
High Dynamic Performance of PMSM Drive Using MIMO Fuzzy Controller 
 

Maged N. F. Nashed 
Electronics Research Institute (ERI) 

e-mail: maged@eri.sci.eg 

 
 

Abstract: This paper presents modeling and analysis of 

electric drives with Permanent Magnet Synchronous 

Motors (PMSM).  This method has high-performance, 

robust, speed controller of PMSM drive with neural 

network tuned fuzzy Controller for controlling multi 

inputs multi outputs (MIMO) systems. The structure of 

MIMO fuzzy controller is divided into single input single 

output.  A MIMO fuzzy is designed and analyzed to 

achieve high-dynamic performance in load regulation 

characteristics for robotic applications.  The MIMO 

system transfer function of PMSM drive system incase of 

closed loop including the current control loop is used as 

the reference model.  The simulation of pulse width 

modulated (PWM) inverter fed PMSM Controlled by 

MIMO fuzzy controller at closed loop is present. 

 

Keywords: MIMO Fuzzy control, neural network, PMSM 

and inverter. 

 

1. Introduction  
For a long time, permanent magnet synchronous 

motors (PMSM) applied in some particular application 

fields, e.g. for servo drives. However, in the recent years 

PMSMs gained increasing importance in novel domains 

like in automotive hybrid drive trains or wind power 

plants as a result of powerful rare earth magnets. 

Characteristic of these new applications is the borderline 

design to aim for highest utilization of torque and power. 

The behaviour of these motors may differ considerably 

from the well known servo motor. 

The most commonly used method of control for 

PMSM is field oriented control (FOC) [1]. The FOC 

represents the attempt to reproduce, for a PMSM, a 

dynamical behaviour similar to that of the dc machine, 

characterized by the fact that developed torque is 

proportional to the modulus of the stator current: to reach 

this objective, it is necessary to keep the rotor flux value 

constantly equal to the nominal value, so that, 

contemporarily, the optimal magnetic circuits 

exploitation guarantees the maximum power efficiency, 

[2-3]. Regulation of currents id and iq in closed loops 

leads indirectly to control of the motor developed torque. 

Recently, several control techniques have been 

developed for improving the performance of the PMSM 

drives. Many researches have been carried out to apply 

Fuzzy Logic to the control of PMSM drive system to deal 

with the nonlinearities and uncertainties of the dynamic 

model of PMSM, [4].  

 

2. MIMO System 

The majority of process industries are nonlinear, 

Multi-Input Multi-Output (MIMO) systems. The control 

of these systems is met with a number of difficulties due 

to process interactions, dead time and process 

nonlinearities. The difference between MIMO systems 

control and single-input single-output (SISO) systems 

control is based on an estimation and compensation of the 

process interaction among each degree of freedom. It is 

obvious that the difficulty of MIMO systems control is 

how to overcome the coupling effects among each degree 

of freedom. To obtain good performance, coupling effect 

cannot be neglected. Hence SISO system control scheme 

is not easy to implement on complicated MIMO systems. 

In addition, the control rules and controller computation 

will grow exponentially with respect to a number of 

considered variables. Therefore, intelligent control 

strategy is gradually drawing attention. 

The MIMO systems usually possess characteristics of 

nonlinear dynamics coupling, [5-7]. Therefore, the 

difficulty of MIMO systems control is how to overcome 

the coupling effects among each degree of freedom [5]. 

The structure of the MIMO controller can be divided into 

multi-input single output (MISO) and SISO controllers. 

Each MIMO controller then consists of many fuzzy logic 

controllers (FLC). It is clear that the control structure of 

the fuzzy control (FC) system is very complicated when 

the input variable is multi-degree and the output variable 

is one degree, or more than one degree. These parameters 



of a FC system are not easily decided because FC rules 

will be grow as a geometric series, and much computing 

time will be required. To minimize the amount of 

memory used and computational time, we can put 

constraints on the type of fuzzy controller (e.g., 

membership functions) or limit the rules. But it will affect 

the performance of the system; hence we need the 

solution which exhibits good performance with smallest 

possible rule base. 

In this paper, a neural network (NN) tuned fuzzy 

controller is designed for MIMO systems from the given 

set of input output data. An appropriate coupling tuned 

fuzzy controller is incorporated to control the MIMO 

systems to compensate for the dynamics coupling among 

each degree of freedom. A tuned fuzzy controller is 

obtained from data set in two steps.  First, the data set is 

partitioned into a set of clusters based on the similarity of 

data. Then using subtractive clustering algorithm a fuzzy 

if-then rule is extracted from each cluster to form a fuzzy 

rule base. Secondly, a fuzzy NN is designed accordingly 

to optimize the parameters of the fuzzy system. After 

simulation of a two-level mass–spring MIMO system and 

performed through the PWM inverter, which feeds the 

PMSM, which will be done experimentally.  

