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Abstract: In this paper we investigate the control of 

three-dimensional non-autonomous fractional-order 

uncertain model of a permanent magnet synchronous 

motor (PMSM) via a one input control technique. We 

derive a dimensionless fractional order model of the 

PMSM from the integer order presented in the 

literatures. Various dynamic properties of the 

fractional order model like eigen values, Lyapunov 

exponents, bifurcation and bicoherence are 

investigated. The system chaotic behavior for various 

orders of fractional calculus are presented. A robust 

adaptive one input controller is derived to suppress 

the chaotic oscillations of the fractional order model. 

As the direct Lyapunov stability analysis of the robust 

controller is difficult for a fractional order first 

derivative, we have derived a new lemma to analyze 

the stability of the system. Numerical simulations of 

the proposed chaos suppression methodology are 

given to prove the analytical results derived through 

which we show that for the derived robust adaptive 

controller and the parameter update law, the origin 

of the system for any bounded initial conditions is 

asymptotically stable. 

Keywords: Permanent Magnet Synchronous Motor; 

Fractional order systems; Chaos suppression; One 

input control; Adaptive control; 

I. Introduction 

Permanent magnet synchronous motor (PMSM) 

is increasingly used in efficient AC servo driving 

control system due to its simple dynamics, high 

efficiency, high power density and high torque-

current ratio. The investigation of chaos in PMSM is 

a field of active research due to its direct applications 

in many areas especially for industrial applications in 

low-medium power range. However, the performance 

of the PMSM is sensitive to system parameter and 

external load disturbance in the plant. Some 

investigations, for example, by Li et al. [1] and Jing 

et al. [2] show that with certain parameter values, the 

PMSM displays chaotic behavior. This chaotic 

behavior of PMSM can lead to performance 

degradation by causing torque ripples, low frequency 

oscillations and low performance to speed control. 

Ataei et al. [3] characterized the complex dynamics 

of the permanent-magnet synchronous motor 

(PMSM) model with a non-smooth-air-gap. Harb and 

Zaher [3] studied chaotic behaviors in Permanent 

Magnet Synchronous Motor (PMSM) for a certain 

range of its parameters, and it was eliminated by using 

optimal Lyapunov exponent methodology. Zribi et al 

[3] proposed to use a Lyapunov exponent control 

algorithm to control the Permanent Magnet 

Synchronous Motor (PMSM). Dynamical equations 



of three time scale brushless DC motor system were 

presented by Ge and Cheng [3]. 

In the recent years, the research on fractional 

order dynamical systems has been receiving 

increasing attention. It is found that with the help of 

fractional derivatives, many systems in 

interdisciplinary fields can be elegantly described. 

[7−9] Furthermore many integer order chaotic 

systems of fractional order have been studied 

widely.[10−14]. All the physical phenomena in 

nature exist in the form of fractional order, [15] 

integer order (classical) differential equation is just a 

special case of fractional differential equation. The 

importance of fractional-order models is that they can 

yield a more accurate description and give a deeper 

insight into the physical processes underlying a long 

range memory behavior.  

Chaos modelling have applications in many areas 

in science and engineering [15-17]. Some of the 

common applications of chaotic systems in science 

and engineering are chemical reactors, Brusselators, 

Dynamos, Tokamak systems, biology models, 

neurology, ecology models, memristive devices, etc. 

An analysis of saddle-node and Hopf bifurcations in 

indirect field-oriented control (IFOC) drives due to 

errors in the estimate of the rotor time constant 

provides a guideline for setting the gains of PI speed 

controller in order to avoid Hopf bifurcation [18]. An 

appropriate setting of the PI speed loop controller 

permits to keep the bifurcations far enough from the 

operating conditions in the parameter space [8]. It has 

been proven the occurrence of either codimension one 

bifurcation such as saddle node bifurcationand Hopf 

bifurcation and codimension two such as Bogdanov-

Takens or zero-Hopf bifurcation in IFOC induction 

motors [19-21].  

 

 

 

II. Problem formulation and Preliminaries: 

The Non-Linear dynamical dimensionless model of 

the Permanent Magnet Synchronous Motor (PMSM) 

is given in [2, 3]. 
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The system shown in (1) shows chaotic behavior 

when the parameters are 20; 5.46   . 

The Fractional order model of the PMSM dimension 

less model shown in (1) can be defined as 
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Where 1 2 3,q q and q  are the fractional orders of the 

respective states. For studying the state portraits of 

the fractional order system (2), the system parameters 

are chosen as 20 & 5.46   . 

