
Reducing reconfiguration overheads of a

reconfigurable dynamic system using active run-

time prediction

Hariharan. I
[1]

, Kannan. M
[2]

Department of Electronics Engineering

MIT Campus, Anna University

Chennai, Tamil Nadu, India
[1]

hariharan166@gmail.com,
[2]

mkannan@annauniv.edu

Abstract—The performance of the Field-Programmable Gate

Array (FPGA) is largely affected by its reconfiguration

overheads. For a dynamic system in which the nature of the

system is unpredictable at design-time, these overheads are

expensive in terms of performance. To reduce these overheads,

architecture along with two algorithms is proposed which

dynamically predicts and schedules the configuration. As a

result, the time reconfiguration overhead is reduced to improve

the performance. In most cases, the scheduling result obtained

exactly matches with the system whose configurations are fetched

from HS memory. This could be the near maximum achievable

performance for any FPGA architecture, executing a dynamic

application.

Keywords—Dynamic systems; Prediction based algorithm;

Reconfiguration overheads; Configuration mapping; field-

programmable gate array (FPGA)

I. INTRODUCTION

Reconfigurable architecture finds its place in most of the
application that was previously ruled by the other general
purpose processor (GPP) and digital signal processor (DSP)
systems. It is because of their high flexibility without
compromising much on performance [1], [2]. Some of the
features like partial reconfiguration [3] and run-time
reconfiguration [4], [5] make field-programmable gate array
(FPGA) unique when compared with other processor systems.
When the configurations are loaded onto the available
resources on an FPGA, reconfiguration overheads are
generated [6]. These overheads can degrade the system
performance to a larger extent. To reduce these overheads,
proper management of configurations is very important.

In our paper, we focus mainly on a dynamic system. A
dynamic system may execute more than one application at a
time. Its main drawback is that the future tasks are
unpredictable in nature. Without predicting the future tasks, it
is very difficult to manage the configurations needed for partial
reconfiguration. Improper management of configuration results
in configuration thrashing problem. Therefore, in this paper,
we present a prediction based scheduling where most of the
reconfiguration overheads are reduced and the system achieves
a near maximum performance.

II. RELATED WORKS

Reconfiguration overhead occurs when the configurations
are improperly managed. During partial-reconfiguration,
configuration data are fetched from the off-chip memory and
loaded into the desired Reconfigurable Unit (RU). This
fetching of configurations from the off-chip memory is costly
as it carries a significant amount of both the time and energy
reconfiguration overheads. In paper [7], a configuration
memory hierarchy is proposed along with two configuration
mapping algorithms. One algorithm is for dynamic systems.
The authors tried to keep only a limited number of tasks inside
the on-chip memories, to avoid configuration thrashing
problems. Authors from the paper [8] and [9], used prefetch
approach to reduce the reconfiguration overhead. Prefetching
the configurations in advance hides most of the time
reconfiguration overheads. It improves the system
performance. The size of the configuration is directly
proportional to the amount of reconfiguration overhead
generated. So, authors in paper [10] used intra-bitstream
compression technique where they exploit the redundancies
available between successive configurations and reuse them.
The regularities between different configurations are analyzed
and the configurations are compressed to reduce the
reconfiguration overhead in the paper [11]. Paper [12] used
compression, prefetching, caching, and allocation services to
reduce the reconfiguration overheads in heterogeneous
multicore RSoC systems.

Authors of the paper [13], proposed a fast reconfiguration
manager named FaRM which uses bitstream compression,
direct memory access, and scheduling techniques to reduce the
reconfiguration overheads. Multi-context FPGAs are used to
hide the time reconfiguration overhead [14]. When the active
Virtual ConFiguration (VCF) is working in the foreground, a
configuration is being loaded in the background. Configuration
context swapping takes very short time compared to the
execution time. Multiple configuration controller concepts are
introduced in [15]. Previous works considered that task can be
executed in parallel, but the configurations are loaded only in
sequence. Here, the configurations are loaded in parallel with
the help of having multiple tiles and each tile carrying its own

configuration SRAM. It reduces the configuration overheads
by 21% compared with a system having a single configuration
controller. All the above techniques can be used efficiently in a
static system. But, for a dynamic system, these techniques fails.
Because the future is unpredictable. Our paper tries to address
this lacuna and reduces most of the reconfiguration overheads
generated in any dynamic systems.

