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Abstract: A multi-layer perceptron neutral network 

(MLPNN) has been used as a decision tool to predict out-of-

step conditions. Rotor speed deviations are sampled and the 

maximum speed deviation in 1 cycle is obtained, and used as 

input to the MLPNN. Each generator has one trained 

MLPNN assigned to it to predict whether or not that 

generator will go out of step following a disturbance. The 

trained neural network responded to the 88 individual 

generator out-of-step (OOS) cases with 100% accuracy 

while the responses to 512 synchronism cases were 98.05% 

accurate. The 340 predictions for 34 simulations with all 10 

generators in synchronism were 100% accurate.  The study 

used the IEEE 39-bus as the test system. 
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1. Introduction 

To ensure a high level of reliability of power 

supply, today‟s power systems are largely 

interconnected networks of transmission lines linking 

generators and loads into large integrated systems. A 

critical prerequisite for the reliable operation of power 

systems is to keep the synchronous generators running 

in parallel [1]. Power system faults, which are largely 

unpredictable, present the greatest threat to the 

maintenance of synchronism among generators. 

Severe power system disturbances could cause 

large separation of the rotor angles between individual 

generators and groups of generators leading to eventual 

loss of synchronism between generators and groups of 

generators or between neighboring utility systems. 

When two areas of interconnected power systems lose 

synchronism, the areas must be separated from each 

other quickly and automatically to avoid equipment 

damage and power blackouts [2]. Over the years, 

several power systems have suffered wide scale 

blackouts because of generator OOS conditions [2-4]. 

OOS conditions are usually characterized by large 

separation of generator rotor angles, large swings of 

power flows, and large fluctuations of voltage and 

current [5]-[9]. These OOS conditions may cause 

equipment damage, pose safety hazards to personnel, 

contribute to cascading outages, and the shutdown of 

larger areas of the power system if uncontrolled.  

Therefore, controlled tripping is necessary to prevent 

equipment damage and widespread power outages [2].   

A number of techniques have been proposed for 

the detection of OOS conditions [9-18]. The schemes 

used inputs such as generator angles, angular velocities 

and their rates of change [10], active power and 

reactive power [11], critical velocities of generators 

relative to a center of inertia [12], generator pre-fault 

loading, and generator kinetic energy deviation and 

average acceleration during fault [13]. Signal 

processing and decision making tools such as K-means 

clustering [18], discrete Fourier transform [14], 

wavelet transforms [17], and neural networks [13] have 

been used. Other methodologies have been proposed 

for OOS predictions [5, 19 – 21], including 

autoregressive model [20] and three-impedance 

element principle that uses the least square method 

[21]. Transient stability is better enhanced with OOS 

prediction rather than detection [2]. Even though the 

above-mentioned schemes predict OOS conditions, 

they fail to tell the specific machine(s) which will go 

out of step.  

This paper proposes a generator speed deviation 

and MLPNN-based OOS prediction method that can 

predict OOS conditions 1 cycle (20 ms in a 50 Hz 
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system) after the tripping of a bus or line following a 

disturbance. For each generator, the speed deviation is 

sampled at a frequency of 6 kHz and the maximum 

deviation within one cycle is used as an input to a 

trained MLPNN. Each MLPNN gives an output of “1” 

if the generator will go out of step and an output of “0” 

if the generator will be stable. 

 

2. Speed deviation as input parameter 

Rotor angles are the most widely used power 

system data for transient stability studies. Rotor angle 

is a key parameter in the fundamental equation 

governing generator rotor dynamics. Equation 1 shows 

the fundamental equation governing rotor dynamics. 

This equation is commonly referred to as the swing 

equation [22].  

em PP
dt
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       (1) 

where M is the inertia coefficient,  is the rotor angle, 

mP is the mechanical power and eP  is the electrical 

power. 

