-chip memory); 

3   :          assign first task to off-chip memory; 

4   :       else 

5   :          assign first task to on-chip memory; 

6   :       end 

7   :       for 2 to k 

8   :             sort Vn; 

9   :       end 

10 :       if (size of on-chip memory = size of tasks present 
inside the on-chip memory) 

11 :           assign least Vn to off-chip memory; 

12 :       else 

13 :           assign least Vn to on-chip memory; 

14 :       end 

15 : end            

Fig. 9. Algorithm for placing only crucial tasks in on-chip memory 

                                           R1 = HS                                        (9) 

                                          E1 = R1 + iet1                                        (10)     

                               Vn = En-1 – (Rn-1 + LE)                          (11)   

                                     Rn = Rn-1 + HS                                 (12)  

                             En = Max {En-1 (or) Rn} + ietn                 (13)  

                    Vn = En-1 – (Max {Em (or) Rn-1} + LE)             (14)  

                         Rn = Max {Em (or) Rn-1} + HS                    (15)  

                            En = Max {En-1 (or) Rn} + ietn                            (16)      

Since the number of task graphs is greater or equal to that 
of a number of on-chip memories present, it is difficult to 
shortlist only one task from the predicted set. Even though the 



prediction is correct, it is not always possible to place all the 
tasks inside the on-chip memories. Selection of tasks from the 
predicted set plays a crucial role and if the selection becomes 
wrong it leads to configuration thrashing. To avoid this, only a 
lesser number of tasks are allowed to occupy the on-chip 
memory using our algorithm-2 given in figure 9. For every 
task graph, assign the first task to on-chip memory (priority is 
always given to HS) and select the task having least 'Vn' and 
assign it to on-chip memory or off-chip memory (based on the 
availability of memory space and priority is given to on-chip 
memory). As the number of task graphs is greater than or 
equal to that of the amount of on-chip memories, algorithm-2 
is repeated. And, when the number of task graphs becomes 
lesser than a number of on-chip memories present, the 
algorithm-1 is followed. 

VI. RESULTS AND DISCUSSION 

To analyze our results, a simulation environment is 
created. CACTI tool is used to model HS, LE, and off-chip 
memories [24] and [25] which is given in table I. The data 
provided in table I is only relative values, because as the 
technology varies their absolute values also vary.   

TABLE I 

ACCESS TIME AND ENERGY CONSUMPTION FOR 
DIFFERENT MEMORY MODULES 

Memory 
module 

Memory access time 
for each configuration 

Normalized energy 
consumption 

HS 4 ms 1 

LE 6 ms 0.7 

Off-chip 12 ms 4 

 

Three groups of task graphs are created to analyze the 
proposed methodology. The first group will have JPEG and 
MPEG-1 task graphs [7] and the second group will have TG-
1, TG-2, and, TG-3 task graphs executed simultaneously. 
These three task graphs are randomly generated. The third 
group is having both group-1 and group-2 together. Since the 
system is a dynamic system, multiple task graphs are 
competing for the resources. The experiments are carried out 
for a thousand iterations and the average values are found. The 
size of HS and LE memories are kept at three. 

TABLE II 

EXECUTION TIME FOR DIFFERENT GROUPS OF 
TASK GRAPHS 

Table II and table III provide execution time and energy 
consumption values when all the tasks are fetched from HS, 
LE, and Off-chip memories. The last column gives the 
execution time and energy consumption values for our 
methodology. From the tables II and III, it is clear that the 
performance of the dynamic system is exactly matching with 
the performance of the system in which all its tasks are 
preloaded from the HS memory. The energy consumption of 
our methodology is high. This is because our architecture 
focuses mainly on the performance and it is not concerned 
with the energy consumption. Group-3 consists of maximum 
tasks compared to other groups. By keeping the size of HS and 
LE memories to 3 configurations each, it is possible to 
accommodate all the first tasks of every TG (from all the three 
groups) to on-chip memories. Therefore, the performance of 
the proposed methodology exactly matches with the 
performance of the system when all its tasks are fetched from 
HS alone. If more number of task graphs is considered 
simultaneously, our methodology still provides the highest 
possible performance that a dynamic system could achieve. 

TABLE III 

NORMALIZED ENERGY CONSUMPTION FOR 
DIFFERENT GROUPS OF TASK GRAPHS 

 

VII. CONCLUSION 

The dynamic nature of the application is addressed 
dynamically using our architecture. Two algorithms are 
proposed in this paper. When both the proposed algorithms are 
used along with our proposed architecture, the performance 
obtained is maximum. As the performance of the system gets 
maximized, energy reconfiguration overheads become very 
high in this method. The main objective of this paper is 
improving the performance of the dynamic system which is 
achieved. Hence, an increase in the energy reconfiguration 
overhead as a consequence of improving the performance may 
be neglected. 
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