III. PROPOSED ARCHITECTURE

The proposed architecture is having a memory hierarchy
which consists of high speed (HS), low energy (LE) and off-
chip memories shown in figure 1. The task graphs to be
configured at run-time are present inside the off-chip memory.
Mapping analyzer, future task predictor, and replacer together
work on the current scenario at run-time to give an efficient
mapping on HS and LE memories. Since the system is a
dynamic system, future tasks are predicted at every instant and
assigned to either of the on-chip memories. RUs in the
architecture are blocks which are reconfigured with the tasks as
per the requirement of the system dynamically. For every new
task arrival, the future task predictor forecast the next task
which may get reconfigured. This task is assigned to HS or LE
memory based on the decision taken by mapping analyzer. In
some cases, as the number of tasks presents inside the HS or
LE memory is already full and still, a new task has to be
accommodated, then the replacer has to check with the
previously stored tasks and replace the non-vital task with the
current one. All the details about reconfiguration and execution
are updated instantaneously in the info table. The scheduler
organizes the reconfiguration and execution of individual tasks
in the available RUs. The microprocessor controls every
operation which is performed by the proposed architecture.
Communication infrastructure can be made using buses or
network-on-chip (NOC) [16]. This kind of architecture can be
realized using last generation FPGA’s of Xilinx [17], [18] and
Altera [19], [20].

Fig. 1. Proposed architecture

The architecture consists of a number of homogeneous
reconfigurable tiles as it appears in the paper [21]. At run-time,
these tiles are loaded with the configuration and perform an
execution. Dynamic reconfiguration changes the functionality
of the individual RU. When the functionality changes, it is
necessary to alter the interconnections available between them.

This involves a tedious and time-consuming process of
placement and routing. Hence, the interconnection network
model is used where each tile is surrounded by fixed
interconnections that avoid run-time placement and routing
[22]. In this architecture, the applications are modeled using
the Task Concurrency Management (TCM) [23]. TCM uses
two levels of hierarchies. The top level consists of applications
represented as task graphs and the lower level consists of tasks
(capable of performing individual functions). The dynamic
nature of the model is restricted only to the top level.

IV. MOTIVATIONAL EXAMPLE

A static system can be scheduled efficiently by reducing
most of the reconfiguration overheads. It is achieved, because,
the future tasks are easily predictable. For a dynamic system, it
is not possible to decide the nature of the task graph execution
at the design-time phase. But, during the run-time phase, the
future task can be dynamically predicted. When the system
dynamically starts predicting, the performance of the dynamic
system can be improved. Consider a dynamic system,
consisting of only two task graphs, namely MPEG-1 and JPEG
[7] is shown in figure 2. Each task is represented with specific
notations and is given outside the task graph. Whereas, the
ideal execution time of individual tasks are specified inside.
The nature in which these two task graphs get executed at run-
time is shown in figure 3.

At design-time, the system is unaware of the nature of task
graph execution. So, it is impossible to predict the task graph
execution at design-time. Without prediction, if we allocate
some of the tasks to on-chip memories, it may not be the
optimum one regarding performance. Hence, the scheduler
result is shown for all the tasks assigned to off-chip memory in
figure 4. Prefetching of configuration is not possible as the
future tasks are unpredictable. Consider, if the nature of the
task graph execution is already known and we have only HS
memory with ten configurations of memory space. Now, the
same scheduler output is shown in figure 5. In figure 5, the
scheduler achieves the execution in just 122 ms. Figure 4 and 5
gives the scheduling for only 5 RUs and it is represented as R1
to R5. This is just half the total execution time achieved when
all the tasks were kept inside the off-chip memory. The
methodology proposed in this paper focuses mainly on run-
time prediction and suitable memory allocation (either HS or
LE) for every task. This is carried out dynamically at every
instant of the application so that the time reconfiguration
overhead generated is less.