Rotor angles need to be expressed relative to a 

common reference. This reference cannot be based on 

a single generator, since any instability in the reference 

generator makes the relative angles meaningless. In 

order to overcome this difficulty, the concept of system 

centre of inertia (COI) angle, co defined in equation 2 

is used to obtain a reference angle.  
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where δi and Hi are the rotor angle and inertia constant 

of the ith generator, respectively. The angle, δi is 

usually approximated by the phase angle of the 

respective generator bus voltage [5 and 23]. Many 

researches however discourage the use of rotor angles 

in algorithms. This is because the COI values, in 

practice require continuous updates using real time 

measurements. This requires extra pre-processing and 

has significant errors [5]. Rotor angles, thus best serve 

as the reference parameter for telling stability status of 

a system in a simulation. Other electrical parameters 

whose use in algorithms, do not have practical 

constraints may then be employed for algorithm 

development.  

The time derivative of rotor angle is the rotor 

speed deviation in electrical radians per second [22, 

24]. Mathematically,  

s
dt

d



        (3) 

where

 

 is the rotor speed deviation,  is the rotor 

speed at a particular time, and s is the synchronous 

speed. It follows from equations (1) and (3) that the 

swing equation can be written as 
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It can also be shown that   
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where H is the inertia constant and aP  is the difference 

between input mechanical power and output 

electromagnetic power. For stability to be attained after 

a disturbance, it is expected that 0
dt

d
 in the first 

swing. This equation gives rise to the equal area 

criterion which is a well-known classical transient 

stability criterion. From equations (3) and (5), it can be 

written that 
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Equation (6) then suggests speed deviation as a good 

input parameter for the prediction of transient stability 

status.  

The higher the rotor speed deviation following a 

disturbance, the more unstable the system becomes 

[25]. Thus, the maximum speed deviation at some time 

during a disturbance can be used to predict transient 

stability or otherwise. The best time is within the first 

swing, like the equal area criterion. This work proposes 

an algorithm for transient stability prediction using 

rotor speed deviation as power system input data.  

Unlike rotor angles, rotor speed and for that matter 

rotor speed deviation of a particular generator need not 

be referenced to any particular machine.  Hence rotor 

speed deviation has the potential to assist in 

determining transient stability conditions following a 

large disturbance. 

Generator speeds, just like their rotor angles, swing 



 

 

following a power system disturbance.  For a stable 

generator, the speed will settle at a new value or the 

value before the disturbance; there is a reduced 

amplitude speed deviation.   For an unstable generator, 

the speed will increase progressively; there is higher 

amplitude of speed deviation.  Figure 1 shows speed 

deviations of generators following a three-phase short-

circuit on a line which lasted for 0.9 s, after which the 

line was tripped. At time st 1  the generator (GEN 1) 

which went out of step had a higher speed deviation 

compared to the stable ones.  

 
Fig. 1  Generator speed deviations 

 

3. Multilayer perceptron neural network 

 Artificial Neural Networks (ANNs) represent a 

modern and sophisticated approach to problem solving 

widely explored also for power system protection and 

control applications. ANNs perform actions similar to 

human reasoning, which relies upon experience 

gathered during a training process [26]. ANNs can be 

used to extract patterns and detect trends that are too 

complex to be noticed by either humans or other 

computer techniques [27]. Advantages of ANN 

computing methodologies over conventional 

approaches include faster computation, learning ability, 

adaptive features, robustness and noise rejection [26]. 

ANNs are made up of a number of simple and 

highly interconnected processing elements called 

neurons, as shown in Fig. 2.  

 

 
Fig. 2  Mathematical model of a neuron 

 

where jO  is the output of a neuron, jf is a transfer  

function, which is differentiable and non-decreasing, 

usually represented using a sigmoid function, jkw is an 

adjustable weight that represents the connection 

strength, and kx  is the input of a neuron. 

The mathematical model of a neuron is expressed 

as [27]: 


N

k
kjkjj xwfO  N,...,,,kj 321   (7) 

 

A three-layer feed forward multilayer perceptron 

neural network with no bias was used for this study. 

The choice was informed by the fast decision making 

capability of MLPs [28]. The input had one neuron 

with a purelin transfer function. The input data, kx , 

was the maximum speed deviation in one cycle after 

the tripping of a bus or line. The hidden layer had two 

neurons with tangent sigmoid transfer functions. The 

output had one neuron with a purelin transfer function.  