 

3. Basic Modeling of the Drive for Dynamic 

Performance  

The drive has been modeled for the design and 

simulation of the control. For the simulation the focus is 

put on the characteristics of the machine and the control. 

The converter has minor influence and is nearly neglected, 

acting as a controlled source of variable sinusoidal 

voltage with its typical delay time.  

The drive, based on the machine, is modeled using 

space vectors [8]. Equations (1) to (3) show the stator 

voltages and the electromagnetic torque, given here in the 

rotor fixed reference frame:  
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The relationship between torque and speed is given by 

ωr= [(P/2)/(Jp+Bm)].(Te-TL)            (4) 

It may be recall that ωr is in electrical rad/sec and J is 

the total inertia of the rotor and connected load. 

Because of the constant flux Ψ
F 

in the machine, we 

get simple voltage equations (1), (2) compared for 

example to the induction machine. We can see the 

coupling of the d- and q-component of the stator current 

i
S 

to both components of the stator voltage V
S
. Because of 

this, we have to compensate their influence for decoupled 

current control. The torque equation (3) is relative 

complex in the case of magnetic asymmetry (L
Sd≠LSq

). It 

simplifies for example, when i
Sd 

is controlled to zero, to a 

proportionality of torque and the q-component of the 

current.  

 

4. Controller Structure For MIMO System 
Fuzzy set theory and NN has been successfully 

applied in a number of control applications [9-12] based 

on the SISO system point of view without system model 

consideration. In this paper, FC strategy is used to control 

MIMO systems. The block diagram of the MIMO FC 

scheme is shown in Fig. 1. 

 

 
Fig. 1, Block diagram of the MIMO fuzzy control 

scheme. 

 

The design procedure of the FC strategy is used to 

control each degree of freedom of this MIMO system 

individually. Then, an appropriate coupling fuzzy 

controller is designed to compensate for the coupling 

effects of system dynamics among each degree of 

freedom. 

An ordinary fuzzy controller that usually operates 

with system output error and error change was chosen as 

the main controller to control each degree of freedom of 

the MIMO systems. Here, the input variables of the 

conventional fuzzy controller for among each degree of 

freedom of a MIMO system were defined individually as 

ei(k) = Ri(k) − Yi(k)              (5) Δei(k) = ei(k) −  ei(k− 1)             (6) 

Where ei(k) is the position error of the i
th

 degree, 

           ∆ei(k) is used for change in error of the i
th

 

degree,  

Ri(k) is the reference input of the i
th

 degree  



and Yi(k) represents the i
th

 position output of each 

degree of freedom of this MIMO system 

at the k
th

 sample. 

The relationship between the scaling factors (SFs) 

(Ge, G∆e, Gu) are the input and output variables of the 

FLC is 

eiN =Ge×ei,  ΔeiN =GΔe×Δei ,              (7) Δui =GΔu ×ΔuiN    

Selection of suitable values for Ge, G∆e and Gu are 

made based on the knowledge about the process to be 

controlled and sometimes through trial and error to 

achieve the best possible control performance. This is so 

because, unlike conventional nonfuzzy controllers to 

date, there is no well-defined method for good setting of 

SF’s for FLC’s. The SFs are the significant parameters of 

FLC because changing the SFs changes the normalized 

universe of discourse, the domains, and the membership 

functions (MFs) of input/output variables of FLC. 

All MFs for controller inputs (i.e., ei and Δei) and 

incremental change in controller output (i.e., Δui) are 

defined on the common normalized domain [-1,1]. We 

use symmetric triangles (except the two MFs at the 

extreme ends) with equal base and 50% overlap with 

neighboring MFs as shown in Fig. 2. This is the most 

natural and unbiased choice for MFs. 

 

 
Fig. 2 MFs for ei, Δei and Δui 

 

The above design process, the actual control input 

voltage for the main fuzzy controller can be written as 

ui(k) = ui(k −1) + ∆ui(k)     (8) 

In (8), k is the sampling instant and ∆ui(k) is the 

incremental change in controller output, which is 

determined by the rules of the form If ei is Ei and ∆ei is 

∆Ei, then ∆ui is ∆Ui. The rule base for computing is a 

standard one [10] as shown in Table 1. 

The FC rules of the coupling fuzzy controller are 

similar to the main fuzzy controller. The output of the 

coupling fuzzy controller is chosen directly as the 

coupling control input voltage. The main reason is that 

there is a different coupling effect for each sampling 

interval and it does not have an accumulating feature. The 

coupling effect is incorporated into the main fuzzy 

controller for each step to improve system performance 

and robustness. 