Fig. 2. Task Graphs of MPEG-1 and JPEG

Fig. 3. Execution of MPEG-1 and JPEG at run-time

Fig. 4. Tasks scheduled only from off-chip memory

Fig. 5. Tasks scheduled only from HS memory

V. PROPOSED METHODOLOGY

Our methodology is divided into design-time and run-time
phases. The complex parallel task graphs are converted into
their simpler forms at design-time and stored in the off-chip
memory. The run-time phase performs a prediction based
scheduling using future task predictor, mapping analyzer, and
replacer. The prediction is also dynamic in order to match
with the dynamic nature of the application.

A. Design-time phase

A complex task graph is converted into a simple one for
easier processing at run-time. This conversion is performed by
assigning weights to individual tasks. The most weighted task
is kept at the top and the least weighted task is kept at the
bottom, while the remaining tasks are distributed between first
and the last task as per their weight. Also, the levels of the task
graphs are maintained for any task execution. Until the
execution of all the tasks present in any level is finished, the
execution of next level tasks is not performed. The weight of
any task is the sum of their ideal execution time and the
maximum weight of their successive nodes. For a leaf node, as
there is no successive node, the weight is equal to its ideal
execution time.

Consider the task graph given in figure 6. This task graph
can be converted into a simpler one as shown in figure 7. The
converted task graph is stored in the off-chip memory. This is
repeated for all the task graphs.

Fig. 6. Complex task graph with weight allocated to individual tasks

Fig. 7. Converted simpe task graph

B. Run-time phase

The main aim of our methodology is to reduce the
reconfiguration overheads of a dynamic system at run-time.
The dynamic nature of the system is predicted (next task) for
every task execution using the Future Task Predictor (FuTP).
The availability of the next task inside the on-chip memory is
verified with the help of info table. If the next task is already
available inside the on-chip memory, it is loaded (using
prefetch) and executed after the current task’s execution. If the
next task is missing, then it is checked with Mapping Analyzer
(MP) to store in either of the on-chip memories. Once it is
stored in the on-chip memory, the scheduler performs the
loading of the configuration on the available RU and its
execution.

Two scenarios are considered in a dynamic system. In one
scenario, the number of task graphs is lesser than the total size
of on-chip memories (including both HS and LE) and in

another, the total number of task graphs is greater than or
equal to that of the available total number of on-chip
memories. In the latter case, the algorithm-1 used in the first
case is used with slight modification to avoid configuration
thrashing problems. The modification is followed till the
number of task graphs becomes lesser than the total number of
on-chip memories available. When it reaches the above
condition, the same algorithm used for scenario 1 is used.

1) Algorithm-1

This algorithm tries to reduce most of the reconfiguration
overheads. It consists of three steps. The main aim is to predict
the next task when the current task is being executed and
storing the next task inside the on-chip memory based on the
hiding value.

a) Step-1

Assign all the first tasks of every task graph to on-chip
memories. This is done in an ascending order, starting from
HS to LE. When the size of HS equals the total size of HS
tasks, the remaining tasks are kept in LE memory. These
information is stored in the info table and it will be updated
regularly.

b) Step-2

From the available tasks inside the on-chip memory, one
task (TGx, f) is selected by the processor as per the user
interrupt and it is loaded in the first available RU. The loaded
task will be executed by the scheduler. In TGx, f, 'x' represents
the task graph number and 'f' represents the task number that is
present in the task graph 'x'. The task reconfiguration and
execution of the first task is simulated using (1) and (2). For
every next task memory assignment, the current task updating
is required.