 

Fig 1: 3D State portrait of the Fractional order System  



III. Dynamical analysis of the Fractional 

order system: 

In this section we analyze the fractional order system 

for various properties of chaotic behavior like 

equilibria points, Lyapunov exponents, bifurcation 

and bicoherence. 

a. Equilibria Points and Lyapunov Exponents: 

The equilibria of the system (2) can be found by 

solving (3). 
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The three equilibria points of the system (2) are 

1 (0,0,0)E  and 2,3 ( 1, 1, 1)E         . 

And the Jacobian matrix of the system (2) is defined 

as, 
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Where 1 2 3( ), ( )& ( )x t x t x t  denotes the equilibrium 

points. 

The Initial conditions are chosen as

1 2 3( ) 1, ( ) 2 & ( ) 4x t x t x t   and the parameter 

values are chosen as 20 & 5.46   . The 

Lyapunov exponents of the system (2) are

1 0.452023  2 0.009746  3 7.902219L L L    

.The Numerical results of the simulation are shown in 

Figure 2. 

 

Fig 2: Lyapunov Exponents of the Fractional order System (2) 

b. Bifurcation and Bicoherence: 

By fixing 5.46   ,   is varied and the behavior of 

the fractional order system (2) is observed in figure 3. 

By fixing 20  ,  is varied and the system (2) 

performance is observed in figure 4.Generally 

speaking, when the system’s biggest Lyapunov 

exponents is large than zero, and the points in the 

corresponding bifurcation diagram are dense, the 

chaotic attractor will be found to exit in this system. 

Therefore, From the Lyapunov exponents and 



bifurcation diagrams in figure 3 and 4 a conclusion 

can be obtained that chaos exit in the fractional order 

PMSM system (2) when selecting a certain range of 

parameters. Next the individual state responses are 

studied in detail by varying the parameters. Figure 5 

shows the behavior of states 1 2 3( ), ( )& ( )x t x t x t  

with reference to  when 5.46  . Figure 6 shows 

the behavior of states 1 2 3( ), ( )& ( )x t x t x t with 

reference to  when 20  . 

 The bifurcation plots of the system (2) with 

the change in the order of the system and the 

parameters fixed at 20 & 5.46   . Figure 7 

shows the order 1q , 2q and 3q  varied and the 

attractor bifurcation responses are investigated. As 

seen from the bifurcation plots, the system chaotic 

dynamics changes drastically with the fractional 

order. By comparing the eigen values and the 

Lyapunov exponents with the fractional order 

bifurcation graphs, it can be commented that as the 

order of the fractional equation lies between 

0.6 0.9,q  the systems chaotic behavior is 

showing larger Lyapunov exponents. Hence the chaos 

suppression with fractional order controls are 

efficient than the integer order control algorithms. 

 

 

Figure 3: Bifurcation plot versus   

 

Figure 4: Bifurcation plot versus   

 

Figure 5: Bifurcation plot state 1 2 3( ), ( )& ( )x t x t x t versus   

 

Figure 6: Bifurcation plot state 1 2 3( ), ( )& ( )x t x t x t versus   



 

Figure 7: Bifurcation plot versus 
1q ,

2q ,
3q  

The bicoherence or the normalized bispectrum is 

a measure of the amount of phase coupling that occurs 

in a signal or between two signals. Both bicoherence 

and bispectrum are used to find the influence of a 

nonlinear system on the joint probability distribution 

of the system input. Phase coupling is the estimate of 

the proportion of energy in every possible pair of 

frequency components    1 2 3,  , , , .nf f f f  

Bicoherence analysis is able to detect coherent signals 

in extremely noisy data, provided that the coherency 

remains constant for sufficiently long times, since the 

noise contribution falls off rapidly with increasing 

.N  

The auto bispectrum of a chaotic system is given 

by Pezeshki [21]. He derived the auto bispectrum 

with the Fourier coefficients. 

*
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      (5) 

where n  is the radian frequency and A  is the 

Fourier coefficients of the time series. The 

normalized magnitude spectrum of the bispectrum 

known as the squared bicoherence is given by 

2
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      (6) 

where 1( )P  and 2( )P   are the power spectrums at 

1f and 2f . 

 

Fig 7: Bicoherence of the state 1( )x t  

 

Fig 8: Bicoherence of the state 2 ( )x t  

 

 

Fig 9: Bicoherence of the state 3 ( )x t  

 

 

 



IV. Chaos suppression of the Fractional order 

system using Robust adaptive Controller: 

The control goal of this paper is to design a suitable 

robust controller for suppression of chaotic 

oscillations in the fractional order Permanent Magnet 

Synchronous Motor (2)around zero. 