 

Table 1, Rule base 

 
 

Therefore, the total control input voltage of the 

MIMO fuzzy controller is represented as 

Ui (k) = ui (k) +U(k)i→l  , i ≠ l    (9) 

where ui(k) expresses the system control input voltage 

of the i
th

 degree of a main fuzzy controller. U(k)i→l 

represents the coupling effect control of the l
th

 degree 

relative to the i
th 

degree of the coupling fuzzy controller. 

Since the additional coupling fuzzy controller is 

introduced to compensate the unknown coupling effects 

of MIMO systems, the control strategy presented here 

should be employed to control any complicated MIMO 

systems.  Therefore, the application of this control 

strategy is not constrained to a specific MIMO control 

system. In order to evaluate the control performance of a 

fuzzy controller for MIMO control systems, a two-level 

mass–spring MIMO system is considered [13]. The 

vibration system is reproduced as 

 

 

 
 

where x1 and x3 are the displacements of the main and 

secondary masses M1 and M2,  



x2 and x4 are the velocities of the mass M1 and M2, 

B1 and B2 are the damping coefficients of the main 

system and the secondary system, 

u1 and u2 are the inputs, 

Ω is a constant, 

d1 and d2 are the disturbance forces applied to the 

main and the secondary systems, 

Y1(k) and Y2(k) are the displacement of the first 

mass and second mass. 

The structure of the FC scheme to control this MIMO 

active vibration system is shown in Fig. 3. The input 

variables of the fuzzy controller are defined same as in 

(8) and (9) when indices i=1; 2 represent the main mass 

and second mass, respectively. 

u1(k) = u1(k-1) + ∆u1(k) 

u2(k) = u2(k-1) + ∆u2(k)     

 

 
Fig. 3, Structure of the MIMO fuzzy control scheme 

 

And the total control input voltage of this plant is 

represented as 

U1(k) = u1(k) + U(k) 2→1 

U2(k) = u2(k) + U(k) 1→2 

where u1(k) and u2(k) indicate the voltage increment 

of the first mass and the second mass on the k step 

sampling interval, respectively; u1(k) and u1(k−1) express 

the system control input of the first mass on the k step 

and k−1 step sampling intervals, respectively. Similarly, 

u2(k) and u2(k−1) are used for expressing the system 

control input of the second mass on the k step and k−1 

step sampling intervals, respectively.  U(k)1→2 and 

U(k)2→1 represent the coupling effect control of the first 

mass relative to the second mass and the second mass 

relative to the first mass of the coupling fuzzy controller, 

respectively. 

 

5. Design of Fuzzy Neural Netwok 

The neurofuzzy learning scheme is mainly composed 

of two steps. In the first step, the number of rules nodes 

(hence the structure of the network) and initial rule 

parameters (weights) are determined using structure 

identification; in the latter all parameters are adjusted 

using parameter identification as shown in Fig 4. 

To initiate the structure tuning, a training set 

composed of input-output data which contains n inputs 

and one output must be provided. Without loss of 

generality, we assume that the data points have been 

normalized in each dimension so that they are bounded 

by a unit hypercube. We consider each data point as a 

possible cluster center and define a measure of the 

potential of data point as discussed in [14]. To extract the 

set of initial fuzzy rules, firstly data is separated into 

groups according to their respective classes. Subtractive 

clustering is then applied to the input space of each group 

of data individually for identifying each class of data. 

Each cluster center may be translated into a fuzzy rule for 

identifying the class. 

 

 
Fig. 4, Steps for neurofuzzy learning. 

 

One can also write this rule in the more familiar form: 

Rule i: If X1 is Ai1 & X2 is Ai2 &... then class is c1. 

Where Xj is the j’th input feature and Aij is the 

membership function (Gaussian type) in the i'th rule 

associated with the j'th input feature. 

The membership function Aij is given by 

























 −
−=

2

exp)(
ij

ijj

iij

mX
XA

σ
           (12) 

Where mij is mean and σij is deviation. 

In parameter identification, the NN techniques are 

used to refine the parameters of the initial fuzzy rules. A 

NN with three layers is designed based on the fuzzy rules 

obtained in first phase. To realize the described fuzzy 

inference mechanism, the operation of a NN is shown in 

Fig 5 and described below: 

(10) 

(11) 



Layer 1: Units in this layer receives the input value 

(X1, X2,….., Xn) and acts as the fuzzy sets representing 

the corresponding input variable. Nodes in this layer are 

arranged into j groups; each group representing the IF-

part of a fuzzy rule. Node (i, j) of this layer produces its 

output Oij
(1)

, by computing the corresponding Gaussian 

membership function: 

 