R1 = RTGx, f = HS (or) LE (1)

E1 = ETGx, f = ietgx, f + R1 (2)

Where R1 is the simulated reconfiguration time of the first task

 E1 is the simulated execution time of the first task

 RTGx, f is the simulated reconfiguration time of the task
‘TGx, f’

 ETGx, f is the simulated execution time of the task
‘TGx, f’

 ietgx, f is the ideal execution time of the task ‘TGx, f’

 HS (or) LE is the time needed to load the configuration
from high speed or low energy respectively

c) Step-3

While the current task is being loaded (or) executed, the
next task must be predicted. For next task prediction, FuTP is
used. Keeping the current task as a reference, the FuTP
updates the task set with all the possible tasks that may be
needed for the application execution. Consider the example
given in figure 2 where both MPEG-1 and JPEG are executed

simultaneously. If task TG1, 1 is selected for the execution,
then FuTP will have {TG1, 2 and TG2,1} as their updated set.

After the future task set prediction, the FuTP and the info
table are compared. If all the tasks present inside the FuTP is
already available in the info table, then there is no need for
any other task to be kept inside the on-chip memory.
Otherwise, the task needs to be kept inside the on-chip
memory is checked with mapping analyzer. Before checking
with the MA, the next task must be allocated to any of the
available RU. The RU allocation is followed in the clockwise
direction. Mapping analyzer checks the hiding value ‘Vn’
using the equations (3) (or) (4). Equation (3) is used before the
replacement scenario and equation (4) is used after the
replacement scenario to calculate the hiding value. Depending
upon the value ‘Vn’, the task is kept either in HS or LE. If ‘Vn’
is positive, assign it to LE and otherwise, assign it to HS.
After assignment, it is updated using equations (5) and (6)
before the occurrence of replacement scenario. And using
equations (7) and (8), after the occurrence of replacement
scenario. This updating is necessary, to calculate the ‘Vn’ of
the next task.

 Vn = En-1 – (Rn-1 + LE) (3)

 Vn = En-1 – (Max {Em (or) Rn-1} + LE) (4)

Where Vn is the hiding value of the n
th

 task

 En-1 is the simulated execution time of the (n-1)
th

 task

 Rn-1 is the simulated reconfiguration time of the (n-1)
th

task

 Em is the simulated execution time of the m
th

 task

 m is the previous task’s number executed in the same
RU

Hiding value calculates the exact amount by which a task
must be kept in either of the on-chip memory for the current
situation in a dynamic system. A negative ‘Vn’ represents that
the task to be kept in HS. Otherwise, a performance overhead
occurs. A replacement scenario is the one in which all the
available RUs are already occupied, and still there is a next
task to be assigned in any of the available RUs. During this
scenario, Least Recently Used (LRU) policy is used to select
the RU.

 Rn = RTGx, f = Rn-1 + HS (or) LE (5)

 En = ETGx, f = Max{En-1 (or) Rn} + ietgx, f (6)

 Rn = RTGx, f = Max {Em (or) Rn-1} + HS (or) LE (7)

 En = ETGx, f = Max{En-1 (or) Rn}+ ietgx, f (8)

Where Rn is the simulated reconfiguration time of the n
th

 task

 En is the simulated execution time of the n
th

task

After a task execution, the same task is removed from the
on-chip memory. If the MA assigns the next task in HS or LE
and in the assigned memory there is no space for the new task
accommodation, then the replacer selects anyone of the task
from the same memory and assigns it to the other available
on-chip memory. The step-3 is repeated till all the tasks from
every task graph is executed.

2) Algorithm-2

Algorithm-2 is used when the number of task graphs is
greater than or equal to the total size of on-chip memories. At
first, hiding value is calculated for every task presents in a task
graph and is shown in figure 8. For every task graph, lines 1 –
15 is performed to calculate the ‘Vn’. In lines 2 – 4, the first
task is assumed to occupy HS and the values of ‘R1’ and ‘E1’
are updated using equations (9) and (10) respectively.