The output, y of a purelin transfer function for a 

given input x is given as: 

xy          
(8) 

The output, y of a tangent sigmoid transfer 

function for a given input x is given as: 

xe
y




1

1
       (9) 

The neural network gives an output,
 jO  , of „1‟ 

for a generator which will go out of step and „0‟ for a 

stable generator. The neural network was trained using 

the Levenberg-Marquardt back-propagation technique 

with 10 input and output pairs (5 OOS maximum speed 

deviation data and 5 stable data). The maximum speed 

deviation data for OOS conditions were distinct from 

that of stable conditions. This permitted the use of such 



 

 

minimal training data set. The input data used for the 

proposed scheme is given as follows: 

 kk Maxx      
(10) 

where kx  is the input data of the neural network 

assigned to generator k and k  
is the rotor speed 

deviation of generator k. 

 
 

4. Used  power system configuration 

The OOS prediction scheme was developed using 

the IEEE 39-bus test system which, is also known as 

the New England test system. The IEEE 39-bus test 

system is a standard test system that is widely used for 

small and large signal stability studies [12]. The test 

system consists of 10 generators one of which is a 

generator representing a large system. Data for the 

modeling of the test system was obtained from [29]. 

The test system is shown below as Fig. 3. 

 
Fig. 3  IEEE 39-bus Test System 

 

5. Simulations 

Modeling and simulation of the test system were 

carried out using the Power System Simulator for 

Engineers (PSSE) software [30].  Three-phase faults 

were created at various buses and on various lines. 

Simulations were carried out for four different loading 

levels; base load, base load increased by 5%, base load 

increased by 7%, and base load increased by 10% [5]. 

In total, 95 three-phase fault cases were simulated. The 

number of OOS cases was 61 while the remaining 34 

had all generators remaining stable. A generator was 

seen as going out of step with respect to the other 

generators when the angle difference between that 

generator and other generators exceeds 180 degrees 1 

second after fault clearing time [31]. The output data 

(for analysis) from the simulations were generator 

speed deviations sampled using a sampling frequency 

of 6 kHz. All stable cases had fault durations of 0.1 s 

while OOS conditions were obtained for faults lasting 

between 0.7 seconds and 0.9 s. These times are similar 

to those reported in [31]. The 61 OOS cases had 

different combinations of generators going out of step. 

For example, in some OOS cases, one, two, and a 

maximum of four generators went out of step. Table 1 

shows the number of generators which went out of step 

for the OOS cases. 

 
Table 1: Number of generators involved in OOS cases 

Number of generators 

which went out of step 

Number of system OOS 

cases 

1 38 

2 21 

4 2 

Total 61 

 

The outputs of the simulations (for OOS scheme 

development) were the speed deviations of the 

generators. For example, Fig. 4 shows generator speed 

deviations for fault at bus 28 for 107% of base load 

condition. The fault was applied at 0.1 s and lasted for 

0.7s after which the bus was disconnected resulting in 

generator 9 going out of step. All other machines 

remained in synchronism for the aforementioned fault 

condition. Also, Fig. 5 shows the speed deviations of 

generators for a line fault between buses 6 and 11 for 

107% of base load conditions. The fault was applied at 

0.1 s and lasted for 0.8 s. This resulted in generators 2 

and 3 going out of step. All other generators remained 

in synchronism. 

 



 

 

 
Fig. 4  Generator speed deviations for a fault at bus 28 

 

 
Fig. 5 Generator speed deviations for a line fault between 

bus 6 and 11  

6. Data Analysis 

The analysis of the output data was done using the 

MATLAB software [32]. In MATLAB, the speed 

deviations were further sampled 20 ms after the 

tripping of a line or bus. The maximum speed 

deviation (MSD) within each cycle was then obtained. 

Table 2 shows MSDs within one cycle after the  

 

 

disconnection of bus 28 following a three-phase fault 

at bus 28. Table 3 shows MSDs within one cycle after 

the tripping of the line between bus 6 and 11 following 

a three-phase fault on that line. 

A study of the MSDs revealed that generators which 

went OOS had higher speed deviations than the stable 

generators. 