 
Fig. 5, Architecture of fuzzy neural network. 
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Layer 2: The number of nodes in this layer is equal to 

the number of fuzzy rules. A node in this layer represents 

a fuzzy rule; for each node, there are n fixed links from 

the input term nodes representing the IF-part of the fuzzy 

rule. Node Oj
(2)

 of this performs the AND operation by 

product of all its inputs from layer 1. For instance, 

1

1

)2(
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n

i
j OO

=
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Layer 3: This layer contains only one node whose 

output O
(3)

 represents the result of centroid 

defuzzification, i.e., 

∑

∑
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Here cj is the class of data as discussed above and it is 

also called the fuzzy singletons defined on output 

variables.  Apparently, mij, σij and cj are the parameters 

that can be tuned to improve the performance of the 

system. After that a hybrid learning algorithm which 

combines gradient descent and least square estimator 

method is used to refine these parameters.  Each epoch of 

the hybrid learning procedure is composed of a forward 

pass and backward pass. In the forward pass, input data is 

supplied and functional signals go forward to calculate 

each node output. The consequent parameters are 

identified by least square estimator method. After 

identifying the parameters, the functional signals keep 

going forward till the error measure is calculated. In the 

backward pass, the error rates (derivative of the error 

measure w.r.t. each node output) propagate from the 

output end towards the input and the premise parameters 

are updated by gradient method. The details of Hybrid 

learning algorithm is given by Jang in [15] and we are 

using the same procedure. 

 

6. Simulation Results of the System 

Actually we begin by measuring the error between the 

actual speed and current (which should be contro1led) 

and the reference speed matching the torque command.  

This controlled speed gives us a good indication about 

the volt, which must apply to the motor. Fig. 6 shows the 

block diagram of the system. 

 

 
Fig. 6, Block diagram of the system. 

 

This section presents a computer simulation of the 

proposed control scheme for a 0.8 kW PMSM using 

Fuzzy MIMO controller.  The motor specifications and 

parameters are given in Appendix.  The dynamic 

performance of the drive system for different operating 

conditions has been studied with the application of Fuzzy 

MIMO controller.  Several tests were performed to 

evaluate the performance of the proposed system. 

Figure 7 shows the inverter’s Simulink model. One 

switch per phase is used to set Vdc or –Vdc on the phase. 

As an activation signal for each switch is used the PWM. 

While, Fig. 8 is shown simulink model of the PMSM, 

[16]. 

 



 
Fig. 7, Simulink model of the inverter. 

 

 
Fig. 8, Simulink model of the PMSM. 

 

Figure 9 shows the speed response of the system due 

to a step change in the command. While, Fig. 10 shows 

an important issue of the electrical drives is the capability 

to reject the effects of load disturbance.  Figure 10 (a) 

presents the overall responses of the speed the load 

torque and the phase current.  The system started at Load 

then at t =0.3sec the load torque is decreased to 50% of 

the full load and at t =0.5sec it is increased from 50% to 

75% of the full load torque.  Figure 10 (b-c) shows the 

responses of the speed, load torque and current during the 

sudden step in the load torque from start to 100% load 

then to 50% load and change to 75% load.  While, Fig. 11 

shows the rotor position waveform.  This reveals that the 

performance of the overall system is robust to the load 

disturbances.  Computer simulation results demonstrate 

that proposed Fuzzy MIMO controller obtain robust 

response for the drive system.   

 

 
Fig. 9, Mechanical speed (Ref. in blue, Actual in green). 

 

7. Conclusion 
In this paper, a NN tuned fuzzy Controller for 

controlling multi inputs multi outputs (MIMO) systems for 

PMSM drive system has been presented.  The MIMO fuzzy 

controller with derivative action can achieve much better 

results than the conventional FLC.  Thus the control 

structure is simple and design process is easier and applied 

to PMSM drive system.  In spite of the simple structure of 

MIMO fuzzy controller speed controller, the obtained results 

show that those controllers can provide a fast and accurate 

dynamic response in tracking and disturbance rejection 

characteristics under load torque variations.  At the same 

time, a reduction of the computation time of rules base has 

been occurred as a result of the simple construction of the 

MIMO fuzzy controller.  The overall system performance 

has been investigated at different dynamic operating 

conditions.  It is concluded that the proposed MIMO fuzzy 

controller shown superior performances and robust stability 

despite the presence of external load disturbances. 

 

Appendix:  

Machine parameters: PMSM, 

 460V, 8-poles,   

Resistance/ph Ω .21= , 

self inductance/ph=8.7 mH, 

2kg.m .0001330J =  , 

   cN.m/rad/se  00002935.0=β  
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(a) Overall waveforms during sudden changes. 
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(b) From 100% to 50% load. 
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(c) From 50% to 75% load. 

Fig. 10, Speed, load torque, and phase current during 

sudden changes in load torque. 

 
Fig. 11, Rotor position waveform. 
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