Hiding value calculation

Condition : Total number of task graphs >= Total size of on-

chip memories

1 : for every task graph do

2 : assign first task to HS;

3 : n = 1;

4 : Update using equations (9) and (10);

5 : for 2 to i

6 : n = n+1;

7 : calculate Vn using equation (11);

8 : Update using equations (12) and (13);

9 : end

10 : for (i+1) to k

11 : n = n+1;

12 : calculate Vn using equation (14);

13 : update using equations (15) and (16);

14 : end

15 : end

Fig. 8. Hiding value calculation

In lines 5 – 9 from the second task to ‘i
th

’ task, Vn is
calculated using equation (11) and is updated using (12) and
(13). ‘i’ is the available number of RUs. After replacement
scenario, the same equation (11), (12), and (13) are modified
to equations (14), (15), and (16) respectively to find the value
‘Vn’. This is repeated from (i+1)

th
 task to k

th
 task in lines 10 –

15, where k is the total number of tasks present inside the task
graph.

Keep only highly crucial task inside the on-chip memory

1 : for every task graph arrival do

2 : if (size of on-chip memory = size of tasks present
inside the on-chip memory);

3 : assign first task to off-chip memory;

4 : else

5 : assign first task to on-chip memory;

6 : end

7 : for 2 to k

8 : sort Vn;

9 : end

10 : if (size of on-chip memory = size of tasks present
inside the on-chip memory)

11 : assign least Vn to off-chip memory;

12 : else

13 : assign least Vn to on-chip memory;

14 : end

15 : end

Fig. 9. Algorithm for placing only crucial tasks in on-chip memory

 R1 = HS (9)

 E1 = R1 + iet1 (10)

 Vn = En-1 – (Rn-1 + LE) (11)

 Rn = Rn-1 + HS (12)

 En = Max {En-1 (or) Rn} + ietn (13)

 Vn = En-1 – (Max {Em (or) Rn-1} + LE) (14)

 Rn = Max {Em (or) Rn-1} + HS (15)

 En = Max {En-1 (or) Rn} + ietn (16)

Since the number of task graphs is greater or equal to that
of a number of on-chip memories present, it is difficult to
shortlist only one task from the predicted set. Even though the

prediction is correct, it is not always possible to place all the
tasks inside the on-chip memories. Selection of tasks from the
predicted set plays a crucial role and if the selection becomes
wrong it leads to configuration thrashing. To avoid this, only a
lesser number of tasks are allowed to occupy the on-chip
memory using our algorithm-2 given in figure 9. For every
task graph, assign the first task to on-chip memory (priority is
always given to HS) and select the task having least 'Vn' and
assign it to on-chip memory or off-chip memory (based on the
availability of memory space and priority is given to on-chip
memory). As the number of task graphs is greater than or
equal to that of the amount of on-chip memories, algorithm-2
is repeated. And, when the number of task graphs becomes
lesser than a number of on-chip memories present, the
algorithm-1 is followed.

VI. RESULTS AND DISCUSSION

To analyze our results, a simulation environment is
created. CACTI tool is used to model HS, LE, and off-chip
memories [24] and [25] which is given in table I. The data
provided in table I is only relative values, because as the
technology varies their absolute values also vary.

TABLE I

ACCESS TIME AND ENERGY CONSUMPTION FOR
DIFFERENT MEMORY MODULES

Memory
module

Memory access time
for each configuration

Normalized energy
consumption

HS 4 ms 1

LE 6 ms 0.7

Off-chip 12 ms 4

Three groups of task graphs are created to analyze the
proposed methodology. The first group will have JPEG and
MPEG-1 task graphs [7] and the second group will have TG-
1, TG-2, and, TG-3 task graphs executed simultaneously.
These three task graphs are randomly generated. The third
group is having both group-1 and group-2 together. Since the
system is a dynamic system, multiple task graphs are
competing for the resources. The experiments are carried out
for a thousand iterations and the average values are found. The
size of HS and LE memories are kept at three.