For deriving the robust adaptive controller for the 

system (2) let us assume 2 ( ) 0x t  and the system (2) 

modifies to a two dimensional system (7). 
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For the fractional-order system (2), if this system is 

controlled by the single active controller (8), then 

the system trajectories will converge to zero which 

will be asymptotically stable about the origin

1 2( ) 0 & ( ) 0x t x t  . 

2( ) ( ) ( , , )u t sign y f X y t      (8) 

where ( ) , ,h y h  are positive constants. 

The fractional order system (2) with the robust 

controller ( )u t is given by (9). Here we assume that 

the parameters of the system are uncertain and hence 

introduce a parameter estimates ˆ ˆ( )& ( ).t t   
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where ( , , )f X y t is a non-linear control part to be 

introduced for the robust control and is assumed to be 

always ( , , )f X y t   and where  is a known 

positive constant. 

 

V. Stability analysis of the controller 

In order to analyze the stability of the designed 

control algorithm we use Lyapunov stability theory. 

The Lyapunov function for the controller (8) and 

system (9) can be given by (10) 
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Differentiating (10) along the trajectories of (9) we 

will get the Lyapunov first derivative (12). 
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By definition of fractional calculus [22, 23], 
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(14). 
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From (14) it is clear that the calculation of the sign of 

the first Lyapunov derivative is very difficult. Hence 

we derive a new lemma to find the sign of the 

Lyapunov first derivative. 

 

a. Lemma-1: 

As defined by if  e t  be a time continuous and 

derivable function. Then for any time instant 0t t , 
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Proof: To prove expression (15) is true we start 

with, 
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Solving first term of (23) for t   
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Equation (24) can be rewritten as  
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which clearly holds as  lies between 0 ≤  ≤ 1, the 

r.h.s of the equation (25) will always be a positive 

value and hence Proved. 
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b. Lyapunov First Derivative using Lemma-1 

Applying Lemma-1(15) in equation (10) we get, 
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As per assumption 
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As per the assumption made during the selection of 

the robust controller (9), the non-linearity of the 

robust controller is always ( , , )f X y t   . Hence 

(33) is a negative definite function which infers that 

the system is stable and is valid for any bounded 

initial conditions. 

 



VI. Numerical Simulations using LabVIEW 

The Fractional order PMSM system (2) with the 

robust adaptive controller (8) is implemented in 

LabVIEW for numerical analysis and validation. The 

initial values of the fractional order system (2) are 

taken as 1 2 3( ) 1, ( ) 2 & ( ) 4x t x t x t   .The adaptive 

control parameters are selected as 4  and 4h  . 

The state trajectories of the controlled fractional-

order chaotic system (2) are shown Figure 10, where 

the controller is switched at t =120s. It can be clearly 

observed that the state trajectories converges to zero 

as soon as the controller is introduced which clearly 

shows that the fractional order system (2) is 

controlled by the robust controller.Fig. 10 also shows 

the evolution of the states of the system (2) with 

controller (8), with the fractional orders 

1 2 30.8, 0.9& 0.8q q q    . As proved from the 

analytical analysis already presented, the origin of the 

system for any bounded initial conditions is 

asymptotically stable. 

 

Fig.10: State trajectories with control in action at 

120t s  

 

 

VII. Conclusion and Discussions: 

This paper investigates control of three-dimensional 

non-autonomous fractional-order uncertain model of 

a permanent magnet synchronous motor (PMSM) via 

a one input control technique. Firstly the 

dimensionless fractional order model of the PMSM is 

derived from the integer order model discussed I the 

literature using the Caputo fractional calculus. In 

order to study the effects of variation of parameters 

on the fractional order system’s performance, we 

have investigated the bifurcation analysis of 

fractional order system. It is also shown that the 

fractional order PMSM are not only prone to 

instability due to Hopfbifurcation, it also exhibits 

limit cycles and chaos due to Bifurcation other than 

Hopf bifurcation which is shown by the bicoherence 

plots.   This bispectrum analysis helps us in choosing 

the appropriate parameters for the proper working of 

the motor. AS understood from the dynamic analysis 

of the fractional order system, it is seen that chaos 

oscillations are exhibited for a particular selection of 

parameters. To suppress such chaotic oscillations, we 

have derived a robust one input control technique 

assuming that the operating parameters of the 

fractional order system (2) are unknown. The direct 

Lyapunov stability analysis of the robust controller is 

difficult and hence we have derived a new lemma to 

analyze the stability of the system. The proposed 

lemma is introduced in the Lyapunov first derivative 

and thus the parameter estimates are derived. We 

have also proved with numerical simulations that for 

the derived robust adaptive controller and the 

parameter update,the origin of the system for any 

bounded initial conditions is asymptotically stable.  
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