 
TABLE 2: MAXIMUM SPEED DEVIATIONS FOR A FAULT ON BUS 28  

Gen. 1 2 3 4 5 6 7 8 9 10 

MSD 0.0001 0.0003 0.0007 0.0009 0.0009 0.0008 0.001 0.0014 0.0074 0.001 

 

TABLE 3: MAXIMUM SPEED DEVIATIONS FOR A LINE FAULT BETWEEN BUSES 6 AND 11 

Gen. 1 2 3 4 5 6 7 8 9 10 

MSD 0.0002 0.0094 0.0106 0.0023 0.0023 0.0022 0.0026 0.002 0.002 0.0022 

 

 A. Out-of-Step Scheme 

The proposed OOS prediction scheme uses a 

feedfoward multilayer perceptron artificial neural 

network with one input neuron, two hidden layer 

neurons and one output neuron. Each generator has one  

trained MLPNN assigned to it to predict whether or not  

that generator will go out of step following a 

disturbance. The input to each neural network is the 

maximum speed deviation of the rotor of the generator 

in one cycle after the tripping of a line or bus.  

Five MSDs of generators which went out of 

step and 5 MSDs of stable generators were used to  

 

train the neural network. Each MLPNN assigned to 

each generator gives an output of “1” if the generator 

will go out of step and “0” if the same generator will 

remain in synchronism. 

The study system has 10 generators, so the proposed 

scheme employs 10 trained MLPNNs, one assigned to 

each generator. Hence for every fault condition, there 

will be 10 MLPNN predictions. Each of the 10 

MLPNNs will make a prediction for each fault 

scenario. Thus for the 61 simulations which resulted in 

OOS conditions, there were a total of 610 (     ) 

MLPNN predictions. A total of 88 individual generator 



 

 

out of step predictions were expected out of the 610 

predictions. The remaining 512 predictions were 

expected to be predictions indicating stable generators.  

The input data set (P) and the target data set (T) used 

for the training are given below. 

P=[0.0118  0.0141  0.0072  0.0072  0.0059  0.0055 

0.0035  -0.0001  0.0030  0.004] 

T=[1 1 1 1 1 0 0 0 0 0] 

The settings used in MATLAB [28] for training the 

MLPNN are given below. 

net.trainParam.epochs=600; 

net.trainParam.goal=1e-5; 

net.trainParam.min_grad=0; 

net.trainParam.max_fail=10; 

net.trainParam.mu=0.001; 

net.trainParam.mu_max=1e10; 

The training progress was obtained as follows: 

 Epochs = 82 iterations 

 Training time = 3 seconds 

 Performance = 8.04e-06 

 Gradient = 0.00448 

The output of the MLPNN like any other neural 

network in the testing phase usually has an error with  

respect to its actual binary value. A similar situation is 

observed in the digital communication networks, where 

the received bits have some deviation with respect to  

the sent bits. In these networks, the TTL standard is 

usually used in the receiving equipment to detect the 

received bits. This standard is also used to determine 

the output status of the MLPNN [31].  

180  jj O.O  (Out of step)        (11) 

  
02.0  jj OO (Stable)                      (12) 

where jO  is the output of a neuron and .n...,,1j   

In the digital communication networks, if the value 

of a received bit is in the range of 0.2 to 0.8, it is 

considered as a missing bit. Besides, if a “1” bit is 

received in the range of 0 to 0.2 or a “0” bit is received 

in the range of 0.8 to 1 it is considered an error bit, 

which is a worse incorrect case than the missing bit. 

This interpretation for the error and missing bits is also 

used for the output of the MLPNN. 

The trained MLPNN responded to the 88 OOS cases 

with 100% accuracy while the response to the 512 

synchronism cases was 98.05% accurate. The 340 

predictions for the 34 simulations which had all 10 

generators being in synchronism were 100% accurate. 

 

V. CONCLUSION 

A rotor speed deviation and MLPNN based out-of-step 

prediction scheme for improving power system 

transient stability has been presented. The scheme 

predicts out-of-step conditions of individual generators 

1 cycle after the tripping of a bus or line after a 

disturbance. The scheme uses maximum speed 

deviation of rotor as input signal and a multilayer 

perceptron neural network as a decision making tool. 

The proposed out-of- step prediction scheme has a 

1.05% prediction error for 950 (610 predictions 

involving OOS cases plus 340 predictions of 

synchronism cases) individual generator predictions. 
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