TABLE II

EXECUTION TIME FOR DIFFERENT GROUPS OF
TASK GRAPHS

Table II and table III provide execution time and energy
consumption values when all the tasks are fetched from HS,
LE, and Off-chip memories. The last column gives the
execution time and energy consumption values for our
methodology. From the tables II and III, it is clear that the
performance of the dynamic system is exactly matching with
the performance of the system in which all its tasks are
preloaded from the HS memory. The energy consumption of
our methodology is high. This is because our architecture
focuses mainly on the performance and it is not concerned
with the energy consumption. Group-3 consists of maximum
tasks compared to other groups. By keeping the size of HS and
LE memories to 3 configurations each, it is possible to
accommodate all the first tasks of every TG (from all the three
groups) to on-chip memories. Therefore, the performance of
the proposed methodology exactly matches with the
performance of the system when all its tasks are fetched from
HS alone. If more number of task graphs is considered
simultaneously, our methodology still provides the highest
possible performance that a dynamic system could achieve.

TABLE III

NORMALIZED ENERGY CONSUMPTION FOR
DIFFERENT GROUPS OF TASK GRAPHS

VII. CONCLUSION

The dynamic nature of the application is addressed
dynamically using our architecture. Two algorithms are
proposed in this paper. When both the proposed algorithms are
used along with our proposed architecture, the performance
obtained is maximum. As the performance of the system gets
maximized, energy reconfiguration overheads become very
high in this method. The main objective of this paper is
improving the performance of the dynamic system which is
achieved. Hence, an increase in the energy reconfiguration
overhead as a consequence of improving the performance may
be neglected.

REFERENCES

[1]. Tessier, Russell, and Wayne Burleson.
"Reconfigurable computing for digital signal processing: A
survey." The Journal of VLSI Signal Processing 28.1 (2001):
7-27.

[2]. Compton, Katherine, and Scott Hauck.
"Reconfigurable computing: a survey of systems and
software." ACM Computing Surveys (csuR) 34.2 (2002): 171-
210.

Task
graphs

Execution time (ms)

HS LE Off-chip Our methodology

Group-1 122 122 128 122

Group-2 84 107 204 84

Group-3 200 210 305 200

Task
graphs

Normalized energy consumption

HS LE Off-chip Our methodology

Group-1 9 6.3 36 49.37

Group-2 16 11.2 64 88.68

Group-3 25 17.5 100 136.34

[3]. Koch, Dirk, et al. "Partial reconfiguration on FPGAs
in practice—Tools and applications." ARCS Workshops
(ARCS), 2012. IEEE, 2012.

[4]. Liu, Ming, et al. "Run-time partial reconfiguration
speed investigation and architectural design space
exploration." Field Programmable Logic and Applications,
2009. FPL 2009. International Conference on. IEEE, 2009.

[5]. Shoa, Alireza, and Shahram Shirani. "Run-time
reconfigurable systems for digital signal processing
applications: A survey." Journal of VLSI signal processing
systems for signal, image and video technology 39.3 (2005):
213-235.

[6]. Liu, Shaoshan, et al. "Minimizing the runtime partial
reconfiguration overheads in reconfigurable systems." The
Journal of Supercomputing (2012): 1-18.

[7]. Clemente, Juan Antonio, et al. "Configuration
mapping algorithms to reduce energy and time reconfiguration
overheads in reconfigurable systems." IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 22.6 (2014):
1248-1261.

[8]. Hauck, Scott. "Configuration prefetch for single
context reconfigurable coprocessors." Proceedings of the 1998
ACM/SIGDA sixth international symposium on Field
programmable gate arrays. ACM, 1998.

[9]. Li, Zhiyuan, Katherine Compton, and Scott Hauck.
"Configuration caching management techniques for
reconfigurable computing." Field-Programmable Custom
Computing Machines, 2000 IEEE Symposium on. IEEE, 2000.

[10]. Pan, Ju Hwa, Tulika Mitra, and Weng-Fai Wong.
"Configuration bitstream compression for dynamically
reconfigurable FPGAs." Computer Aided Design, 2004.
ICCAD-2004. IEEE/ACM International Conference on. IEEE,
2004.

[11]. Li, Zhiyuan, and Scott Hauck. "Configuration
compression for virtex FPGAs." Field-Programmable Custom
Computing Machines, 2001. FCCM'01. The 9th Annual IEEE
Symposium on. IEEE, 2001.

[12]. Chevobbe, Stéphane, and Stéphane Guyetant.
"Reducing Reconfiguration Overheads in Heterogeneous
Multicore RSoCs with Predictive Configuration
Management." International Journal of Reconfigurable
Computing (2009).

[13]. Duhem, François, Fabrice Muller, and Philippe
Lorenzini. "Farm: Fast reconfiguration manager for reducing
reconfiguration time overhead on fpga." International
Symposium on Applied Reconfigurable Computing. Springer
Berlin Heidelberg, 2011.

[14]. Liu, Ming, et al. "Reducing FPGA reconfiguration
time overhead using virtual configurations." Proceedings of

the International Workshop on Reconfigurable
Communication Centric System-on-Chips. 2010. Liu, Ming, et
al. "Reducing FPGA reconfiguration time overhead using
virtual configurations." Proceedings of the International
Workshop on Reconfigurable Communication Centric System-
on-Chips. 2010.

[15]. Qu, Yang, Juha-Pekka Soininen, and Jari Nurmi. "A
parallel configuration model for reducing the run-time
reconfiguration overhead." Proceedings of the conference on
Design, automation and test in Europe: Proceedings.
European Design and Automation Association, 2006.

[16]. L. Benini and G. De Micheli, “Networks on chip: A
new paradigm for systems on chip design,” in Proc. DATECE,
Mar. 2002, pp. 418–419.

[17] 7 Series FPGAs Overview, DS180 (v1.11), Xilinx,
San Jose, CA, USA, 2012.

[18] ZC702 Evaluation Board for the Zynq-7000 XC7Z020
Extensible Processing Platform, User Guide, UG850 (v1.0),
Xilinx, San Jose, CA, USA, 2012.

[19] Altera. (2011). Stratix V Device Datasheet, San Jose,
CA, USA [Online]. Available:
http://www.altera.com/literature/hb/stratix-v/stx5_53001.pdf

[20] Altera. (2011). Quartus II Handbook Version 13.0,
Volume 1:Design and Synthesis, San Jose, CA, USA [Online].
Available:
http://www.altera.com/literature/hb/qts/quartusii_handbook.pd
f

[21]. Clemente, Juan Antonio, Javier Resano, and Daniel
Mozos. "An approach to manage reconfigurations and reduce
area cost in hard real-time reconfigurable systems." ACM
Transactions on Embedded Computing Systems (TECS) 13.4
(2014): 90.

[22]. T. Marescaux, A. Bartic, D. Verkest, S. Vernalde,
and R. Lauwereins, “Interconnection Network enable Fine-
Grain Dynamic Multi-Tasking on FPGAs”, Proceedings of the
Field Programmable Logic Conference (FPL), pp.795-805,
2002

[23]. Chun Wong, Paul Marchal, and Peng Yang, “Task
Concurrency Management methodology to schedule the
MPEG4 IM1 player on a highly parallel processor platform”,
Proceedings of the Ninth International Symposium on
Hardware/Software Codesign, CODES 2001

[24]. Muralimanohar, Naveen, Rajeev Balasubramonian,
and Norman P. Jouppi. "CACTI 6.0: A tool to understand
large caches." University of Utah and Hewlett Packard
Laboratories, Tech. Rep (2009).

[25]. Thoziyoor, Shyamkumar, et al. "A comprehensive
memory modeling tool and its application to the design and
analysis of future memory hierarchies." Computer
Architecture, 2008. ISCA'08. 35th International Symposium
on. IEEE, 2008.

